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Abstract: Widespread negative correlations between summertime-mean temperatures and
precipitation over land regions are a well-known feature of terrestrial climate. This
behavior has generally been interpreted in the context of soil moisture-atmosphere
coupling, with soil moisture deficits associated with reduced rainfall leading to
enhanced surface sensible heating and higher surface temperature. The present study
revisits the genesis of these negative temperature-precipitation correlations using
simulations from the Global Land-Atmosphere Coupling Experiment - Coupled Model
Intercomparison Project phase 5 (GLACE-CMIP5) multi-model experiment. The
analyses are based on simulations with 5 climate models, which were integrated with
prescribed (non-interactive) and with interactive soil moisture over the period 1950-
2100. While the results presented here generally confirm the interpretation that
negative correlations between seasonal temperature and precipitation arise through
the direct control of soil moisture on surface heat flux partitioning, the presence of
widespread negative correlations when soil moisture-atmosphere interactions are
artificially removed in at least two out of five models suggests that atmospheric
processes, in addition to land surface processes, contribute to the observed negative
temperature-precipitation correlation. On longer timescales, the negative correlation
between precipitation and temperature is shown to have implications for the projection
of climate change impacts on near surface climate: in all models, in the regions of
strongest temperature-precipitation anti-correlation on interannual timescales, long-
term regional warming is modulated to a large extent by the regional response of
precipitation to climate change, with precipitation increases (decreases) being
associated with minimum (maximum) warming. This correspondence appears to arise
largely as the result of soil-moisture atmosphere interactions.
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We thank the reviewers for their comments on the manuscript. Below are our answers to the comments.  
Please note that the manuscript has been reorganized, figures added or removed, their order changed. For the sake of 
consistency with the reviewers’ comments, unless otherwise stated references to figure or section number in our reply below 
refer to the initial version of the manuscript.  
 
The main changes brought to the manuscript are as follows: 

- The manuscript was reorganized (section 4, figures order) and the steps of the analysis clarified to account for 
reviewer #1’s comment on the perceived redundancy of the analysis in our initial manuscript;  

- Following reviewer #3’s recommendation, temperature-precipitation correlations from observations were added to 
the analysis; 

- Following reviewer #1 and #3 comments, all figures were reworked; correlation maps use a different color scale 
emphasizing statistical significance, and where non-significant values are not shown. The field significance of 
temperature-precipitation correlations was assessed.  

Reflecting these changes, the text has been modified extensively throughout the manuscript.  
Also, note that observations of T-P correlations added to the study were found to be sensitive to linear detrending. Because 
the focus was on interannual variability, we show linearly detrended results. For the sake of consistency, all model results 
are then presented detrended as well in the revised manuscript. Small quantitative differences with the initial results thus 
exist, however the main results of the analysis remain qualitatively unaffected.  
Please note that we also clarified the title of the manuscript, adding “over land”. 
 
###################################################################################################
################################################################################################### 
 
Reviewer Comments included in this letter: 
Reviewer #1: The authors provide an analysis of long term climate simulations that isolate the mechanisms underlying 
precipitation-temperature correlations. The paper is well-written, and I don't have any real problem with the science. The 
paper, though, is much longer than it needs to be (comment #1), which detracts from its usefulness. I recommend 
publication subject to minor revision, though the length issue may, in some ways, suggest major revision. 
1. The main result of the paper is that over much of the world, low (high) precipitation rates lead to low (high) evaporation 
rates which in turn lead to high (low) temperatures, while a secondary mechanism (cloudiness associated with both 
increased precipitation and reduced incident radiation) can also be important in some situations. That's fine, and the multi-
model demonstration of this seems worthy of documentation. However, this result is effectively presented several times, 
through different methods of processing the same data (map comparisons, histograms, binning, examination of 
temperature/evaporation correlations, examination of radiation/precipitation correlations, etc.). The reader will be convinced 
very early on of the paper's main result and doesn't particularly benefit from seeing the same result pop out of additional 
processing methods. Personally, I didn't learn much of anything from Figures 3-8 that wasn't already demonstrated or 
implied reasonably well 
in Figure 2. 
Should the authors get rid of Figures 3-8? Maybe not all of them. Figure 3 is a nice summary and doesn't take up much 
room. Figures 4 and 5 show some potentially useful supporting information but do take up a lot of room; could multi-model 
averages be shown instead, given that model differences are not emphasized here, except for a few asides? As for Figures 6-
7, I'll admit that they don't do anything for me. It's an interesting way to look at the data, but the information content is 
essentially the same as that of the earlier figures, so the reader has to do a lot of work for little gain. Figure 8 provides more 
supporting data, but again, the main findings were already presented, and I'm not fully convinced that the supporting data is 
needed. 
 
While we agree with the reviewer's comment that Figure 2 already neatly contained the main results of the study, we still 
think figures 3-8 add value to the analysis and are actually necessary to explain the results in figure 2. We take the 
reviewer's comment here as showing that we failed to clearly define and separate the different parts of the analysis and their 
respective contributions: 

− Figure 2 shows negative T-P correlations are reduced in all models from REF to expA, but subsist significantly in 
some models. Our a priori interpretation of Figure 2 is that soil moisture-atmosphere interactions have been 
disabled in expA by the suppression of interactive soil moisture, so that, while all processes represented on Figure 
1 are active in REF and can contribute to simulated T-P covariability, only atmospheric processes play a role in 
these correlations in expA. 

− Figure 4-5 confirm that in expA, the land only responds to the atmosphere (does not feed back to it) and Figure 8 
provides some confirmation that in that context, negative T-P correlations in 1A seem to result from precipitation-
radiation-temperature relationships (consistently with Figure 1). 

Response to Reviewers
Click here to download Response to Reviewers: reply_reviewers_Berg_etal.pdf 
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− Figure 6-7 provide a separate but consistent line of analysis: the models that displayed negative T-P correlation in 
expA are also the ones that in simulation RF also display negative T-P correlations in regions of energy-limited 
evaporative regimes (in addition to displaying such correlations in soil moisture-limited regions); i.e., in both 
cases, they do so without soil moisture's feedbacks to the atmosphere. We feel this physical consistency between 
both simulations is worth presenting, as it reinforces the diagnosis of differences in model behavior. As a result we 
respectfully disagree with the reviewer's suggestion to remove Figure 6-7 and the corresponding analysis.  

 
In response to the reviewer's comment, we have revised the manuscript to better separate the different stages of the analysis 
in the text and better underscore their respective contributions –e.g., lines 233-241, 294-299, 385-392 in the new 
manuscript. We also reorganized section 4 so that the text now follows the general plan outlined above, which we believe 
will be clearer than the initial version (that is, figures 4-5-6-7-8 have been rearranged as 4-5-8-6). To reduce the length of 
the manuscript, (former) Figure 7 was changed to Supplementary Material, as it helps understand Figure 6 but is not 
essential to the analysis. Note that Figure 3 now only shows Figure 3d, as surface areas of negative or positive correlations 
are now already shown on (former) Figure 2. We did consider showing multi-model averages for figures 4 and 5, but since 
these figures correspond to the axes on the binned plots on Figure 6, we think it is important to show them separately for 
each model to facilitate the understanding of Figure 6. 
 
2. In any case, all of the figures need to be reworked. The caption in Figure 2, for example, says that blue and red contours 
indicate significance levels of 5%, but there are different shades of blue and red shown, so it's very difficult to interpret 
significance. The only approach that really makes sense here (in all the figures) is to mask out (i.e., plot as white) the values 
that are not significant at the 5% level. 
 
The captions in the initial manuscript referred to the blue and red contour, i.e. contour lines, that showed 5% significance – 
not to the shading. We are sorry if that was unclear. In response to the reviewer's comment here (as well as to reviewer #3's 
comments), we have whited out non-significant correlations on all correlation maps; we have also changed the value-based 
color scale to a significance-based color scale: color thresholds now correspond to the 10%, 5%, 1%, 0.1% levels of 
correlation significance, so that readers can better assess the significance of the correlations displayed. 
 
3. I like the climate change analysis (I even like the binned analysis in Figure 10), but I am confused about one thing. It 
looks like expA uses the 1971-2000 values even during the 2071-2100 period. Would the use of climatological values from 
the 2071-2100 period be more appropriate to address at least some aspects of the T-P correlation question (e.g., the use of 
these correlations on the x-axis of Figure 11b)? The authors should comment. 
 
The reviewer is correct that expA uses 1971-2000 climatological soil moisture values throughout the simulation (1950-
2100), including during 2071-2100. This was the design of the experiment (see Seneviratne et al. 2013 in the manuscript’s 
references). 
Figure 10 and 11 analyze the change in summertime temperature between present (1971-2000) and future (2071-2100) as a 
function of changes in precipitation between present and future, and of T-P correlations in the present. So by design plots on 
Figure 10b and 11b have 1971-2000 T-P correlations on the x-axis. In a way, what these figures are looking at is whether 
physical processes and feedbacks operating at short, interannual time scales (and responsible for present-time negative T-P 
correlations) bear any relevance for long term coupled temperature and precipitation change - figure 10b indicates that they 
do. 
The GLACE-CMIP5 project includes another experiment expB, where a time-varying (over a 30-year window) climatology 
of soil moisture is prescribed (again, see Seneviratne et al. 2013). Thus, in that experiment, soil moisture at the end of the 
simulations is the climatology over 2071-2100 – as the reviewer suggests using here. However, in this experiment, 
prescribing soil moisture in this way means the long-term response of soil moisture to climate change, as well as the 
feedback of this long-term soil moisture change on surface climate, are already included (for instance, a long-term local 
decline in soil moisture will lead to average future warming); but the short-term feedbacks are not, since soil moisture is 
prescribed and not interactive. Thus we feel expB was not suited to investigate the issue we meant to analysis in this section 
(the consistency between short-term and long-term T-P coupling).  
 
  
4. Line 251-252: "inform similarly on soil moisture versus energy-limited evaporative regimes". I don't see this. How can 
expA inform on soil moisture limited regimes? 
What we meant was that radiation-evaporation correlations, in theory, reveal patterns of soil moisture and energy-limited 
evaporative regime, just like soil moisture-evaporation correlations do (see results for simulation REF). We cannot look at 
the latter in expA (since soil moisture is prescribed) but we can look at the former. They do reveal that evaporation is 
energy-limited nearly everywhere in expA.  



Note that this sentence has been suppressed in the reorganization of the manuscript. 
 
 
 
###################################################################################################
################################################################################################### 
 
Reviewer #2: The paper applies notions of climate response to land-atmosphere feedbacks to a set of CMIP5 simulations 
designed to isolate the role of such feedbacks in climate models in both historical and future climate scenarios. Important 
implications are found that, by elimination, certain areas are seen to have correlations symptomatic of land-atmosphere 
coupling that are in fact driven by the atmosphere alone. However, regions that do have direct feedbacks in effect 
demonstrate a modulation of climate warming signals via the water cycle that help explain some climate change results. The 
case is well presented, culminating in Fig 10. 
 
Overall I recommend only minor revisions before publication. 
 
L207: The "terrestrial pathway" was demonstrated by Guo et al. (2006) - this should be cited, and this idea/nomenclature 
should be introduced in the description of Fig 1. 
We have edited the description of Figure 1 in the introduction accordingly (citing Guo et al. 2006, Dirmeyer et al. 2011). 
 
L332-334: This statement is unsatisfyingly fuzzy. It seems this could be demonstrated with a basic slope calculation (linear 
regression) and/or correlation of temperature against surface energy balance terms. 
We rephrased this statement. What we meant is that Figure 8b reflects the different model sensitivities of surface 
temperature to incoming solar radiation in the context of a non-soil moisture-limited evaporative regime (since evaporation 
in expA is essentially energy-limited) – i.e. how surface temperature is diagnosed in a model given solar radiation and water 
availability.  
 
L346: These positive correlations can be meaningless if the variability is small, as it is typically for temperature in tropics. 
One needs to consider the magnitude of variability as well (cf. Guo et al. 2006, Dirmeyer 2011). 
 
In general, precipitation variability and temperature variability vary in opposite ways with latitude: while temperature 
variability is indeed low in the Tropics and maximum (in summer) at high latitude, precipitation variability is higher in the 
Tropics (where mean precipitation is maximum) and lower at mid/high latitudes – see Trenberth and Shea (2005), Wu et al. 
(2013) (references in the manuscript). Thus precipitation and temperature act to offset each other (in terms of the impact of 
variability on the calculation of correlations). This point is now highlighted in the presentation of observed T-P correlations 
that was added to the manuscript.  
 
L358-360: More specifically, ...sensitive to the way clouds and convection are parameterized. Please "go there" in the 
discussion, as this is a point that needs to be hammered home. 
This topic is now mentioned in section 4c and in the discussion section. 
 
Fig 7: Please label the columns with the pairs of correlation signs corresponding to the four quadrants. 
Labels were added. Figure 7 was moved to Supplementary material, as Figure S1. 
 
Fig 9 and discussion L385-390: Please give some tabular data or otherwise make these more quantitative. The reader cannot 
tell much from the figures - it is difficult to synthesize visually. 
To provide a more quantitative and interpretable view of the change in correlations in the future, Figure 9 was replaced by a 
histogram of areas of significant positive or negative change in T-P, SM-ET-, ET-T correlations between present and future 
in the different models. The original Figure 9 was retained as Supplementary Figure S2, as it helps to interpret the spatial 
patterns behind the histogram.  
 
 
Sec 6: But what can we say about nature? It is not directly shown here whether these models reflect observed relationships 
in these quantities (obviously such validation would only be possible in a limited way, but any degree of confidence that 
could be demonstrated would be helpful, even if taken from other literature). Perhaps a strong call needs to go out here to 
better validate the land-atmosphere interactions in these models (spur on the observational community). 
 
The goal of our study was primarily to highlight the intermodel differences in the multivariate physical relationships that 
underlie an emerging behavior such as T-P covariability. While the evaluation of relevant processes (convection, clouds, 



land-atmosphere coupling, etc.) in climate models has been the subject of many studies (e.g., Dirmeyer et al. 2006), we are 
not aware of studies systematically evaluating global, interannual relationships similar to those analyzed in the present 
study. We leave the corresponding evaluation of these relationships with observations or observation-based products (for 
evaporation, radiation, soil moisture, etc.) for future studies. We do note, however, that climate models (at least in CMIP5) 
seem to overestimate summertime temperatures over land (e.g., Christensen and Boberg 2012, Mueller and Seneviratne 
2014). The comprehensive causes of such biases are being investigated (e.g., Ma et al. 2014), but there are indications that 
models in these regions are too dry (in terms of precipitation and/or evaporation) and that subsequent soil moisture-
temperature coupling contributes to the warm bias (Christensen and Boberg 2012, Mueller and Seneviratne 2014). As we 
mention in the text, our view is that it is thus possible that these climate models, being biased towards a dry/warm state in 
summer, overestimate summertime soil moisture-atmosphere interactions in general, and the role of these interactions in T-
P correlations in particular.  
This discussion was modified in the text – lines 568-599 in the new manuscript. 
  
Christensen, J. H., and F. Boberg (2012), Temperature dependent climate projection deficiencies in CMIP5 models, 
Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650. 
Dirmeyer, Paul A., Randal D. Koster, Zhichang Guo, 2006: Do Global Models Properly Represent the Feedback between 
Land and Atmosphere?. J. Hydrometeor, 7, 1177–1198. 
Ma, H.-Y., and Coauthors, 2014: On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 
Models. J. Climate, 27, 1781–1798. 
 
 
Sec 6: Is there any indication of connections between model fidelity and any aspects of future projections (cf. Shukla et al. 
2006)? 
There seems to be a link between regional model biases and sensitivities. In summer, warm models tend to project more 
warming in some regions (Boberg and Christensen 2012). This kind of behavior is consistent with our Figure 10b, which 
shows that future warming depends on present-time land-atmosphere interactions (and precipitation change). Thus a correct 
representation of land-atmosphere interactions is crucial for accurate future surface climate projections.  
 
Boberg F, Christensen JH (2012) Overestimation of summer temperature projections due to model deficiencies. Nat Clim 
Change 2:433–436. doi:10.1038/nclimate1454 
 
Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, L16702, doi: 
10.1029/2011GL048268. 
 
Guo, Z., and co-authors, 2006: GLACE: The Global Land-Atmosphere Coupling Experiment. 2. Analysis. J. Hydrometeor., 
7, 611-625, doi: 10.1175/JHM511.1. 
 
Shukla, J., T. DelSole, M. Fennessy, J. Kinter, and D. Paolino, 2006: Climate model fidelity and projections of climate 
change, Geophys. Res. Lett., 33, L07702, doi:10.1029/2005GL025579. 
 
I do not wish to remain anonymous. -Paul Dirmeyer 
 
###################################################################################################
################################################################################################### 
Reviewer #3: Review of "Interannual Coupling Between Summertime Surface Temperature and Precipitation: Processes 
and Implications for Climate Change" by A. Berg et al. 
 
Summary 
 
This manuscript includes analysis of multi-year summer-mean correlations of continental precipitation (P) and surface 
temperature (T) in five coupled OAGCM simulations of CMIP5 historical 20th century climate and projected 21st century 
climate, where the latter assumes an "RCP8.5 scenario " of greenhouse gas concentrations. For each model, the historical 
and projected future climate simulations are implemented in two experimental configurations, one which included 
interactive soil moisture ("REF") and the other with prescribed climatological soil moisture ("expA"). 
 
Major Comments 
 
The analysis of these unique, paired simulations is quite interesting, and reflects considerable scientific insight. The 
description of results and their interpretation are also generally well written. However, in my opinion, the manuscript falls 



short in several respects: 
 
1)There is no attempt to validate the historical simulations of P-T correlations relative to those determinable from the 
several continental P and T observational data sets (e.g. CRU, GPCP, University of Delaware, T products from reanalyses, 
etc.) that are now available. This also would require the remapping of model results to a common horizontal grid that is 
appropriate for comparison with the available observations. A validation relative to different observational P and T data sets 
also would convey the degree of observational uncertainty that currently exists. Such observational validation is a necessary 
prerequisite to further diagnosis of model processes, since it provides guidance on how important such processes are for 
obtaining a "good" simulation, and on how much "weight" to give the process relationships simulated by a particular model. 
 
Since we refer to observed T-P correlations in the introduction, in the interest of clarity (and because the observational 
correlations displayed in Trenberth and Shea 2005 and other papers referenced in the initial manuscript are computed 
slightly differently than in our study), we have added our own calculation of T-P correlations from observations in the 
revised manuscript (Figure 1 and lines 81-100 in the new manuscript). As recommended by the reviewer here, different 
observational data sets (crossing different T and P products) were used; patterns are generally robust across datasets; 
significance of the correlations depends on record length.  
We agree that adding observations facilitates the understanding of our study by the reader and provides some context to 
interpret our results. However, while we understand the reviewer’s request to then validate simulated T-P correlations 
against these observations, we believe a thorough validation (beyond general visual comparison) is beyond the scope of the 
study (e.g., see Wu et al. 2013), and would not necessarily add much to the analysis of the underlying physical processes in 
the models. Indeed, in general, a model may display the “right” observable field for the “wrong” physical reasons (and vice-
versa). Another issue is the limited number of models involved here. For instance here ESM2M and EC-EARTH display the 
strongest negative T-P correlations (in REF), but the analysis shows that they do so through different processes. Similarly, 
MPI-ESM, although it shares some process-level similarities with EC-EARTH, displays lower correlations. We thus do not 
believe, in particular given the limited number of models here, that T-P validation would be useful here to validate 
processes – rather, we emphasize in the discussion the need for process-level observational constraints on models in order to 
resolve these uncertainties. 
 
 
2) The diagnosis of differences in P-T correlations among the model simulations is limited to consideration of their 
relationship to only a few other simulated processes (chiefly, surface evapotranspiration ET, downward shortwave radiation 
SW, and soil moisture SM), leaving the authors to speculate vaguely on other unexamined processes (e.g. clouds, 
precipitable water, surface turbulent fluxes) that might "explain" the model differences. It is puzzling why these variables, 
as well as other potentially relevant processes such as surface net radiation (the main energy forcing and proportional to 
potential evaporation) and Bowen ratio, are left unexamined. 
 
We would like to underscore here that we analyzed more variables and processes than shown and discussed in the 
manuscript (including the ones mentioned in the reviewer’s comment). We could not realistically show all variables 
analyzed (we note that reviewer #1 already finds the study too long); all the more that some of the variables are also clearly 
redundant: for instance, cloud cover and incoming shortwave radiation at the surface are strongly anti-correlated (at the 
spatio-temporal scales analyzed here), since cloud cover essentially blocks solar radiation. We thus showed the relationship 
of precipitation and temperature with solar radiation (figure 8, in the original manuscript) and chose not to show 
corresponding relationships with cloud cover (e.g., as indicated lines 331-335 in the original manuscript).  
Similarly, we believe that surface turbulent fluxes are already an integral part of the study, given that i) we showed results 
for evapotranspiration ET, which is essentially interchangeable with the latent heat flux in this analysis, and ii) in the 
analysis of land evaporative regimes where ET is analyzed, the relationships between ET and soil moisture/atmosphere 
already carried most of the information on the ‘terrestrial pathway’ (Figure 1). This is because – at the time scale analyzed 
here – latent and sensible fluxes are significantly anti-correlated in soil –moisture limited regimes and positively correlated 
in energy-limited regimes. For instance below we show the correlations of temperature with, respectively, latent heat flux, 
sensible heat fluxes, Bowen Ratio and evaporative fraction in the GFDL model ESM2M. One can see the correlation 
patterns are essentially the same (with different signs). We thus feel the essential physical information is already provided 
by the analysis of ET in our study, without obvious need to display results for sensible heat flux or turbulent flux 
composites (EF, Bowen ratio).  



 
 
Correlations between summer-averaged temperature (Tas) and latent heat flux (LE, upper left), sensible heat flux (H upper-
right), Bowen Ratio (lower left) and Evaporative Fraction (EF=LE/(H+LE), lower right), over 1971-2000, in ESM2M; JJA 
in northern hemisphere and DJF in southern hemisphere. Contour lines indicate significant correlations (5% level, r=0.36). 
 
We did also investigate net radiation in our analysis. However net radiation was not the most relevant variable for the 
processes analyzed here when we were interested in the role of radiation: for instance, the correlation of net radiation with 
ET does not reveal the patterns of soil moisture-limited and energy-limited evaporative regimes the way correlations 
between ET and solar radiation do (see fig.5a in the original manuscript, with negative and positive patterns – in contrast, 
net radiation-evaporation correlations tend to be positive everywhere). Similarly, the ‘atmospheric pathway’ for negative T-
P correlations (e.g., Figure 8 in the original manuscript) involves the forcing effect of shortwave radiation on surface 
temperature (surface heating by radiation) and the anticorrelation between precipitation and shortwave radiation (clouds 
blocking radiation): other radiative fluxes cannot, a priori, play a similar role. We did investigate Figure 8 with different 
radiative terms (or combinations thereof, including net radiation) or directly with cloud cover: none provided a better fit (in 
terms of black contours and negative T-P correlations in expA on Figure 8c) than solar radiation. Note that incoming 
longwave radiation, for instance, tends to be positively correlated with precipitation and cloud cover, so cannot account for 
negative T-P correlations (since it is also positively correlated to surface temperature). Similarly, net radiation also includes 
the upward longwave radiation flux, function of surface temperature: thus it cannot be really considered as forcing surface 
temperature (which is what we were interested in our analysis here: how radiation forces surface temperature). For all these 
reasons we focused chiefly on solar radiation.  
Finally, we do speculate in lines 353-356 about the role of precipitable water in positive T-P correlations in some models in 
the Tropics. Precipitable water was not a standard output in the GLACE-CMIP5 project, and therefore was not provided for 
the different models: investigating the related processes in the different models was thus impractical. In addition, the 
positive T-P correlations at equatorial latitudes were not the main focus of the present study and represent a small (and 
uncertain) part of the signal. In this context, we felt it was not unreasonable to limit the analysis to physical speculations. A 
more comprehensive study of the different positive and negative domains on Figure 6a is planned as a future study.  
 
To account for the reviewer’s comment, we have tried to clarify in the revised manuscript why we focus on particular 
variables in our analysis – e.g., lines 276-281 in the new manuscript. We also added a discussion of the role of longwave 
radiation in (former) Figure 8 (lines 317-327 in the new manuscript). 
 
 
3) The related processes that are diagnosed are depicted in ingenious (although rather complicated) ways, but it is often not 
easy for the reader to interpret the results. For example, in some figures it is difficult to discern differences among the 



models because statistically significant correlations are not clearly differentiated. The question of what constitutes a 
"significant" result is also not critically examined, especially when coherent spatial patterns of significant correlations are 
identified in some model fields. In such cases, "field significance" (e.g. see Livesey and Chen, 1983 Mon. Wea. Rev.) is 
potentially a pertinent issue, at least for precipitation and other variables that are correlated with temperature, which is likely 
to exhibit high spatial correlation on neighboring grid cells. More careful attention to such statistical complexities is called 
for. 
Following the reviewer’s suggestion (as well as reviewer #1’s suggestion), we have whited out non-significant correlations 
(at the 10% level) on all correlation maps; in addition, we have also changed the value-based color scale to a significance-
based color scale. Color thresholds now correspond to the 10%, 5%, 1%, 0.1% levels of correlation significance (instead of 
regular 0.1 increments), so the reader can more easily assess the significance of the correlations that are represented. 
For T-P correlations (both in observations and in models), field significance was assessed, following Liveley and Chen 
1983, by using a Monte Carlo approach: the 30 yearly maps of T and P (corresponding to summer averages) were shuffled 
randomly 1000 times, and the area of significant T-P correlations (as percentage of the land surface) calculated each time. 
The field-significance threshold was then estimated as the 95% quantile of the corresponding distribution of significant 
areas. Note that keeping yearly maps unchanged while shuffling years retains the spatial auto-correlation within each field. 
This is indicated in the caption of Figure 1 in the new manuscript. 
We assessed the field significance for observational and model-simulated T-P correlations, given the exploratory nature of 
the analysis. We did not perform the calculations for process-level correlations in models (e.g., SM-ET correlations), given 
that they correspond to well-established climate processes in models and corresponding correlations are generally 
widespread.  
 
These general points are elaborated in more detail below. 
 
Details 
 
Lines 159-160: Remapping to a common grid that is compatible with available observations (taking more than one 
combination of observed P and T) is recommended. This is essential for model validation purposes?see Major Comments, 
point 1 above. 
Please see reply above (point 1). 
 
Discussion and conclusion section: See Main Comments, point 2 above. A more comprehensive analysis of other model 
variables that are potentially relevant to T-P correlations is needed. 
Please see reply above (point 2). 
 
Fig. 2: In this and other figures where significant correlations are the focus of attention, the 5% significance value should be 
stated (see remarks above on field significance, which may require a more stringent significance level?see Major 
Comments, point 3 above). I also would recommend "whiting out" the regions where the correlations are not significant, 
rather than depicting them in shades of green, while retaining a monochrome red or blue color to denote positive or negative 
significant correlations, respectively. This will make it much easier for the reader to focus on what is really important in the 
maps. 
Please see reply above (point 3). We do think there is value in showing how correlations vary above the significance level: 
as a result, instead of retaining a monochrome red or blue color to denote positive or negative significant correlations, we 
use different shades of red and blue to denote different significance levels.  
 
Fig. 3: Using a different color scheme in panels b and d would help differentiate their content from that of panels a and c. 
Because we now indicate areas of significant (positive or negative) T-P correlations on Figure 2, we only kept figure 3d in 
the revised version (Figure 3a and 3b would be redundant with these numbers). 
 
Figs. 4 and 5: See Fig. 2 recommendations above. Adding labels to differentiate the map types of column a vs. column b 
also would be helpful for the reader. 
Labels were added. 
 
Fig. 6: These plots are quite difficult to interpret. To simplify, I'd recommend leaving out all non-significant points (again, 
the statistical significance level should be stated in the caption?see also remarks above on field significance) and using a 
different color scheme for the plots of column b (which are different in kind from those in column a). 
We have tried to clarify the explanation for these plots in the text. For this particular plot (Figure 6a), we think it is 
interesting to show how T-P correlations behave in the ‘phase space’ (i.e., as a function of SM-ET and ET-T correlations) 
even below the significance level: how correlations become bluer (i.e., more negative) towards the bottom-right and upper-
left corners, redder towards the bottom-left and upper-right corners (depending on models). As a result we did not white out 



pixels below the 5% significance level (for T-P correlations).  
The 5% significance level (for T-P correlations) was added in the captions.  
Different color schemes are now used for columns a and b. 
 
 
Fig. 7: Each column should be labeled--e.g. the leftmost column might be designated as "Fig. 6a Upper Left Quadrant ( - , 
+) ", with corresponding modifications of the figure caption. See also remarks above concerning field significance. A 
continuous blue-to-red color bar need not be used--only monochrome blue or red to differentiate positive and negative P-T 
correlations. 
Labels were added. Please note that Figure 7 has been changed to Supplementary Figure S1. 
Pixels on Figure 7 already correspond to grid cells were SM-ET and ET-T correlations are both significant (either positive 
or negative, depending on the quadrant). These pixels are very few for the upper-right and lower-left quadrants (with 
variations between models): we mention so in the text, and that therefore significance may be an issue. Beyond this 
statement, however, we are not aware of a practical way to quantitatively assess the field significance of a field of joint 
correlations.  
To facilitate the interpretation of these maps and their connection to the binned plots, we have contoured areas of significant 
T-P correlations on this quadrant maps. We believe it is also important to show the value of T-P correlations on these grid 
cells for each model (and not only monochrome colors), whether these correlations are significant or not, so that readers can 
understand why the different models display different average T-P correlation values in the corresponding quadrants of the 
binned plots. Background land maps were also changed to gray (and interior borders were suppressed) to make the plots 
more readable. 
 
Fig. 8: See Fig. 2 recommendations above. In panel c), the black contours are difficult to discern, but this may become 
easier if the non-significant values are removed from the maps (again, field significance may be an issue here). 
Non-significant pixels were whited-out. Background land maps were changed to gray (and interior borders were 
suppressed) to make the plots more readable. 
The field significance of T-P correlations in exp1A is discussed earlier in the (revised) manuscript.  
 
Fig. 9: Future-Present correlation differences are difficult to interpret (as evidenced by a color bar that extends to absolute 
values > 1.0 (what are these maximum/minimum values?). It may therefore be necessary to include maps of the future 
correlations as well, or to find a different means to communicate the intended results. See also Fig. 2 recommendations 
above. 
This figure showed a plot of differences in 2 correlations (each with a [-1,1] range), therefore the potential range was [-2,2]: 
it was further narrowed to the range of actual correlation differences found in the models.  
To provide a more quantitative and global view of the change in correlations in the future (as recommended by reviewer #2, 
too), Figure 9 was replaced by a histogram of surface area of significant positive or negative changes in T-P, SM-ET, ET-T 
correlations between present and future in the different models. The original Figure 9 was retained as Supplementary Figure 
S2, as it helps interpret the spatial patterns behind the histogram (non-significant changes were whited out). 
 
 
Fig. 10: P units should be stated in the caption. 
Added. 
 
Minor Comments 
 
Line 44, and elsewhere: Use of terms such as "interannual timescales", "interannual correlations", etc. is subject to 
misinterpretation. The quantities in question are zero-lag point-wise correlations of one seasonal-mean surface field against 
another, where these statistics are calculated over 30 years. Unless some care is taken in explaining this fact, a reader might 
erroneously think that "interannual correlations" are calculated with one variable field lagging the other by a whole year. 
This was clarified in the text (new Figure 1 caption, Methods). 
 
Line 139: The RCP8.5 scenario should be described in somewhat more detail. 
A few words were added to remind readers that RCP8.5 is a high-energy consumption, no-climate policy  
and unabated-emissions scenario (akin to the SRES A2 scenario).  
 
Line 146-147: The EC-EARTH model has been developed by a consortium, with coordinating headquarters located in Italy 
(see http://www.to.isac.car.it/ecearth). The atmospheric model component is that of the ECMWF. 
Ok, changed. 
 



Lines 221: This is the case in the Tropics?Is evapotranspiration energy-limited in the Tropics because rainfall is so plentiful, 
in spite of high net surface radiation? 
Yes, evapotranspiration becomes energy-limited (or demand-limited) when it is no-longer soil water-limited (supply-
limited). Water is no longer limiting for ET in the (deep) Tropics (e.g., see Jung et al. 2010). 
 
Jung, Martin, et al. "Recent decline in the global land evapotranspiration trend due to limited moisture supply." Nature 
467.7318 (2010): 951-954.  
 
Line 228: "exactly complementary"?largely or mostly complementary is a more apt description 
This sentence was removed in the reorganization of the manuscript. 
 
Lines 349-352: We speculate that?In principle, it should be possible to demonstrate this supposition using model output 
variables. See Main Comments, point 2 above. 
Please see reply above (point 2). 
 
Line 374: The reader should be reminded here that it is an RCP8.5 future scenario that is being simulated. 
OK, added. 
 
Line 404: Suggested rewording: "Because maps of T-P correlations show regionally limited future changes, we investigate 
the relationship?in the models in a binned grid-cell framework." 
We reworded this part for clarity (albeit differently than suggested here). 
 
Lines 415-417: This statement doesn't seem to apply to the IPSL model. 
As indicated in the text, this statement only applies to some models (mostly ESM2M, to a lesser extent MPI-ESM and EC-
EARTH). 
Lines 429-430: By "the most negative T-P correlations?" do you mean both the most numerous and the largest average 
negative value? 
Yes, both in extent and intensity (see figure 3a, c, d).  
 
Line 436: ?(except maybe in MPI-ESM). What is the basis for this statement? 
MPI-ESM still seems to display maximum warming in the bottom-left part of Figure 11b. 
 
Typographical Corrections 
 
Line 291: A paragraph break is recommended at the sentence beginning "To help interpret?" 
Added. 
Line 296: (far-left column) 
Added. 
Line 306: energy-limited almost everywhere? 
Changed. 
Line 311: (originating either from?) 
Edited. 
Line 320: add phrase "than shown here" after ?with radiation. 
This part was rephrased to clarify the meaning.  
Line 350: Clapeyron 
Edited. 
Line 363: ?do not appear to be as significant? 
Edited. 
Lines 431-432: ?in the present-day climate 
Edited. 
Line 436: ?rather than radiation impacts 
Edited. 
Line 459: ?which shows the most extensive and strongest negative T-P correlations? 
Edited. 
Line 474: ?also inherently includes (strike "in itself") 
Edited. 
Line 549: Mitigation (remove hyphen) 
Edited. 
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Abstract. Widespread negative correlations between summertime-mean temperatures and 25 

precipitation over land regions are a well-known feature of terrestrial climate. This behavior has 26 

generally been interpreted in the context of soil moisture-atmosphere coupling, with soil moisture 27 

deficits associated with reduced rainfall leading to enhanced surface sensible heating and higher 28 

surface temperature. The present study revisits the genesis of these negative temperature-29 

precipitation correlations using simulations from the Global Land-Atmosphere Coupling 30 

Experiment - Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) multi-model 31 

experiment. The analyses are based on simulations with 5 climate models, which were integrated 32 

with prescribed (non-interactive) and with interactive soil moisture over the period 1950-2100. 33 

While the results presented here generally confirm the interpretation that negative correlations 34 

between seasonal temperature and precipitation arise through the direct control of soil moisture on 35 

surface heat flux partitioning, the presence of widespread negative correlations when soil moisture-36 

atmosphere interactions are artificially removed in at least two out of five models suggests that 37 

atmospheric processes, in addition to land surface processes, contribute to the observed negative 38 

temperature-precipitation correlation. On longer timescales, the negative correlation between 39 

precipitation and temperature is shown to have implications for the projection of climate change 40 

impacts on near surface climate: in all models, in the regions of strongest temperature-precipitation 41 

anti-correlation on interannual timescales, long-term regional warming is modulated to a large 42 

extent by the regional response of precipitation to climate change, with precipitation increases 43 

(decreases) being associated with minimum (maximum) warming. This correspondence appears to 44 

arise largely as the result of soil-moisture atmosphere interactions. 45 

46 
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1) Introduction 47 

Temperature and precipitation are arguably the two most critical components of surface climate 48 

over land for both terrestrial ecosystems and human society. The covariability between these two 49 

variables and the processes that control or modulate it are thus of great interest to the study of the 50 

terrestrial climate variability and change and associated impacts on natural and human systems. 51 

One issue worth exploring is the extent to which mechanistic understanding of such relationships 52 

can inform the interpretation of climate model simulations across multiple temporal and spatial 53 

scales and enhance predictive skill.  54 

Anti-correlation of terrestrial surface temperature and precipitation has been observed over a 55 

range of time scales and regions in many prior studies. Using station data over 1897-1960, Madden 56 

and Williams (1978) demonstrated that seasonal mean temperature and precipitation are negatively 57 

correlated in summer over most of North America, especially over the central Great Plains, while 58 

correlations of both sign were found roughly equally in other seasons. Similarly, over Europe 59 

correlations were found to be positive in winter and negative in summer. Analogous results have 60 

been reported using monthly data over North America for the period 1905-1984 (Zhao and Khalil 61 

1993) and in regional studies over Europe (Trout 1987, Rebetez 1996) and South America 62 

(Rusticucci and Penalba, 2000). More recently, Trenberth and Shea (2005) employed reanalysis 63 

data and global precipitation observations to extend these results globally: while over the ocean 64 

interannual correlations between summertime-monthly temperature and precipitation anomalies 65 

tend to be positive, reflecting forcing of precipitation by ocean surface temperature, widespread 66 

negative correlations (from the Tropics to the high latitudes) are found over land in summer in 67 

both hemispheres. Adler et al. (2008) and Wu et al. (2013) have since demonstrated comparable 68 

results using different global observation datasets. Although the studies mentioned above indicate 69 

distinct behavior in terrestrial temperature-precipitation covariability for different seasons, Déry 70 
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and Wood (2005) also report significant anti-correlations between annual-mean temperature and 71 

precipitation over land for observations over the 20
th

 century. In addition, Madden and Williams 72 

(1978) and Déry and Wood (2005) indicate that such relationships hold across time scales ranging 73 

from monthly to decadal. It is thus possible that they modulate trends associated with climate 74 

variability or global warming. For instance, Portman et al. (2009) suggest that a positive trend in 75 

precipitation over recent decades may account for the postulated “warming hole” in the 76 

southeastern U.S.  77 

Figure 1 illustrates these temperature-precipitation correlations over land in summer in a variety 78 

of observation datasets – including those used in the studies mentioned above (Trenberth and Shea 79 

2005, Adler et al. 2008, Wu et al. 2013). All datasets are linearly detrended to remove effects of 80 

potential trends on correlations and focus on interannual variability. Extensive significant negative 81 

correlations dominate over land. The general patterns are robust across datasets: areas of strongest 82 

negative correlations include the Sahel, Southern Africa, Australia, India, parts of North America, 83 

South America and Eurasia. Correlations tend to be less significant for shorter records (30 years) 84 

than longer records (110 years). For shorter time periods, despite general pattern agreement, there 85 

are uncertainties between datasets regarding the total extent of these negative correlations (from 86 

32.2% to 49.7% of land area). Where correlations are not negative, they are generally insignificant: 87 

this is the case mostly in deserts, in some regions at high latitudes and in the deep Tropics. Small 88 

areas of positive correlations can be found along the Equator, in particular in tropical Africa, in the 89 

longer records; however, these patterns appear less robust across datasets, and while field 90 

significance (e.g., Livezey and Chen 1983) is achieved for temperature-precipitation correlations 91 

as a whole in all datasets, positive correlations are not field-significant if considered separately 92 

(note that in that case, the threshold for field significance is slightly more than half the value 93 

indicated on Figure 1). Note that while temperature variability is lower at tropical latitudes, 94 
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precipitation variability tends to be higher in absolute terms (the opposite being true at higher 95 

latitudes; e.g., Trenberth and Shea 2005): across latitudes precipitation and temperature thus act to 96 

balance each other in terms of the impact of variability on the calculation of correlations. 97 

That summers over land tend to be either warm and dry or cold and wet—but typically not warm 98 

and wet or cold and dry—may be interpreted a priori as the result of several candidate processes, 99 

as depicted schematically in Figure 2. First, covariability between summertime temperature and 100 

precipitation may simply emerge from synoptic scale correspondence between decreased cloud 101 

cover/precipitation and increased incoming shortwave radiation heating the surface during clear-102 

sky conditions, and conversely, increased cloud cover and decreased surface heating and 103 

associated temperatures during rainy conditions. Second, local land-atmosphere interactions, 104 

which are expected to play a stronger role in summer (Entekhabi et al. 1992, Koster et al. 2004, 105 

Seneviratne et al. 2010), may induce such relationships on seasonal scales through the effect of 106 

precipitation on soil moisture and attendant surface heat fluxes. Lower rainfall, for instance, is 107 

associated with reduced soil moisture and latent heat flux, and thus increased sensible heating at 108 

the surface, resulting in higher near-surface air temperatures (and conversely, higher precipitation 109 

is associated with lower temperature). Note that this pathway corresponds to the ‘terrestrial 110 

branch’ of soil moisture-atmosphere interactions (Guo et al. 2006, Dirmeyer et al. 2011). Positive 111 

feedbacks of modified surface heat flux partitioning on cloud cover/ radiation (e.g., Gentine et al. 112 

2013) and large-scale circulation (e.g., Haarsma et al. 2009) may further amplify the effect of 113 

precipitation variability on temperatures.  114 

The impact of soil moisture anomalies on subsequent temperatures has been highlighted in a 115 

number of mechanistic modelling studies that have isolated soil moisture variability as a source of 116 

daily surface temperature variability in summer, especially in transitions between humid and dry 117 

climates (Koster et al. 2006, Seneviratne et al. 2006, Koster et al. 2010). Observation-based 118 
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estimates of soil moisture-temperature coupling are consistent with these patterns (Miralles et al. 119 

2012). Soil moisture-atmosphere interactions have been shown to play an amplifying role in warm 120 

extremes, as noted for recent European heat waves in observational (Vautard et al. 2007, Hirschi et 121 

al. 2011, Quesada et al. 2012) as well as modelling (Fischer et al. 2007, Zampieri et al. 2009) 122 

studies. Observations provide support for antecedent soil moisture deficits enhancing the 123 

probability of subsequent summer hot conditions across different regions of the globe (Durre et al. 124 

2000, Shinoda and Yamaguchi 2003, Mueller and Seneviratne 2012).  125 

These lines of evidence point to coupled land-atmosphere processes as the source for the 126 

regionally widespread anti-correlations of summertime terrestrial temperature and precipitation 127 

(Trenberth and Shea 2005, Koster et al. 2009). However, whether local land-surface processes are 128 

solely responsible for the large-scale, interannual covariability between summertime-averaged 129 

temperature and precipitation as depicted in Figure 1 (see also Trenberth and Shea 2005, Adler et 130 

al. 2008 and Wu et al. 2013), remains to be determined. In their analysis of the relationship 131 

between mean summertime temperature and precipitation using a single climate model, Koster et 132 

al. (2009) indicate that these temperature-precipitation anti-correlations “essentially disappear” 133 

when simulated land-atmosphere interactions are disabled by prescribing surface fluxes; they thus 134 

identify land-atmosphere processes as the dominant driver of these relationships. Krakauer et al. 135 

(2009) also report reduced coupling of temperature and precipitation in another model when soil 136 

moisture-atmosphere coupling is suppressed through prescribing soil moisture, although they did 137 

not investigate this behavior in detail.  138 

The aim of the present study is to explore more extensively, across several models, the 139 

correlations between mean temperature and precipitation in order to untangle the contribution of 140 

the different processes illustrated in Figure 2. To do so, we make use of simulations from the 141 

recent CMIP5 Global Land-Atmosphere Coupling Experiment (GLACE-CMIP5; Seneviratne et al. 142 
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2013), in which simulations spanning 1950-2100 were performed with a suite of current-143 

generation models following an experimental set-up disabling land-atmosphere interactions. The 144 

manuscript is organized as follows: we describe the models and fields analyzed in Section 2. 145 

Section 3 presents the temperature-precipitation correlations in the GLACE-CMIP5 simulations. 146 

Land and atmospheric controls on these correlations are investigated in section 4, while section 5 147 

describes the potential relevance of these correlations for climate change projections. The principal 148 

results and implications of our study are discussed in Section 6. 149 

 150 

2) Methods and datasets 151 

In the context of the GLACE-CMIP5 experiment, five modeling centers performed a land-152 

atmosphere-only transient climate change simulation (hereafter referred to as “expA”) in which 153 

total soil moisture was overridden in the respective models by the climatological values over 1971-154 

2000 from the corresponding historical, fully coupled CMIP5 simulation. ExpA extends over 155 

1950-2100, with transient sea surface temperatures (SSTs), sea ice, land use, and radiative forcing 156 

agent concentrations prescribed from the corresponding CMIP5 simulations (using the historical 157 

simulations over 1950-2005 and the RCP8.5 scenario thereafter, characterized by high population 158 

and energy consumption growth, no climate policy and unabated emissions); however, soil 159 

moisture in each model is overridden by the 1971-2000 climatological seasonal cycle of soil 160 

moisture, and thus maintains a climatological seasonal cycle throughout the transient simulation. 161 

For each model, either the fully coupled CMIP5 simulation, or, in cases where there were minor 162 

differences in set-up, a new reference simulation identical to expA but with interactive soil 163 

moisture, was considered as a reference simulation (hereafter referred to as “REF”). The five 164 

models analyzed here are Geophysical Fluid Dynamic Laboratory’s ESM2M, National Center for 165 

Atmospheric Research’s CCSM4, the EC-EARTH model developed by a consortium of European 166 
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research institutions
1
, MPI-ESM from Max Planck Institute for Meteorology, and Institut Pierre 167 

Simon Laplace’s IPSL-CM5A. The reader is referred to Seneviratne et al. (2013) for further 168 

discussion of the models and the experimental protocol of GLACE-CMIP5. 169 

Here we compare interactive (REF) and prescribed (expA) soil moisture simulations over 1971-170 

2000; we focus on correlations between temperature (T) and precipitation (P) in summer 171 

calculated, as in Figure 1, as zero-lag point-wise correlations of summertime-mean temperature 172 

against precipitation (hereafter referred to as T-P correlations). Although focusing on 1971-2000 173 

limits sample sizes to 30 paired values (temperature and precipitation for 30 summers), it ensures 174 

that both simulations have identical soil moisture climatologies. The comparison thus isolates the 175 

effect on climate of soil moisture variability and associated soil moisture-atmosphere interactions 176 

only. June-July-August (JJA) means are used for the Northern Hemisphere and December-177 

January-February (DJF) means for the Southern Hemisphere. Correlations between other variables 178 

are investigated similarly. As in Figure 1, 30-year time series of all climate variables analyzed 179 

were linearly detrended to remove any spurious effect of climate change-related trends on 180 

correlations and focus on interannual variability; such detrending was found to have little 181 

quantitative impact on the results for most models. Correlations are presented on the models’ 182 

native grids, with resolution ranging from 1.125° x 1.125° for EC-EARTH to 3.75° x 1.875° for 183 

IPSL-CM5A. Antarctica and Greenland are removed from all datasets. 184 

 185 

3) Temperature-Precipitation correlations 186 

Figure 3a shows that T-P correlations are generally significantly negative over most of the land 187 

surface in REF in all models. The common patterns of negative T-P correlations that emerge 188 

across models - e.g., the US, the Sahel, a large swath of Eurasia and parts of Southeast Asia in JJA; 189 

                                                           
1 See www.to.isac.cnr.it/ecearth/ 
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the Amazon, South Africa and Northern Australia in DJF- are in qualitative agreement with 190 

calculations based on observations (Figure 1). Trenberth and Shea (2005) and Wu et al. (2013) 191 

indicate similar general agreement from other coupled climate models. Beyond common patterns, 192 

Figure 3a shows that the strength and extent of these correlations vary across models, from strong 193 

and widespread correlations (EC-EARTH) to weaker and more diffuse correlations (CCSM4). 194 

When combining correlation extent and strength, EC-EARTH shows the strongest negative 195 

correlations, followed by ESM2M, MPI-ESM, IPSL-CM5A and CCSM4 (Figure 4).  196 

As in observations, areas of positive correlations in models are much reduced compared to areas 197 

of negative correlations. However, two models (ESM2M, CCSM4) exhibit coherent patches of 198 

significant positive correlations along the Equator, over Central Africa and Indonesia, which are 199 

reminiscent of areas of positive correlations found in some observational datasets (Figure 1). In 200 

ESM2M at least, positive correlations achieve field significance (4.2% of land surface area, above 201 

the 3.9% threshold). Thus, model uncertainty seems to parallel observation uncertainty regarding 202 

the covariability of temperature and precipitation over land in equatorial regions. Overall, both 203 

negative and positive correlations tend to be more significant in models (respectively, 55.4% and 204 

2.4% of the land surface area on average across models) than in observations (respectively 42.8% 205 

and 0.5% on average across datasets) over comparable 30-year time periods. This difference may 206 

stem from observation uncertainty and the resulting difficulty in diagnosing process-level 207 

relationships in observation datasets; we note that results from longer observational record are 208 

more consistent with model results (respectively, 57.9% and 1.9% of land surface area 209 

significantly negatively or positively correlated; see Figure 1). 210 

The results for simulation expA in Figure 3b indicate that when soil moisture is prescribed, 211 

negative T-P correlations are reduced, in all models, both in extent and intensity. However, while 212 

in some models these correlations essentially disappear, becoming less extensive and more 213 
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disorganized (ESM2M, IPSL-CM5A and, to a lesser extent, CCSM4), in others extensive, spatially 214 

coherent and significant negative correlations persist (MPI-ESM, EC-EARTH), often in similar 215 

regions as in REF. Figure 4 indicates that in terms of combined extent and strength, negative T-P 216 

correlations in simulation expA reach 52.2% and 49.2%, respectively, of those in REF in MPI-217 

ESM and EC-EARTH, but only 18.3%, 32.3% and 26.3% in ESM2M, CCSM4 and IPSL-CM5A, 218 

respectively. Using this index, correlations are stronger in EC-EARTH in expA than in CCSM4 in 219 

REF.  220 

Positive correlations along the Equator in ESM2M and CCSM4 remain in expA, which indicates 221 

that they are unrelated to soil moisture variability. We further point out that the spatial extent of 222 

positive correlations increases from REF to expA (Figure 3); positive correlations achieve field 223 

significance in expA in three models (ESM2M, CCSM4 and IPSL-CM5A). Small patches of 224 

positive correlations appear in the Tropics in expA where insignificant or even negative 225 

correlations occurred in REF: this is the case over the eastern part of South America, southern 226 

Africa or Australia, in particular in IPSL-CM5A, CCSM4 and ESM2M. We note that overall, 227 

despite the reduction in negative correlations from REF to expA, T-P correlations remain field-228 

significant in expA in all models. 229 

Our general a priori interpretation of the differences between simulations REF and expA in 230 

Figure 3 is that soil moisture-moisture atmosphere interactions have been disabled in expA by the 231 

suppression of interactive soil moisture. Thus, while all processes represented on Figure 2 are 232 

active in REF and can contribute to simulated T-P covariability, only atmospheric processes play a 233 

role in these correlations in expA, and the differences between both simulations reflect the 234 

contribution of soil moisture-atmosphere interactions. To confirm this interpretation and further 235 

investigate the processes underlying negative T-P correlations in both simulations, we analyze in 236 
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the following section the different relationships highlighted in Figure 2 in the different models, on 237 

the same interannual seasonal-mean timescales as for T-P correlations in Figures 1 and 3. 238 

 239 

4) Land and atmospheric control on Temperature-Precipitation correlations 240 

a. Evaporative regimes 241 

To highlight the process-level differences between both simulations, we first investigate the 242 

different evaporative regimes in REF and expA. In general, evapotranspiration may be either 243 

limited by soil moisture availability or by atmospheric demand (temperature, net radiation, vapor 244 

pressure deficit, wind speed); soil moisture’s feedbacks to the atmosphere are associated with the 245 

soil moisture-limited evaporative regime, when soil moisture controls surface turbulent fluxes and 246 

subsequent impacts on the low-level atmosphere (e.g., Seneviratne et al. 2010).  247 

Correlations between seasonal mean soil moisture (SM) and evapotranspiration (ET) in Figure 5a 248 

highlight the average summertime evaporative regime in the different models in REF. Positive 249 

correlations indicate that, on average, ET is soil moisture-limited (higher soil moisture leading to 250 

larger ET). This is the case, generally, in the sub-Tropics and mid-latitudes. Conversely, negative 251 

correlations point out regions where ET is energy-limited: when water supply is sufficient, ET 252 

variability is then determined by variations in atmospheric demand, so that ET variability then 253 

drives soil moisture variability (e.g., higher ET depleting soil moisture, producing negative SM-ET 254 

correlations). This is the case in the Tropics, and in high latitude and high altitude regions. Large-255 

scale patterns of SM-ET correlations are fairly consistent across models, but correlations vary in 256 

amplitude and regional differences can be important. MPI-ESM noticeably exhibits the most 257 

positive correlations, and shows almost no negative correlations in the Tropics. These intermodel 258 

differences arguably reflect the different parameterizations of soil hydrology in the models (Koster 259 

et al. 2009b).  260 
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Across models, patterns of correlations between summertime mean ET and atmospheric demand, 261 

represented here by temperature (Figure 5b) and incoming solar (shortwave) radiation (Rs, Figure 262 

5c) are consistent with the above. ET-T correlations are negative where soil moisture limits ET 263 

(see Figure 5a): reduced ET is then offset by higher sensible heat flux, thus leading to higher 264 

temperatures (and vice-versa, higher ET damps temperature). In these regions, negative ET-Rs 265 

correlations (Figure 5c) reflect the fact that higher evapotranspiration results from higher rainfall, 266 

which is associated with lower solar radiation. Conversely, ET-T and Rs-ET correlations are 267 

positive where atmospheric evaporative demand, linked to temperature and surface net radiation, 268 

drives evapotranspiration. Comparison between Figure 5b and 5c shows that in most models, the 269 

effect of radiation seem to prevail at low latitudes and the effect of temperature at high latitudes. 270 

Overall, evaporative regimes in REF as diagnosed in Figure 5 are consistent with similar analyses 271 

using climate models (Seneviratne et al. 2006), observation-driven land surface models (Teuling et 272 

al. 2009) or observation-based datasets (Jung et al. 2010). Note that the analysis of the surface or 273 

atmospheric control on ET (i.e., latent heat flux) here illustrates the control on surface turbulent 274 

heat fluxes, since at the time scale considered here the surface sensible heat flux is strongly anti-275 

correlated with ET in soil moisture–limited regimes and positively correlated in energy-limited 276 

regimes. Thus results for Figure 5 are similar with either surface heat flux, or composite thereof 277 

(e.g., Bowen Ratio, evaporative fraction).  278 

Results from simulation REF show complementary patterns of soil moisture- and energy limited 279 

evaporative regimes; by contrast, results for simulation expA (Figure 6) show that when soil 280 

moisture variability is prescribed, only atmospheric control on surface ET remains. Figure 6 281 

indicates that atmospheric demand (represented here by incoming shortwave radiation – results 282 

with temperature are similar) are driving ET variability nearly everywhere in the different models, 283 

except in desert and arid areas where there is little soil moisture to evaporate (note that since the 284 
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seasonal cycle soil moisture is prescribed in expA and that soil moisture is thus constant from one 285 

summer to the next, correlations between soil moisture and ET, similar to Figure 5a, cannot be 286 

computed for expA). This atmospheric control reflects the absence of soil moisture depletion 287 

following evapotranspiration in expA, since soil moisture is overridden by climatological values at 288 

every time step in the models: in this context, soil moisture exerts no control on ET, and the 289 

atmosphere is left to drive ET variability. 290 

The differences in evaporative regimes between REF and expA on Figures 5 and 6 confirm that 291 

while the land surface can feed back to the atmosphere in REF (in regions of soil moisture-limited 292 

regime), the atmosphere is entirely driving the land surface in expA. This confirms that soil 293 

moisture-atmosphere interactions are playing no role in T-P correlations in simulation expA in 294 

Figure 3 (in particular, in MPI-ESM and EC-EARTH). In the context of Figure 2, we thus interpret 295 

negative T-P correlations in expA as resulting from the “atmospheric” pathway. 296 

 297 

b. Atmospheric control on T-P correlations in expA 298 

The atmospheric pathway involves covariation of cloud cover and rainfall, with reduced rainfall 299 

and associated clouds (originated from either changes in large-scale circulation or in convection) 300 

leading to increased surface solar radiation and increased temperature, and conversely, increased 301 

precipitation/cloud cover leading to reduced incoming solar radiation and temperature. Figure 7 302 

supports this interpretation by showing that regions of negative T-P correlations in simulation 303 

expA in Figure 3b are generally collocated (Figure 7c) with regions where precipitation anomalies 304 

are significantly anti-correlated with solar radiation anomalies (Figure 7a) and where, 305 

simultaneously, radiation anomalies are significantly (positively) correlated with surface 306 

temperature anomalies (Figure 7b). Admittedly, this colocation is not proof of causation: we 307 

cannot rule out that a separate, different mechanism may independently generate such negative T-P 308 
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correlations in the models (in which case temperature-radiation and precipitation-radiation 309 

correlations of opposite sign may also independently be observed, as here). However, the good 310 

spatial match on Figure 7c (in particular for MPI-ESM and EC-EARTH) and the physical 311 

plausibility of the underlying processes are suggestive of a direct radiative control on the T-P 312 

correlation in expA. Note that radiative terms other than solar radiation play no similar direct role 313 

in negative T-P correlations. In particular, downwelling longwave radiation tends to be positively 314 

correlated with cloud cover and precipitation, so it would induce positive, instead of negative, T-P 315 

correlations (since it heats the surface as well). This effect may actually act to oppose the impact of 316 

cloud cover and solar radiation on T-P correlations: in particular, the lower negative T-P 317 

correlations actually simulated by CCSM4 over large parts of Eurasia compared to the patterns of 318 

precipitation-radiation-temperature covariations (black contours on Figure 7c) correspond to 319 

regions where surface temperature appears more strongly associated with downwelling longwave 320 

radiation in CCSM4 than in other models (not shown). Thus, our interpretation is that in this model 321 

and this region, positive anomalies of cloud cover/precipitation are not clearly correlated with 322 

negative temperature anomalies, because of the effect of the associated longwave radiation on 323 

surface temperature. 324 

As shown in Figure 3b, negative T-P correlations in expA are wider and more coherent in MPI-325 

ESM and EC-EARTH than in the other models. We interpret the differences between models as 326 

reflecting the differences between models in terms of cloud/radiative processes and impacts on the 327 

surface energy budget. Figure 7a shows that in simulation expA anomalies of precipitation across 328 

models are consistently and extensively associated with anomalies of incoming shortwave 329 

radiation of opposite signs. Differences between models mostly reflect different relationships 330 

between cloud cover and precipitation, and, to a lesser extent, differences in the strength of the link 331 

between cloud cover and radiation (not shown). On the other hand, positive correlations between 332 
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incoming shortwave radiation and temperature are less extensive; they also show more differences 333 

between models (Figure 7b). These differences reflect the different sensitivities of surface 334 

temperature to incoming solar radiation in the models, in particular in a non-soil moisture-limited 335 

evaporative regime such as in expA (see previous subsection). For EC-EARTH, MPI-ESM and (to 336 

a lesser extent) CCSM4, these differences result in large swaths of positive correlations between 337 

summertime-mean shortwave radiation and surface temperature in the Tropics and high latitudes, 338 

whereas similar correlations are less extensive in ESM2M and IPSL-CM5A. As mentioned above, 339 

models also exhibit different relationships of surface temperature with downwelling longwave 340 

radiation (in particular CCSM4). The combination of these differences in longwave/shortwave 341 

radiation-temperature relationships with more minor differences in precipitation-radiation 342 

correlations explains the spread in T-P correlations between models in expA (Figure 3b). Overall, 343 

Figures 7a and 7b arguably reflect the aggregated effects of combined differences in parameterized 344 

cloud, convection, radiation, soil and turbulence schemes between models. 345 

 346 

c. Land and atmospheric control on T-P correlations in REF  347 

We now focus on the processes underlying T-P correlations in the context of interactive soil 348 

moisture, in simulation REF. 349 

Soil moisture-atmosphere interactions arguably contribute to negative interannual T-P 350 

correlations in REF where correlation patterns in Figure 3a overlap with regions of positive SM-351 

ET correlation (soil moisture controlling ET) and negative ET-T correlation (ET controlling 352 

temperature) in Figure 5. To analyze this relationship, we combine information from Figures 3 and 353 

5 by binning T-P correlations along SM-ET correlations and ET-T correlations. Double histograms 354 

(or binned plots) on Figure 8a thus show T-P correlations in the different models in REF as a 355 

function of SM-ET and ET-T correlations (over land). For each model, for a given bin of SM-ET 356 
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and ET-T correlation values, Figure 8a displays the average T-P correlation over all (map) pixels 357 

from Figure 5a and 5b that fall within this particular bin of SM-ET and ET-T correlations; Figure 358 

8b indicates the number of map pixels from Figure 5 that fall in this bin. To help interpret Figure 359 

8a in a spatial sense, Supplementary Figure S1 also displays the maps of pixels belonging to the 360 

different domains of the binned plots (i.e., upper-left, upper-right, lower-right and lower-left parts 361 

of the plots), showing the corresponding T-P correlations. 362 

All models display negative T-P correlations in the bottom-right part of the plots, which 363 

corresponds to the soil moisture-limited evaporative regime: this quadrant corresponds to regions 364 

where, as mentioned above, soil moisture controls evapotranspiration (positive SM-ET 365 

correlations) and evapotranspiration controls temperature (negative ET-T correlations; see Figure 366 

5). T-P correlations are overwhelmingly negative in these regions (see also Figure S1, far-right 367 

column). This indicates that in all models, soil moisture atmosphere interactions do contribute to 368 

negative T-P correlations (in REF). 369 

A benefit of the binned analysis is that it shows that some models also produce negative T-P 370 

correlations in the upper-left part of the plots (EC-EARTH, MPI-ESM, CCSM4 to a lesser extent). 371 

This domain corresponds to the energy-limited evaporative regime: in this quadrant, temperature 372 

drives evapotranspiration (positive ET-T correlations) and evapotranspiration drives soil moisture 373 

(negative SM-ET correlation; see Figure 5). Figure S1 shows that, as mentioned in section 4a, 374 

these regions can be found at high latitudes and in the Tropics (far-left column). MPI-ESM 375 

displays negative T-P correlations predominantly at high latitudes, while EC-EARTH does so 376 

mostly in the Tropics (CCSM4 as well, but over the Amazon only). Since evapotranspiration in 377 

this regime is driven by atmospheric demand and drives soil moisture variability, negative T-P 378 

correlations in this quadrant clearly do not result from precipitation’s impact on soil moisture and 379 

soil moisture’s subsequent control on evapotranspiration and temperature. Rather, we interpret 380 
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them as resulting from the same atmospheric processes as highlighted in the previous section in 381 

simulation expA. This interpretation is supported by the consistency between Figure 8a and Figure 382 

3b: the models that show negative T-P correlations in the energy-limited evaporative regime in 383 

REF (upper-left part of the binned plots in Figure 8a) are the same ones that display significant 384 

negative T-P correlations in simulation expA in Figure 3b (EC-EARTH, MPI-ESM, and to a lesser 385 

extent, CCSM4). In both cases, the surface evaporative regime is controlled by the atmosphere (see 386 

section 4a). Figures 3b and 8a thus provide two independent yet consistent lines of evidence that 387 

these models are capable of producing negative T-P correlations that are not the product of soil 388 

moisture-atmosphere interactions, but which emerge through atmospheric processes only.  389 

Figure 8b indicates that for most models, most (map) pixels (from Figure 3a) lie in the bottom-390 

right part of the binned plots: that is, there are more map pixels that fall into the soil moisture–391 

limited evaporative regime; pixels in the energy-limited regime are comparatively less numerous 392 

(except for IPSL-CM5A; see also Figure 5). More generally, Figure 8b shows that most pixels fall 393 

along a general bottom-right/upper-left line. This is to be expected, as the two axes are not 394 

independent: a positive SM-ET correlation for instance, reflecting a soil moisture-limited 395 

evaporative regime, will tend to be associated with a negative ET-T correlation (as more 396 

evapotranspiration will then cool the surface). However, Figure 8a also shows hints of coherent 397 

positive T-P correlation patterns emerging across models as one departs from this central line and 398 

moves towards the upper-right and lower-left quadrants, where SM-ET and ET-T correlations 399 

follow different behaviors. These tend to correspond to pixels in, respectively, equatorial latitudes 400 

and high latitudes (Suppl. Fig. S1). We note that these portions of the binned plots typically 401 

involve a small number of pixels (Figure 8b), which are often dispersed, so limited sample size 402 

may be an issue. On the other hand, as indicated in section 3, coherent patches of positive T-P 403 

correlations over equatorial latitudes exist in particular in Equatorial Africa and the Maritime 404 
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Continent in ESM2M and CCSM4; they correspond to the bottom-left quadrant in Figure 8 (see 405 

also Suppl. Fig. S1). The presence of positive correlations in both the interactive and prescribed 406 

soil moisture configurations (Figure 3) indicates that these are decoupled from interactive soil 407 

moisture processes. Rather, we speculate that such correlations reflect simulated Clausius-408 

Clapeyron temperature scaling of precipitable water, which in turn is tightly associated with local 409 

precipitation, similar to corresponding relationships over ocean surfaces (Neelin et al. 2009, Muller 410 

et al. 2009, 2011). As discussed in the introduction, there is some ambiguity in the significance of 411 

the observed correlations over equatorial latitudes (Figure 1). In this context it is difficult to assess 412 

the validity or realism of the simulated regional covariability in the tropics. We note that the 413 

simulated tropical correlations are clearly model-dependent, likely reflecting differences in 414 

parameterizations of clouds and convective precipitation between models in these regions.  415 

Small coherent areas of positive T-P correlations over high latitudes corresponding to the upper-416 

right quadrant exist in particular in the IPSL-CM5A and CCSM4 models (Suppl. Fig. S1) – 417 

however these positive correlations do not appear to be as significant or extensive as those in the 418 

Tropics (see also Figure 3a). The upper-right quadrant corresponds to mean hydroclimatic 419 

conditions under which summertime mean evapotranspiration appears to be, on average, controlled 420 

by both soil moisture (positive SM-ET correlation) and temperature (positive ET-T correlation). 421 

One possible explanation for this model behavior is that precipitation over these areas is associated 422 

with advection of warmer, moister air: in this case, precipitation directly increases 423 

evapotranspiration (because of the positive SM-ET correlation), so the latter also appears 424 

associated with higher temperature.  425 

 426 

 427 

5) Implications for climate change 428 
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In the previous section, we investigated the processes through which T-P correlations at the 429 

interannual time scale (i.e., from one summer to the next) arise in the different climate models. 430 

Taking advantage of the fact that both simulations REF and expA were simulated through 2100 431 

using the RCP8.5 scenario after 2005, we now focus on how T-P correlations evolve in a warmer 432 

climate and what role they play in climate change projections.  433 

 434 

a. Projected future T-P correlations 435 

Figure 9 shows that in all models, parts of the land surface show significantly more negative T-P 436 

correlations at the end of the 21
st
 century (2071-2100) compared to the end of the 20

th
 century 437 

(1971-2000), while correlations also become significantly more positive in other areas (note that 438 

areas becoming more positive may still correspond to negative correlations). In MPI-ESM, 439 

CCSM4 and IPSL-CM5A, areas where correlations become significantly more negative clearly 440 

outweigh areas where significant positive changes occur, which reflects an increase in the total 441 

area of significant negative T-P correlations. Similar changes are less evident for ESM2M and EC-442 

EARTH. Despite these changes, the overall spatial pattern of T-P correlations (Figure 3a) remains 443 

similar in the future in the different models (not shown). We note here that we cannot assess the 444 

field significance of these changes in T-P correlations between present and future through the same 445 

Monte-Carlo approach as used in Figure 1 and 3, as it would require sampling a control simulation 446 

with no changes in climate forcing agents. We point out that the net change (i.e., the area 447 

difference between areas becoming significantly more negative and areas becoming significantly 448 

more positive) remains smaller than 6% of the land surface in all models.  449 

Because in all models, negative T-P correlations arise either partly or mostly as a result of soil 450 

moisture’s feedbacks on surface temperature (see previous section), we analyze concurrent 451 

changes in SM-E and ET-T correlations. Figure 9 shows that in MPI-ESM, CCSM4 and IPSL-452 
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CM5A, significant changes in SM-ET and ET-T correlations are, respectively, predominantly 453 

positive and negative, which reflect an increased control of soil moisture on evapotranspiration and 454 

increased control of evapotranspiration on temperature. Supplementary Figure S2 illustrates these 455 

changes spatially and shows that concurrent changes in SM-ET and ET-T mainly occur at high 456 

northern latitudes. This shift towards soil moisture-controlled conditions in summer in the future in 457 

regions like Eastern/Northern Europe and Siberia is consistent with previous modeling results 458 

(Seneviratne et al. 2006, Dirmeyer et al. 2012, Dirmeyer et al. 2013). This strengthening of the 459 

land-atmosphere pathway (Figure 2) is consistent with the more negative T-P correlations in these 460 

models; one must note, however, that areas of more negative T-P correlations do not necessarily 461 

overlap with areas of increased soil moisture control (e.g., Central Asia in MPI-ESM). In ESM2M, 462 

no such strengthening of the land-atmosphere pathway can be seen; rather, it seems that soil 463 

moisture’s control on evapotranspiration becomes less pronounced in the future (Figure 9 and 464 

Suppl. Fig. S2). In EC-EARTH, a small shift towards more soil moisture controlled conditions is 465 

projected over Eastern Europe, which appears to result in stronger negative T-P correlations over 466 

this region. 467 

  468 

b. Regional temperature change 469 

We now investigate whether T-P covariability at the interannual time scale, such as diagnosed by 470 

T-P correlations, affects long-term temperature change over land in the models. Because patterns 471 

of T-P correlations show overall modest change in the future in the models (or become even more 472 

negative, see previous sub-section), we use present-climate T-P correlations to investigate how 473 

projected future warming is affected by interannual T-P covariability in the models. We do so 474 

using a binned grid-cell framework similar to Figure 8.  475 
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First, Figure 10a shows the mean summertime warming projected between 1971-2000 and 2071-476 

2100 in the different models in simulation REF. Differences in the average temperature change 477 

reflect differences in climate sensitivities: IPSL-CM5A shows the largest overall warming, while 478 

ESM2M shows the smallest (with even some cooling in the Southern Ocean and the North 479 

Atlantic). In all models, summertime warming is greater over land than over the oceans, consistent 480 

with a land-sea warming ratio greater than unity (e.g., Sutton et al. 2007); however, patterns of 481 

changes over land differ between models. Figure 10b helps shed light on these differences by 482 

showing that the land regions of maximum warming in the models tend to correspond to regions 483 

that exhibit both the highest T-P summertime anti-correlations in current climate and negative 484 

projected precipitation changes. This pattern is particularly clear in ESM2M, MPI-ESM and EC-485 

EARTH, somewhat less pronounced in CCSM4 and IPSL-CM5A. A few pixels of maximum 486 

warming also appear in regions of positive T-P correlations in Figure 10b (in general with positive 487 

precipitation change) corresponding to large warming in desert areas (see Figure 3a). In some 488 

models (ESM2M, MPI-ESM), conversely, minimum long-term warming is projected in regions 489 

that exhibit both the highest T-P summertime anti-correlations in current climate and positive 490 

projected precipitation changes.  491 

This indicates that, consistently across models, T-P correlations have the potential to modulate 492 

long-term warming in conjunction with precipitation change. This is consistent with prior studies 493 

(Madden and Williams 1978, Déry and Wood 2005) showing that the T-P relationship holds over a 494 

range of time scales, including decadal variability and secular trends.  495 

Figure 11a shows that in the absence of soil moisture change, long-term warming is largely 496 

reduced over land in expA compared to REF. This is consistent with the role of average soil 497 

moisture change (between present and future) in amplifying summertime warming over land, as 498 

shown in Seneviratne et al. (2013). This difference highlights the role of land-atmosphere 499 
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interactions in the land-sea warming contrast projected by climate models (Sutton et al 2007). 500 

Figure 11b shows that in contrast to REF, no relationship similar to that in Figure 10b emerges 501 

between long-term warming, precipitation change and T-P correlations in simulation expA – to the 502 

exception of MPI-ESM. Interestingly, while EC-EARTH and MPI-ESM both display the most 503 

negative T-P correlations in expA over 1971-2000 (both in extent and intensity, Figure 4), they 504 

show different behaviors in terms of long-term warming (in expA): EC-EARTH does not exhibit a 505 

relationship between future warming and T-P correlations in this simulation, while MPI-ESM 506 

does. It thus appears unclear whether processes associated with the atmospheric pathway (Figure 507 

2), which result in negative T-P correlations at the interannual time-scale, can also affect future 508 

surface warming through concurrent long-term changes in precipitation. At the very least, 509 

comparison between Figure 10b and 11b suggests that land-atmosphere interactions contribute to 510 

the warming patterns in Figure 10b to a large extent. In other words, our results indicate that 511 

through soil moisture feedbacks on near-surface climate, regional trends in precipitation may 512 

strongly modulate regional temperature change from global warming.  513 

 514 

6) Discussion  515 

By comparing an ensemble of simulations with and without interactive soil moisture, we 516 

investigated the mechanisms responsible for negative T-P correlations for the first time in a suite 517 

of climate models. We have demonstrated that negative correlations between summertime-mean 518 

temperature and precipitation can arise through two mechanistic pathways in climate models, as 519 

described in Figure 2. The across-the-board decrease in T-P correlations between REF and expA in 520 

Figures 3a and 3b indicate that the terrestrial pathway, i.e. the control of soil moisture on surface 521 

heat fluxes and temperature, largely contributes to these correlations in all models. However, while 522 

soil moisture-atmosphere interactions are the main driver in some models, in others (mainly, MPI-523 
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ESM, EC-EARTH) these correlations also emerge in the absence of soil moisture-atmosphere 524 

coupling (expA). Our analysis indicates that this comes in response to the stronger association in 525 

these models between cloud cover and precipitation on the one hand, and between solar radiation 526 

and surface temperature on the other hand. Consistently, Figure 8 shows that in the context of 527 

interactive soil moisture (REF), these models are capable of producing negative T-P correlations, 528 

not only in soil moisture-limited regions, but also in regions of energy-limited evaporative regime, 529 

where soil moisture variability does not feed back on surface temperature. This suggests that, in 530 

these models, the atmospheric pathway may also contribute to negative T-P correlations even in 531 

soil moisture-limited regions: in such regions, surface temperature may also be partly driven by the 532 

radiation anomalies associated with precipitation and soil moisture variability. This hypothesis is 533 

supported by the fact that in MPI-ESM and EC-EARTH, areas with atmosphere-driven negative T-534 

P correlations in expA (Figure 3b) are found in the same regions that display land-driven 535 

correlations in REF (this is also the case in the other models over regions such as Australia or 536 

India). This suggests that atmospheric processes associating T and P (isolated in simulation expA) 537 

also contribute to the negative correlations in these regions in REF in Figure 2a. This is also 538 

consistent with the result that EC-EARTH, which shows the most extensive and strongest 539 

correlations in REF, also displays the strongest negative correlations in expA. In other words, in 540 

these models the two pathways appear to act in combination to produce strong negative T-P 541 

correlations over these regions. This additivity suggests that the contribution of soil moisture-542 

atmosphere interactions to negative T-P correlations can be inferred from the difference between 543 

simulations REF and expA in Figure 4. Interestingly, some regions show positive T-P correlations 544 

in the absence of soil moisture-atmosphere interactions and negative T-P correlations otherwise 545 

(Figure 3). This suggests that in some cases these interactions can act to oppose the atmospheric 546 

regime: these regions appear to be mostly located on the eastern side of continents (in the Southern 547 
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Hemisphere), under the influence of air masses from the ocean; while this would result in positive 548 

T-P correlations if only the atmosphere was driving T-P covariability (as suggested by Figure 3b), 549 

the water-limited evaporative regime in these regions (Figure 5) reverses the relationship between 550 

T and P on average over the summer. 551 

In this analysis one should be reminded that the soil moisture-atmosphere interactions pathway 552 

defined in Figure 2 also inherently includes the feedback of modified surface turbulent heat fluxes 553 

on cloud cover and radiation. For instance, in the case of a negative precipitation anomaly and 554 

subsequent soil moisture deficit, reduced evapotranspiration (which directly leads to higher surface 555 

temperature) may also negatively impact cloud cover and thus enhance incoming shortwave 556 

radiation, thereby further enhancing surface warming (Betts 2004, Ferranti and Viterbo 2006, 557 

Davin et al. 2011, Gentine et al. 2013); it may even further reduce precipitation (e.g., Berg et al. 558 

2013). The GLACE-CMIP5 experimental set-up does not allow for separating these feedbacks 559 

from the direct impact of soil moisture on the surface energy budget and temperature. We note that 560 

some models (ESM2M) show increased interannual variability of mean summertime cloud cover 561 

between simulations REF and expA over some regions of negative T-P correlations, which 562 

suggests that feedbacks of surface fluxes to cloud cover are at play over these regions; however 563 

most models do not show such changes. 564 

Overall, our analysis points to important uncertainties emerging at the seasonal-mean, 565 

interannual timescale between climate models with respect to various functional relationships, 566 

such as the control of soil moisture on evapotranspiration, the relationship of cloud cover with 567 

radiation and precipitation, or the impact of surface radiation on temperature. These differences are 568 

not unexpected, given that these emerging relationships are the result of small-scale 569 

parameterization schemes, such as cloud, convection, radiation, soil hydrology, and boundary-570 

layer schemes. Through the interplay between these components, differences from the details of 571 
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these parameterizations grow and result in different behaviors at larger and longer spatio-temporal 572 

scales. Consistent with our analysis, previous studies have noted, for instance, that climate models 573 

exhibit different apparent sensitivities of surface temperature variability to processes such as 574 

evapotranspiration and solar radiation (Lenderink et al. 2007, Fischer and Schar 2009). Such 575 

uncertainties ultimately undermine our ability to use these models to analyze observed climate 576 

phenomena such as T-P covariability: here, our multi-model analysis shows that model 577 

uncertainties hinder a clear and quantitative understanding and attribution of observed T-P 578 

correlations to particular processes, such as land-atmosphere interactions or cloud/radiative 579 

processes. There is thus a need to better evaluate process-level, multivariate relationships in 580 

climate models. We note, however, that while T-P correlations can readily be derived from 581 

observations, more uncertainties and limitations affect observations of the relevant underlying 582 

variables and their relationships at similar global and interannual scales (e.g., soil moisture, surface 583 

fluxes, radiation). It is thus difficult to constrain climate models regarding these processes. We 584 

note that recent studies indicate that climate models in CMIP5 tend to be too warm in summer over 585 

land (Christensen and Boberg 2012, Mueller and Seneviratne 2014). While the comprehensive 586 

causes of such biases are a subject of current investigation and may involve numerous physical 587 

processes (e.g., Ma et al. 2014), one possibility is that they overestimate summertime drying, and 588 

thus the subsequent feedback on surface temperature (Stegehuis et al. 2012). Locked in a dry and 589 

warm soil moisture-limited regime, models may then overestimate soil moisture-atmosphere 590 

interactions (Christensen and Boberg 2012). In contrast, some recent observational studies 591 

emphasize the role of cloud cover in the variance of summer temperature (Tang et al. 2012, Tang 592 

and Leng 2013). It is thus possible that models overestimate the contribution of soil moisture-593 

atmosphere interactions to the negative T-P correlations investigated in this study. Future 594 



27 
 

improvements in global land-atmosphere observational datasets, as well as point-wise land-595 

atmosphere model evaluation exercises, may help further constrain such model uncertainties.  596 

 597 

Conclusion 598 

Widespread negative correlations between summertime-mean temperatures and precipitation 599 

have long been observed over land. Using simulations from the GLACE-CMIP5 multi-model 600 

experiment with and without interactive soil moisture, we explored for the first time the 601 

mechanisms responsible for such T-P covariability at the interannual time scale in a suite of 602 

climate models. Our results generally confirm the interpretation of such correlations arising largely 603 

through the direct control of soil moisture on surface heat flux partitioning: in all models soil 604 

moisture-atmosphere interactions contribute largely to these correlations. However in some models 605 

the association of cloud cover with precipitation on the one hand, and of solar radiation with 606 

surface temperature on the other hand, appears sufficient to generate significant negative 607 

correlations between temperature and precipitation, without feedbacks from the land surface. This 608 

range of model behavior suggests that observed temperature-precipitation anti-correlations may 609 

result from a combination of atmospheric and surface processes. Our results also underline the 610 

uncertainties between models regarding cloud/radiative processes and their link to surface 611 

temperature. Finally, we showed that on longer timescales, the negative correlation between 612 

precipitation and temperature over land has implications for the projection of climate change 613 

impacts on near surface climate: in all models, in regions of strong temperature-precipitation 614 

coupling, long-term regional warming is modulated to a large extent by projected precipitation 615 

changes. In most models this appears to be the result of soil moisture-atmosphere interactions. An 616 

important issue in climate sciences is the response of the global hydrologic cycle to global 617 

warming, in particular possible changes in precipitation patterns and amounts (e.g., Wentz et al. 618 
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2007). Our results demonstrate how regional-scale modifications to the water cycle can feed back 619 

on surface temperature changes through soil moisture control on evapotranspiration. These results 620 

imply that uncertainties in regional precipitation change, which are a well-documented issue of 621 

climate model projections, in particular in the Tropics (e.g., Neelin et al. 2006, Knutti and 622 

Sedlacek 2012), directly translate into uncertainties in temperature change. This arguably has 623 

compounding effects on uncertainties associated with climate change impacts on natural and 624 

human systems, but also suggests that reducing uncertainties in precipitation projections will help 625 

reduce the uncertainties in projected regional temperature change. This also implies that the correct 626 

representation of land surface hydrological processes in climate models is a key element to 627 

providing improved and more robust regional projections of global climate change.  628 

 629 
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Fig.1: Point-wise, zero-lag correlations of summertime-mean temperature (T) against 779 

precipitation (P), using different datasets. CRU: Climatic Research Unit (CRU) Time-Series (TS) 780 

Version 3.21; UoD: University of Delaware Monthly Temperature and Precipitation dataset V3.01; 781 

NASA: NASA Goddard Institute for Space Studies GISTEMP Surface Temperature Analysis; 782 

ERAI: ERA-Interim reanalysis; GPCP: Global Precipitation Climatology Project monthly 783 

precipitation dataset V.2.2; CMAP: CPC Merged Analysis of Precipitation V.1201. Top two plots 784 

(CRU and UoD) use full record lengths, at original resolution (0.5°x0.5°). All other plots use data 785 

regridded on a common 2.5°x2.5° grid (over 1979-2008). Increments on the color scale correspond 786 

to the 10%, 5%, 1%, 0.1% levels of correlation significance (for different record lengths); non-787 

significant correlations (at 10%) are whited out. Antarctica and Greenland are removed from all 788 

datasets. Numbers within plots indicate, on the bottom-center: the land percentage with significant 789 

(5%) T-P correlations (in blue, negative correlations only, in red, positive correlations); on the 790 

bottom-right: the field-significance threshold, as estimated by a Monte-Carlo procedure in which 791 

yearly maps of T and P were randomly shuffled 1000 times; the threshold used is the 95% quantile 792 

of the corresponding 1000-member distribution of area percentage with significant (5%) 793 

correlations (e.g., Livezey and Chen 1983). The dashed equatorial line separates JJA (June-July-794 

August) means which are used for the Northern Hemisphere and DJF (December-January-795 

February) means used for the Southern Hemisphere. 796 

Fig.2: Simplified representation of two pathways through which correlations between seasonal 797 

mean temperature and precipitation can occur in summer: red, atmospheric processes; blue, land-798 

atmosphere interactions. Note that in the interest of clarity, not all physical relationships are 799 

depicted here (e.g., impacts of temperature on soil moisture, feedbacks of surface fluxes to cloud 800 

cover, etc., are not represented). 801 
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Fig.3: As in Figure 1, but for GLACE-CMIP5 models over 1971-2000, in simulation REF (a) 802 

and simulation expA (b). Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation 803 

significance.  804 

Fig.4: In simulation REF (red) and expA (blue), sum of the grid cell areas with significant 805 

negative T-P correlations (at the 5% level, i.e. r=0.36), weighted by the T-P correlation values on 806 

these grid cells. 807 

Fig.5: (a) Correlation between summertime-mean total soil moisture and evapotranspiration 808 

(cor(SM,ET)); (b) correlation between summertime-mean temperature and evapotranspiration 809 

(cor(ET,T)); (c) correlation between summertime-mean incoming shortwave radiation and 810 

evapotranspiration (cor(Rs,ET)), over 1971-2000, in simulation REF, for the different models. 811 

Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation significance. 812 

Figure 6: Correlation between summertime-mean evapotranspiration and incoming shortwave 813 

radiation, over 1971-2000, for the different models in expA. Color key corresponds to the 10%, 814 

5%, 1%, 0.1% levels of correlation significance.  815 

Fig.7: Correlation in simulation expA between summertime-mean incoming shortwave radiation 816 

and: (a) precipitation, and (b) temperature, over 1971-2000. (c) is the same as Figure 3b, i.e. T-P 817 

correlations in simulation expA, with black contours indicating where the correlations between 818 

summertime-mean temperature and radiation (seen in b) are significantly positive while the 819 

correlations between summertime-mean precipitation and radiation (seen in a) are significantly 820 

negative. Background land maps have been grayed (and interior borders were suppressed) in (c) to 821 

facilitate readability. Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation 822 

significance.  823 
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Fig.8: (a) Correlation between summertime-mean temperature and precipitation, in simulation 824 

REF, binned as a function of correlations between soil moisture and evapotranspiration 825 

(cor(SM,ET), x-axis) and between evapotranspiration and temperature (cor(ET,T), y-axis), for the 826 

different models, over 1971-2000, over land. Blue and red contours indicate, respectively, negative 827 

and positive temperature-precipitation correlations significant at the 5% level (r=0.36); (b) 828 

percentage of total number of land pixels in each model that fall in each cor(SM,E)-(corE,T) bin.  829 

Fig.9: Share of the land surface area (in %) where T-P, SM-ET and ET-T correlations become 830 

significantly more positive (positive bars) or significantly more negative (negative bars) between 831 

1971-2000 and 2071-2100 (the difference being represented is future minus present) in different 832 

models in REF. 833 

Fig.10: (a) Mean summer T change between 1971-2000 and 2071-2100, in K, in simulation 834 

REF; (b) mean summer T change between 1971-2000 and 2071-2100 from (a) (color key in K) 835 

binned along correlations between present-time (1971-2000) summertime-mean T and P (cor(T,P), 836 

x-axis) and mean summertime P change between 1971-2000 and 2071-2100 (y-axis, in mm/d), 837 

over land pixels only. 838 

Fig.11: Same as Figure 10, for simulation expA. Note that temperature changes over the oceans 839 

in (a) are the same as in Figure 10 in simulation REF, since similar sea surface temperatures were 840 

prescribed in both experiments.  841 

842 



39 
 

 843 

Fig.1: Point-wise, zero-lag correlations of summertime-mean temperature (T) against 844 
precipitation (P), using different datasets. CRU: Climatic Research Unit (CRU) Time-Series (TS) 845 
Version 3.21; UoD: University of Delaware Monthly Temperature and Precipitation dataset V3.01; 846 
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NASA: NASA Goddard Institute for Space Studies GISTEMP Surface Temperature Analysis; 847 
ERAI: ERA-Interim reanalysis; GPCP: Global Precipitation Climatology Project monthly 848 

precipitation dataset V.2.2; CMAP: CPC Merged Analysis of Precipitation V.1201. Top two plots 849 
(CRU and UoD) use full record lengths, at original resolution (0.5°x0.5°). All other plots use data 850 

regridded on a common 2.5°x2.5° grid (over 1979-2008). Increments on the color scale correspond 851 
to the 10%, 5%, 1%, 0.1% levels of correlation significance (for different record lengths); non-852 
significant correlations (at 10%) are whited out. Antarctica and Greenland are removed from all 853 
datasets. Numbers within plots indicate, on the bottom-center: the land percentage with significant 854 
(5%) T-P correlations (in blue, negative correlations only, in red, positive correlations); on the 855 

bottom-right: the field-significance threshold, as estimated by a Monte-Carlo procedure in which 856 
yearly maps of T and P were randomly shuffled 1000 times; the threshold used is the 95% quantile 857 
of the corresponding 1000-member distribution of area percentage with significant (5%) 858 
correlations (e.g., Livezey and Chen 1983). The dashed equatorial line separates JJA (June-July-859 
August) means which are used for the Northern Hemisphere and DJF (December-January-860 

February) means used for the Southern Hemisphere. 861 

862 
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 863 

Fig.2: Simplified representation of two pathways through which correlations between seasonal 864 

mean temperature and precipitation can occur in summer: red, atmospheric processes; blue, land-865 
atmosphere interactions. Note that in the interest of clarity, not all physical relationships are 866 
depicted here (e.g., impacts of temperature on soil moisture, feedbacks of surface fluxes to cloud 867 

cover, etc., are not represented). 868 

869 



42 
 

 870 

Fig.3: As in Figure 1, but for GLACE-CMIP5 models over 1971-2000, in simulation REF (a) 871 
and simulation expA (b). Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation 872 

significance.  873 

874 
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 875 

Fig.4: In simulation REF (red) and expA (blue), sum of the grid cell areas with significant 876 

negative T-P correlations (at the 5% level, i.e. r=0.36), weighted by the T-P correlation values on 877 

these grid cells. 878 

879 
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 880 

Fig.5: (a) Correlation between summertime-mean total soil moisture and evapotranspiration 881 
(cor(SM,ET)); (b) correlation between summertime-mean temperature and evapotranspiration 882 
(cor(ET,T)); (c) correlation between summertime-mean incoming shortwave radiation and 883 
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evapotranspiration (cor(Rs,ET)), over 1971-2000, in simulation REF, for the different models. 884 

Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation significance.  885 

886 
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 887 

Figure 6: Correlation between summertime-mean evapotranspiration and incoming shortwave 888 
radiation, over 1971-2000, for the different models in expA. Color key corresponds to the 10%, 889 

5%, 1%, 0.1% levels of correlation significance.  890 

891 
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 892 

Fig.7: Correlation in simulation expA between summertime-mean incoming shortwave radiation 893 
and: (a) precipitation, and (b) temperature, over 1971-2000. (c) is the same as Figure 3b, i.e. T-P 894 
correlations in simulation expA, with black contours indicating where the correlations between 895 
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summertime-mean temperature and radiation (seen in b) are significantly positive while the 896 
correlations between summertime-mean precipitation and radiation (seen in a) are significantly 897 

negative. Background land maps have been grayed gray (and interior borders were suppressed) in 898 
(c) to facilitate readability. Color key corresponds to the 10%, 5%, 1%, 0.1% levels of correlation 899 

significance.  900 

901 
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 902 

Fig.8: (a) Correlation between summertime-mean temperature and precipitation, in simulation 903 
REF, binned as a function of correlations between soil moisture and evapotranspiration 904 
(cor(SM,ET), x-axis) and between evapotranspiration and temperature (cor(ET,T), y-axis), for the 905 
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different models, over 1971-2000, over land. Blue and red contours indicate, respectively, negative 906 
and positive temperature-precipitation correlations significant at the 5% level (r=0.36); (b) 907 

percentage of total number of land pixels in each model that fall in each cor(SM,E)-(corE,T) bin. 908 

909 
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 910 

Fig.9: Share of the land surface area (in %) where T-P, SM-ET and ET-T correlations become 911 

significantly more positive (positive bars) or significantly more negative (negative bars) between 912 

1971-2000 and 2071-2100 (the difference being represented is future minus present) in different 913 

models in REF. 914 

915 
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 916 

Fig.10: (a) Mean summer T change between 1971-2000 and 2071-2100, in K, in simulation 917 
REF; (b) mean summer T change between 1971-2000 and 2071-2100 from (a) (color key in K) 918 
binned along correlations between present-time (1971-2000) summertime-mean T and P (cor(T,P), 919 
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x-axis) and mean summertime P change between 1971-2000 and 2071-2100 (y-axis, in mm/d), 920 

over land pixels only. 921 

922 
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 923 

Fig.11: Same as Figure 10, for simulation expA. Note that temperature changes over the oceans 924 
in (a) are the same as in Figure 10 in simulation REF, since similar sea surface temperatures were 925 

prescribed in both experiments.  926 
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