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Abstract

The river Meuse is the second largest river in the Netherlands and is characterized by
strong variations in its discharge. From a government point of view there is a particular
interest in discharge levels with return periods in the order of 1000 years, far beyond the
length of the observed discharge record (several decades). Traditionally, these extreme
quantiles are estimated by fitting extreme value distributions to observed maxima, which
are then extrapolated upto the return period of interest. However, such strong extrap-
olation induces a large uncertainty in the estimated quantile. Moreover, the discharge
record might be inhomogeneous due to changes in the river basin. As an alternative,
a methodology has been developed which is based on the resampling of meteorological
data for the basin in combination with hydrological modelling.

The resampling algorithm is used to synthesize long-year sequences of spatially varying
daily precipitation and temperature for the river basin and is based on the concept of
“nearest-neighbours”. It is capable of reproducing several characteristics of the data
crucial for the simulation of extreme multi-day precipitation events, such as spatial cor-
relation of daily precipitation and temperature, persistence and variance as well as the
correlation between precipitation and temperature. One of the major advantages of this
algorithm is that it is entirely “data-driven” and does not rely upon assumptions about
the underlying distribution or correlation structure of the data. Since the generated
sequences consist of values from the original data only and therefore cannot exceed the
highest data value, something which is sometimes seen as a somewhat unrealistic lim-
itation. To examine to what extent this limitation affects the simulation of discharge
extremes, a modified resampling algorithm was tested on the Ourthe subbasin using
historical meteorological data. The modified algorithm is based on nearest-neighbour
regression and allows for the exceedance of the largest historical daily precipitation in
a simulation by recombining a conditional expectation and a sampled residual. Though
the algorithm produces daily amounts well outside the range of historical values, the
effect on the distribution of simulated discharge extremes on the Ourthe was very small.
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To assess the changes of these discharge quantiles related to climate change, this method-
ology was applied to the output of regional climate models (RCMs) for the control climate
(1961-1990) and the SRES-scenario A2 (2071-2100). To compensate for systematic dif-
ferences in the mean and variance between the RCM run for the control climate and
observations in the Meuse basin, the synthesized sequences were subjected to a non-
linear bias correction. This type of bias correction allows for the mean and variability of
daily precipitation to be adjusted simultaneously, which turned out to be indispensable
for the realistic simulation of extreme discharge events. It was observed that the changes
in the extreme quantiles of multi-day precipitation and discharge in the winter half-year
(i.e. the flooding season) are to a large extent determined by the global climate model
(GCM) which drives the RCM at its lateral boundaries. One of the two used GCMs
leads to a decrease in the relative variability of the modelled winter precipitation. This
decrease largely compensates the effect of the increasing mean precipitation on the ex-
tremes. As a result, the RCM simulations driven by this GCM show a slight decrease of
the quantiles at intermediate return periods and only a slight increase of those at long
return periods. In the simulations driven by the other GCM the relative variability of
precipitation hardly changes and the extreme quantiles roughly increase proportionally
with the mean precipitation.

Resampling data from RCMs combined with hydrological modelling proves to be a suit-
able instrument to obtain more insight in the changes of rare discharge extremes of
rivers like the Meuse. The biases in the mean and variability of RCM precipitation and
their correction deserve careful consideration. In particular for the study to extreme
precipitation events, changes in precipitation variability are as important as changes in
the mean. In the flooding season these changes are primarily determined by the driving
GCM. The model uncertainty in the changes of such extreme events is therefore best
represented by an ensemble of modelruns, driven by different GCMs.
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Chapter 1
Introduction

For the Netherlands, being situated on the North Sea coast and for a large part lying
below sea-level, the threat of flooding has always been an important issue. However,
danger of flooding not only comes from the sea; a substantial part of the country belongs
to the delta of the rivers Rhine and Meuse. The areas alongside these rivers have
always experienced occasional flooding. Therefore, it is evident that protection from
river flooding is an issue of high priority for the Netherlands government. Nation-wide
river management in the Netherlands exists since 1798 (van Bennekom and Parmet,
1998). In the early days heightening of the dikes usually was part of the restoration
process after a flood and the heights were simply adapted to the maximum height of the
flood, increased by a safety margin. The Delta Committee, installed in the aftermath of
the North Sea flood of January 1953, defined levels of acceptable flood risk as a standard
for flood protection. The risk is here defined as the probability of flooding in an arbitrary
year. Its inverse is generally referred to as the return period, i.e. the mean time interval
in years between floods. For the embanked section of the main rivers the acceptable
return period for flooding was initially set to 3000 years. Measures required to meet this
standard and their effect on the landscape were heavily debated by the public. In 1977
the Becht Committee (Commissie Becht, 1977) proposed a reduction of the standard to
allow for exceedances once in 1250 years for the embanked areas along the rivers. The
3000-year level was maintained for the part of the rivers influenced by the tide in the
transition zone to the North Sea coast. Also a method was presented for the estimation
of the 1250-year discharge level by extrapolating an exponential distribution fitted to a
record of peak discharges (flood peaks). This particular level defines the design discharge
used for the dimensioning of flood-protection works. Therefore, the determination of
this level requires careful consideration. While it is obvious that an underestimation
of the design discharge results in an unacceptable flood risk, an overestimation leads
to overdimensioned structures and unnecessary costs, not to mention the impact on
landscape and environment.
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2 Chapter 1. Introduction

1.1 Flood events of the river Meuse

The vulnerability of populated areas in the Netherlands to river flooding was demon-
strated in December 1993 and January 1995, when large floods of the river Meuse hit
north-eastern Belgium and the province of Limburg in the south of the Netherlands.
Those floods are fairly well documented, from a hydrological (de Wit et al., 2007) as
well as a meteorological point-of-view (van Meijgaard, 1995; van Meijgaard and Jilderda,
1996). Figure 1.1 displays the daily basin-average precipitation and the river discharge
at Borgharen, located near the point where the river enters the Netherlands. Though
both floods have in common that they were preceeded by a wet period leading to a satu-
rated soil, there are some differences regarding the meteorological conditions. The flood
of December 1993 was characterized by a single, narrow discharge peak of 3120 m3s−1,
which was primarily due to intense precipitation on the 19th and 20th of December (van
Meijgaard, 1995). On the 19th most precipitation was recorded in the French part of
the basin. The precipitation of the 20th, most of which fell in Belgium, originated from
an atmospheric disturbance following a more northerly track than the one on the day
before. This precipitation coincided with the traveling high-water wave from France,
leading to a higher peak discharge at Borgharen than expected from the total amount
of precipitation on the two days.

The flood of January 1995 can be ascribed to a prolonged period of heavy precipita-
tion. Snowmelt in the higher areas of the Belgian Ardennes contributed to saturate
the already wet soil. Though the maximum discharge in January 1995 was lower (2860
m3s−1), the total discharge volume was larger, filling the entire river bed downstream
of Borgharen. Therefore, the propagating flood wave was hardly attenuated (Heylen,
1998). At gauging points more than 50 km downstream of Borgharen the measured flood
peak exceeded the flood peak of 1993. Apart from a high flood peak, persistent excessive
discharge and high water levels may cause structural damage to flood-protection works.
Therefore, both the duration and the total volume of the flood are of importance to
safety. Because in 1995 the area of precipitation also covered the northern part of the
Rhine basin, the discharge of the river Rhine in the Netherlands was also rising rapidly
at that time. This led to a threatening situation in the centre of the Netherlands, where
both rivers are close to each other. Owing to the flood of 1993, though, local authorities
were better prepared to take evasive action this time.

The hydrographs in Fig. 1.1 of both cases furthermore illustrate that, even though large
isolated daily precipitation amounts caused rapid increases of the discharge, excessive
discharges mainly depend on the long-term history of precipitation, because the an-
tecedent soil moisture conditions also play an important role.
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Figure 1.1: Daily precipitation and discharge of the river Meuse at Borgharen during
the flood events of December 1993 (top) and January-February 1995 (bottom). Day 0
corresponds with the recorded discharge maximum (1993, December 22 and 1995, January
31).
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1.2 The Flood Protection Act and the design discharge

In 1992 the Boertien-I Committee was given the task to re-evaluate the recommenda-
tions of the Becht Committee of 1977. The goal was to unite the demand for safety with
environmental targets. This committee more or less confirmed the findings of 1977 and
refined the estimation of the design discharge (Commissie Boertien I, 1993). The most
important modification to the procedure was to consider a set of distribution functions,
instead of just the exponential distribution. The committee primarily considered the
river Rhine. After the Meuse flood of 1993 the Boertien-II Committee was formed to
advise on flood-protection measures for the river Meuse. In 1996 the Flood Protection
Act was established, prescribing a five-year cycle of determining the design discharge and
the hydraulic safety standards (the so-called hydraulic boundary conditions) for testing
flood-protection works.

The current method used to determine the design discharge is still based on the frequency
analysis of historical flood peaks. The flood-peak record for the Meuse at Borgharen goes
back to 1911. The procedure is described in one of the technical reports that are part
of the Boertien-II report (Commissie Boertien II, 1994). In the first step of the pro-
cedure the record of flood peaks is corrected and homogenized, because the frequency
analysis assumes the record to be representative of the current situation of the basin
and river bed. This step therefore requires additional information, for instance on the
history of river works. In the analysis of the design discharge for the Hydraulic Boundary
Conditions 2001 (Parmet et al., 2001) the years 1993 through 1998 were added to the
homogenized 1911-1992 record used in the investigation for the Boertien-II Committee.
In addition, a record was constructed in which the flood peaks of the years 1984-1987
were recalculated using an adapted stage-discharge relation (referred to as Variant 2,
as opposed to Variant 1 in which these flood peaks were not corrected). The modified
relation decreases the flood peaks of those years considerably (13% for the flood peak of
1984).

In the second step the exponential distribution is fitted to the partial series of peaks
exceeding a threshold of 1300 m3s−1. In addition a set of distributions, namely the
three-parameter log-normal, three-parameter gamma and Gumbel distributions (left-
censored at 1000 m3s−1), are fitted to the annual discharge maxima through a modified
maximum-likelihood method. The flood quantile at a given return period is then derived
as the (arithmetic) average of the flood quantiles for this return period from the fitted
distributions.

An additional variant (Variant 3) is produced by assigning weights to the distributions
using a kind of Bayesian approach. The distributions showing the best fit to the data
receive the highest weigths. Furthermore, the Rayleigh distribution was added to the set
of distributions because of its ability to describe the flood peaks. Based on the Bayesian
analysis, this distribution receives the highest weight (van Noortwijk et al., 2004).
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Table 1.1: Estimated design discharges through the years. ‘HBC’ refers to the value used
for the Hydraulic Boundary Conditions.

Source Design discharge
Commissie Becht (1977) 3600 m3s−1

Commissie Boertien I (1993) 3650
Commissie Boertien II (1994) 3800
Parmet et al. (2001) Variant 1 3850

Variant 2 3805
Variant 3 3690

Ministerie van Verkeer en Waterstaat (2001) HBC 2001 3800
Diermanse (2004) 3965
Ministerie van Verkeer en Waterstaat (2007) HBC 2006 3800

The procedure described by Parmet et al. (2001) results in three estimates of the design
discharge, the first and second only differing in the used data, whereas the third is based
on the Bayesian approach. Although Bayesian methods increase in popularity, the au-
thors present the outcomes of the three variants without giving prior preference to any
of them. The design discharge eventually used as a basis for the hydraulic boundary
conditions is rounded to hundreds of m3s−1 to avoid the false suggestion of unrealis-
tic accuracy and to reduce the influence of individual flood peaks. For the Hydraulic
Boundary Conditions 2001 the value of 3800 m3s−1 from Boertien II was maintained,
which is supported by variants 1 and 2 after rounding off (see also van de Langemheen
and Berger, 2001). The same value was used for the Hydraulic Boundary Conditions
2006, even though a new estimate was presented by Diermanse (2004). Table 1.1 shows
different estimates of the design discharge of the river Meuse and the year in which they
were issued. In particular, a jump in the design discharge is seen between Boertien I
and Boertien II. This increase should be ascribed to the influence of the floods of 1993
and 1995 on the latter. There is also a strong difference between the methodology of
the Becht and Boertien-I committees: whereas for the former only a single distribution
was fitted to the discharge maxima, the latter was based on four distributions. The fact
that the third variant of Parmet et al. (2001) turns out to be much lower than the other
two variants could be ascribed to the short upper tail of the Rayleigh distribution.

The estimated quantiles thus are sensitive to the recorded floodpeaks and the choice of
the distribution. In particular, extrapolating from a short historical record generally
induces a large uncertainty in the outcome. On the other hand, due to changes in the
river basin and climate, a long historical record of flood peaks can not be considered
as a stationary sequence (assumed in the analysis), despite the homogenization of the
flood-peak record mentioned earlier. In the Boertien-I report it is recommended to
make use of the knowledge of the physical mechanism behind flood generation by means
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of a hydrological/hydraulical model. In conjunction with a statistical method for the
generation of synthetic meteorological spatial data for the river basin, such a model could
reduce the uncertainties inherent to the extrapolation of flood-frequency distributions.
(Buishand and Brandsma, 1996). For the river Rhine such an approach has already been
explored (Buishand and Brandsma, 2001) and applied to studies of flooding in North-
Rhine-Westphalia in Germany and an adjacent region in the east of the Netherlands
(Lammersen, 2004). This thesis is focussed on the development and application of a
similar instrument for the river Meuse.

1.3 Discharge extremes in a changing climate

It is widely accepted that the effects of global warming ascribed to greenhouse gas emis-
sions influence the hydrological cycle. Rising temperatures have a direct positive effect
on the amount of water that can evaporate into the atmosphere and are therefore at
midlatitudes associated with an increase in precipitation and river discharge. It is far
less clear how flood extremes respond to these changes. The influence of climate change
on river discharges was also mentioned as a potential threat in the Boertien-I report in
1993. The report states that General Circulation Models (GCMs), which form the basis
of climate change projections, are too coarse to provide useful quantitative information
on the changes of the discharge of the rivers Rhine and Meuse.

For the river Meuse it has been assumed that the relative increase in peak discharges
is roughly equal to the relative increase in extreme 10-day winter precipitation (Parmet
and Burgdorfer, 1995). According to the WB21 climate-change scenarios (Kors et al.,
2000) that have been used in the Netherlands until 2006 (van den Hurk and Co-authors,
2006), extreme 10-day winter precipitation increases by 10% per oC. Combined with an
expected temperature rise of 2oC, this results in an increase of the design discharge of
20%, i.e., a change from 3800 m3s−1 to 4600 m3s−1 (de Wit et al., 2008).

Recently there has been a rapid development in high-resolution regional climate mod-
els (RCMs) within co-operative projects such as PRUDENCE (Prediction of Regional
scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects),
(Christensen and Christensen, 2007). These RCMs are driven by GCMs at the lateral
boundaries of their domains and translate the climate of the GCM to smaller scales.
RCM runs driven by respectively a GCM control run (i.e. under current climate con-
ditions) and a GCM run for a possible future climate (‘scenario’) give insight into the
induced changes at the regional scale. A complication is that no climate model perfectly
represents the real climate (as verified by comparing the control run with observations).
One way around this shortcoming is the use of some bias correction that, if applied to
the control simulation of the RCM, leads to the correct values of a set of characteristics
(mean, variance etc.) of the meteorological variables relevant to extreme river discharge.
It is then silently assumed that the application of the same bias correction to scenario
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simulations yields a realistic representation of a future climate in terms of these charac-
teristics. The corrected output of both runs can be fed into a rainfall-runoff model to
study the impact of climate change on (extreme) discharges. This is the ‘direct’ approach
followed in this thesis. A different path is to extract changes in certain characteristics
from a comparison between the control simulation and the scenario simulation and to
modify observed data to reflect these changes, a ‘delta’ approach. The modified obser-
vations are used as input to the rainfall-runoff model.

Both approaches, schematically illustrated in Fig. 1.2, will generally not lead to identical
changes in discharge extremes. If the direct approach is followed, the bias in a limited set
of characteristics of the RCM data is corrected (left branch of the circle). On the other
hand, the perturbed observations in the delta approach will only incorporate a fraction
of the changes imposed by the scenario (right branch). These paths will lead to the same
result if in the direct approach the bias correction adjusts all characteristics relevant to
the simulation of discharge extremes and in the delta approach the changes of all rel-
evant characteristics are imposed on the observed data. Both approaches rely on the
assumptions that biases of the climate model are the same in the control and scenario
simulations, which for the latter cannot be verified. There are, however, some deci-
sive arguments favouring the direct approach. A scenario run of an RCM incorporates
changes of more characteristics (in other words, encompasses a more complete picture of
climate change) than can be represented by a delta approach. Examples are the change
in spatial and temporal precipitation patterns which can be of major importance to the
simulation of extreme river flows. Furthermore, the realism of climate models is expected
to improve as knowledge of the fundamental processes of climate (e.g., the influence of
feedbacks) and the capacity of computational resources increases. Procedures taking
advantage of the direct output of RCMs anticipate these improvements.

1.4 Objectives, methodology and structure of this

thesis

The central objectives of this study are the estimation of flood quantiles in the current
climate as well as a future climate. The aim is to investigate a methodology that can do
both, thereby answering the central questions:

• How large are flood quantiles at long return periods (in particular the
design discharge) under current climate conditions?

• How should the output of regional climate models be processed to be
useful for the determination of flood quantiles?

• How do these quantiles change in a future climate scenario simulated
by a regional climate model ?
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The key-components of this methodology are a stochastic weather generator and a semi-
distributed conceptual rainfall-runoff model for the Meuse basin upstream of Borgharen.
The stochastic weather generator, based on a nearest-neighbour resampling algorithm,
is driven by daily data from either historical records or the output of RCM runs. Its
purpose is to generate long (order 1000 years) synthetic time series of daily precipita-
tion and temperature. Because this weather generator is non-parametric, no explicit
information is required on the statistical properties of the meteorological variables. The
rainfall-runoff model converts the generated time series into an equally long series of
daily river discharge of which the extremes are analyzed. Though both components are
indispensable to the methodology, the preparation of the synthetic time series for the
rainfall-runoff model receives most attention. The methodology is expected to result in
more accurate estimates of flood quantiles than the extrapolation of a distribution fitted
to a short sequence of flood peaks.

Direct methods

change in discharge extremes

Delta methodsRCM Output

bias correction 

mean + variability

bias correction
mean

??? ???

       mean

mean + variability
change in

change in

Figure 1.2: Different routes towards future discharge, starting from regional climate
model data from a control simulation and a scenario simulation: direct methods ver-
sus delta methods. Arrows along the circle symbolize subsequential steps taken towards
the outcome, such as different levels of bias correction in the direct methods and differ-
ent levels of transformation of the observations in the delta methods (courtesy to J.J.
Beersma).
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By driving the weather generator with the output of RCM runs it is also possible to
investigate the change of flood quantiles by comparing the simulated discharge extremes
from the control run and a scenario run. As explained in Section 1.3, it is necessary to
investigate the discrepancies between the control run and observational data (bias) and
to devise a means of correction.

The chapters of this thesis are set up as follows. In Chapter 2 the weather generator
developed for the Rhine basin is applied to observed daily precipitation and temperature
for the Meuse basin. Attention is given to the combined use of long station records and
shorter records of area-averaged precipitation. The rainfall-runoff model HBV (Lind-
ström et al., 1997) is introduced and its performance is evaluated. HBV is then used to
obtain long-duration series of daily discharge at Borgharen from which the extremes are
analyzed.

Chapter 3 discusses a modification of the resampling algorithm that enables the simu-
lation of daily precipitation and temperature beyond the range of the values used for
resampling. This is achieved by first estimating the expected precipitation amount and
temperature from the values simulated for the previous days. For precipitation the
expected amount is then multiplied by a random residual, whereas for temperature a
random residual is added to the expected value. The concept is tested on the precipita-
tion and temperature records for the basin of the river Ourthe, a tributary of the river
Meuse. The effect of the higher daily precipitation amounts on the simulated discharge
extremes for this basin is studied.

Chapters 4 and 5 describe the application of nearest-neighbour resampling to the output
of regional climate models. In Chapter 4 two runs of the RACMO model of the Royal
Netherlands Meteorological Institute (KNMI) (respectively driven by the control simu-
lation of the global model HadAM3H from the Hadley Centre and the ERA40 reanalysis
from the European Centre for Medium-range Weather Forecasting, ECMWF) are dis-
cussed. The focus in this chapter is primarily on the model bias, its correction and its
consequences for the simulation of extreme discharges. The importance of the correction
of the relative variability of multi-day precipitation is emphasized. A nonlinear bias-
correction method is tested on the resampled sequences of model output. In Chapter 5
the methodology presented in Chapter 4 is employed to investigate the change of flood
quantiles in three different RCM experiments. In these experiments two different GCMs
are combined with two RCMs. The bias correction introduced in Chapter 4 is slightly
modified where necessary.

Chapter 6 briefly summerizes the work done in Chapters 2 through 5 and presents the
major conclusions of this study. The methods used are evaluated and the three central
questions are again addressed.





Chapter 2
Simulation of extreme floods

R. Leander, T.A. Buishand, P. Aalders and M.J.M. de Wit, 2005. Estimation of extreme
floods of the river Meuse using a stochastic weather generator and a rainfall-runoff model.
Hydrological Sciences Journal, 50, 1089-1103.

Abstract
A stochastic weather generator has been developed to simulate long daily sequences of areal
precipitation and station temperature for the Belgian and French subbasins of the river Meuse.
The weather generator is based on the principle of nearest-neighbour resampling. In this
method precipitation and temperature data are sampled simultaneously from multiple histori-
cal records with replacement such that the temporal and spatial correlations are well preserved.
Particular emphasis is given to the use of a small number of long station records in the resam-
pling algorithm. The distribution of the 10-day winter maxima of basin-average precipitation
is quite well reproduced. The generated sequences were used as input for discharge simulations
with the semi-distributed HBV rainfall-runoff model. Though this model is capable of repro-
ducing the flood peaks of December 1993 and January 1995, it tends to underestimate the less
extreme daily peak discharges. This underestimation does not show up in the 10-day average
discharges. The discharge simulations with the generated daily precipitation and temperature
data reproduce the distribution of the winter maxima of the 10-day average discharges well.
Resampling based on long station records leads to lower precipitation and discharge extremes
than resampling from the data over a shorter period for which areal precipitation was available.

2.1 Introduction

The Meuse is one of the largest rivers in northwest Europe. Its basin covers an area of
more than 30 000 km2, including parts of France, Belgium, Germany and The Nether-
lands. Protection against flooding is a matter of continuous concern. In The Netherlands

11
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the design discharge for flood protection works is based on the extrapolation of the dis-
tribution of historical annual discharge maxima at Borgharen, where the river enters
the country. Disadvantages of this method are that strong extrapolation is required,
and that discharge records are potentially inhomogeneous. Furthermore, considering an-
nual discharge maxima gives no insight into the shape and duration of the flood peaks.
As an alternative, the simulation of long-duration discharge sequences by running a
rainfall-ruonoff model with generated sequences of precipitation and temperature has
been suggested (Parmet et al., 2001).

A weather generator based on nearest-neighbour resampling has been developed to pro-
vide long daily sequences of precipitation and temperature for the Meuse basin. This
weather generator is similar to that in Buishand and Brandsma (2001) for the contiguous
Rhine basin, except that in this study areal precipitation of the subbasins is simulated
rather than station precipitation. A particular problem is to make use of a number
of station records of daily precipitation that were longer than those of the available
areal precipitation. It is desirable to take advantage of these long records to reduce
the influence of recent years. In this chapter the simulation of both extreme multi-day
precipitation and river discharges are addressed. The weather generator is described
first. Then rainfall-runoff modelling and the simulation of extreme discharges using the
generated precipitation and temperature data are discussed. The chapter ends with a
presentation of the conclusions.

2.2 Weather generator

2.2.1 Nearest-neighbour resampling

In nearest-neighbour resampling, daily weather variables are sampled with replacement
from the historical data to generate long daily sequences. The most important advan-
tage of nearest-neighbour resampling, compared to other stochastic weather generators,
is that it automatically preserves the correlation between variables on the same day. Fur-
thermore, due to the conditioning of new daily values on the preceding days, the autocor-
relation of those variables can also be well preserved, though there is a random influence
in the selection process. The reproduction of the autocorrelation of daily precipitation is
in particular crucial for the Meuse basin, because large river flows are generally induced
by persistent precipitation over a multi-day period. The method requires no assump-
tions concerning statistical distributions and relationships and is completely data-driven.

In the resampling process, both in the generated sequence and the historical data, each
day is characterized by a feature vector, which summarizes the weather conditions for
the region of interest. The extent to which two days t and u differ is quantified by the
weighted squared Euclidean distance δ2(Du,Dt) between their feature vectors Du and
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Dt, i.e.

δ2 (Du,Dt) =

p∑
j=1

wj (Dtj −Duj)
2 , (2.1)

where the index j refers to the jth of the p elements of the feature vector and wj is the
weight of this element. In each cycle of the algorithm one of the k closest historical days
(‘nearest neighbours’) of the latest simulated day is selected at random. The weather
variables of the historical successor to the selected nearest neighbour are then added to
the sequence. Following a suggestion of Lall and Sharma (1996), a decreasing kernel is
used to select one of the k nearest neighbours. This kernel gives more weight to closer
neighbours. The probability of selecting the jth closest neighbour is given by

pj =
1/j
k∑

i=1

1/i

. (2.2)

In order to account for the seasonal variation in the data and to prevent that typical
winter and summer days are mixed up in the simulation, the search for nearest neighbours
is usually restricted to a window of W calendar days, centred on the last simulated day. A
more elaborate discussion on the nearest-neighbour resampling of daily weather variables
can be found in Rajagopalan and Lall (1999) and Buishand and Brandsma (2001).

2.2.2 The Meuse basin and available data

Figure 2.1 shows the Meuse basin upstream of Borgharen (20 830 km2), which is partly
situated in France (45%) and partly in Belgium (55%). The Meuse is dominated by a
precipitation-evaporation regime that produces low flows during summer and high flows
during winter. For Borgharen a daily discharge record was available beginning in 1911.
The record was corrected for the influence of the Albert Canal, Zuid-Willemsvaart and
Juliana Canal, branching off just upstream of the gauging station. Fifteen subbasins
were defined for rainfall-runoff modelling. One of these, the Sambre subbasin, was fur-
ther subdivided into a French (9F) and a Belgian (9B) part. For all subbasins, daily
areal precipitation was available for the period 1961-1998. The areal precipitation for
the Belgian part was based on the Thiessen method and was obtained from the Belgian
Meteorological Institute. For the French part, the areal precipitation was calculated
from the data of 63 stations using squared inverse distance interpolation on a 5km grid.

Apart from the daily areal precipitation amounts of the 15 subbasins, daily point pre-
cipitation data from a number of stations in and around the Meuse basin were available
for this study. The locations of these stations are shown in Fig. 2.1. In Table 2.1 the
average totals are listed for the winter half-year (October-March) and the summer half-
year (April-September) for all precipitation stations. The differences between the winter
and summer averages are small. The wettest stations in France (Neufchâteau and Le
Chesne) and southern Belgium (Chiny) have relatively large precipitation amounts in
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Figure 2.1: Locations of stations in and around the Meuse basin and the definition of
the subbasins. Stations providing temperature data are indicated by [T].

winter. The average precipitation amounts in Table 2.1 refer to the period 1961-1998
for which areal precipitation is also available. Seven stations have homogeneous records
over the longer period 1930-1998. The year 1940 is missing in most of these records.
Daily temperature records were available for the stations Langres (1949-1998), Reims
(1949-1998), Uccle (1930-1998) and Aachen (1930-1998). Additional daily temperature
data for the period 1968-1998 were obtained for six stations in Belgium and one in The
Netherlands (not shown in Fig. 2.1).

2.2.3 Resampling of subbasin precipitation amounts and sta-
tion temperatures

In the current study, nearest-neighbour resampling is applied to jointly simulate daily
sequences of areal precipitation for each of the 15 subbasins in Fig. 2.1 and daily tem-
perature at 11 locations in the basin. Simulations based on historical data for the period
1961-1998 (hereinafter referred to as Sim61) were performed, as well as simulations
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based on the period 1930-1998 (Sim30), each with a length of 3000 years. Daily data
from temperature and precipitation stations with complete records for the entire base
period were used to form the feature vector in the resampling algorithm. For day t this
vector consists of three elements:

• The average daily temperature T̃t at two stations (Sim30) or four stations (Sim61).
The temperature records were standardized with the calendar-day mean and stan-
dard deviation before averaging.

• The average daily precipitation P̃t at seven stations. The rainfall records were
standardized with the (seasonally varying) mean wet-day amount.

• The average of standardized precipitation for the four preceding days, i.e.(
P̃t−1 + P̃t−2 + P̃t−3 + P̃t−4

)
/4.

The third element was included to improve the reproduction of the autocorrelation of
daily precipitation and the standard deviation of monthly totals (Harrold et al., 2003a

and 2003b). For Sim61, T̃t was derived from the daily temperature at Langres, Reims,

Uccle and Aachen, and P̃t from the daily precipitation at Le Chesne, Langres, Rochefort,
Stavelot, Uccle, Chiny and Neufchâteau. The selected precipitation stations were judged
to be the most representative of the basin because of their location and their mean an-
nual precipitation. In Sim30, T̃t was based on the temperature records from Uccle and
Aachen, and P̃t on the seven long-term daily precipitation records indicated in Table 2.1.

Table 2.1: Average winter and summer precipitation totals for the stations in Fig. 2.1
for the period 1961-1998.

Country Station name Altitude (m) Winter (mm) Summer (mm)
France St. Quentin∗ 95 358 344

Nancy∗ 212 374 378
Vouziers∗ 96 380 363
Chaumont∗ 317 474 432
Langres 467 455 423
Neufchâteau 286 515 428
Le Chesne 174 536 425

Belgium Uccle∗ 100 417 405
Chiny∗ 299 728 529
Stavelot 298 572 520
Rochefort 193 406 422

Germany Aachen∗ 202 388 423

∗Homogeneous records available from 1930 (Leander & Buishand, 2004).
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In contrast to the earlier study of nearest-neighbour resampling for the Rhine basin
(Buishand and Brandsma, 2001), the areal precipitation of the 15 subbasins of the his-
torical successor to the selected nearest neighbour was resampled, rather than the daily
precipitation amounts for the seven stations used for the feature vector. This is straight-
forward in the case of Sim61 for which the records of subbasin precipitation cover the
base period. For Sim30 an additional step in the algorithm is needed, because the sub-
basin data are incomplete over the period 1930-1960. Whenever a day from before 1961
is selected in Sim30, the closest neighbour of that day is sought among the days in or
after 1961 to serve as an alternative from which the subbasin precipitation is resampled.
For this new search, two-dimensional feature vectors were used, containing only P̃t and
T̃t. Though the areal values in the resampled sequence correspond to days within the
period 1961-1998, the sampling of these days is based on station data for the entire
period 1930-1998. Thus, if 1930-1960 is relatively dry, the algorithm will resample more
intensely from the drier days in 1961-1998.

For temperature a similar additional nearest-neighbour search was performed to obtain
temperature data for 11 locations, instead of two (Sim30) or four (Sim61), using data
from the seven additional stations for the period 1968-1998. Since temperature plays
only a minor role in the simulation of extreme floods, only the results for precipitation
are presented in this chapter.

Besides the composition of the feature vector, a few additional settings are required.
The number of nearest neighbours k was set equal to 10. Buishand and Brandsma
(2001) show that loops could occur in the simulation in which certain historical days are
repeatedly sampled if k is not sufficiently large. On the other hand, the reproduction
of the autocorrelation of the generated sequences worsens if k is too large. Buishand
and Brandsma (2001) obtained good results with k = 5, but in a later study for the
Rhine basin (Beersma, 2002), k = 10 was used to be better protected against loops. For
the width of the moving window, W = 61 was used, in accordance with Buishand and
Brandsma (2001). A rather broad window can be chosen because the feature vector was
formed from standardized precipitation and temperature data. The areal precipitation
data were standardized in the same way as the point rainfall data. The weights wj in the
Euclidean distance were determined globally for each of the feature vector elements as
the inverse of their sample variance over the entire series, resulting in a constant set of
weights for all days in the year. The use of local (i.e. seasonally varying) weights was also
considered. This had little effect because the seasonal variation of the weights turned
out to be small, due to the standardization of the individual station records in an earlier
stage.

The nearest-neighbour resampling algorithm can briefly be summarized as follows:

1. Randomly select a historical day within the moving window centred on 1 January
as the first simulated day.
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2. Compose a feature vector of average standardized station precipitation and tem-
perature for the latest simulated day.

3. Find the k nearest neighbours of the latest simulated day within a W -day window
centred on this day.

4. Select one of these nearest neighbours at random, using the decreasing kernel,
given by Eqn. 2.2. Denote the date of the selected nearest neighbour by i and that
of its historical successor by i + 1.

5. For each of the simulated variables (areal precipitation or station temperature),
check whether data for this variable exist for day i+1. If so, add the standardized
historical data to the generated sequence for this variable. If not, form a feature
vector of the standardized station data for day i + 1, find the nearest neighbour of
day i + 1 among the days for which the data for the considered variable do exist
and add the standardized data of this nearest neighbour to the generated sequence.
The search is restricted to a W -day window centred on day i + 1.

6. Repeat steps 2-5 for each simulated day.

7. Transform the resampled standardized variables back to their original scale.

2.3 Analysis of the generated precipitation sequences

The analysis of the generated areal precipitation sequences was focused on the reproduc-
tion of the autocorrelation of daily precipitation and the extreme-value distribution of the
10-day precipitation amounts. Large multi-day rainfall amounts in the winter half-year
are known to induce high discharges. Figure 2.2 shows the basin-average autocorre-
lation coefficients (i.e. an area-weighted average of the coefficients for each individual
subbasin) in the winter half-year for the historical records as well as two 3000-year sim-
ulations based on the data for 1961-1998 (Sim61), one with and one without the use of
the 4-day memory element in the feature vector. It is seen that the memory element en-
hances the third- and higher-order autocorrelation coefficients. This leads to a reduction
of the bias in the standard deviation of the monthly totals (in winter) from 7.4% to 1.6%.
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1993).
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Figure 2.3: Winter maxima of 10-day basin-average precipitation from 15 subbasin
records for the period 1961-1998 and from the simulations Sim30 and Sim61.
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Figure 2.3 compares the 10-day winter maxima of basin-average precipitation from the
historical data and two 3000-year simulations (one Sim30 and one Sim61). There is a
good agreement between the plot of Sim61 and that of the historical maxima. How-
ever, the two largest historical extremes lie clearly above the plot of Sim61. These
extremes correspond to the Meuse floods of December 1993 and January 1995 (Parmet
and Burgdorfer, 1995; van Meijgaard, 1995; van Meijgaard and Jilderda, 1996). To in-
vestigate whether the events of 1993 and 1995 deviate significantly from the simulated
maxima, Sim61 was split into 78 segments of the same length as the historical record
(38 years). It turned out that the maximum of 164 mm in 1995 was exceeded by about
20% of the 38-year segments of Sim61. The observed deviation between the plots of the
simulated and historical maxima is therefore not considered to be significant. The plot
of Sim30 is somewhat below that of Sim61. This can be ascribed to the fact that the
winter half-year is on average drier for the period 1930-1960 than for the years 1961-
1998. The effect of the additional nearest-neighbour step was assessed with a modified
version of Sim61, Sim61M. This simulation was also based on the period 1961-1998, but
the historical areal precipitation data for the period 1961-1979 were discarded. The ad-
ditional nearest-neighbour step was used to obtain areal precipitation when a day before
1980 was sampled. Figure 2.4 compares the Gumbel plot of the 10-day winter maxima
of Sim61M with those of four runs of Sim61 with different random number seeds and a
simulation based on the period 1980-1998 (Sim80). It can be seen that the plot of Sim80
does not fall within the spread of those of the four Sim61 runs. On the other hand,
Sim61M cannot clearly be distinguished from these four runs, even though the areal pre-
cipitation data of this simulation are sampled from the same period as those of Sim80.
This indicates that the areal precipitation of Sim61M is representative of the period
1961-1998, just like the areal precipitation of Sim61. Figure 2.5 compares the 10-day
precipitation extremes for the Semois subbasin (5 in Fig. 2.1). The correspondence be-
tween the simulated and historical maxima is similar to that in Fig. 2.3 From this it can
be concluded that the method described here also works for a smaller area, even though
only basin-average weather characteristics were used in the resampling algorithm.

2.4 The rainfall-runoff model

In this study the HBV model has been used for rainfall-runoff modelling of each subbasin.
HBV is a conceptual model, developed at the Swedish Meteorological and Hydrological
Institute (Lindström et al., 1997). The calculation within HBV is organized into several
routines. The snow routine represents snow accumulation and snowmelt; the soil mois-
ture routine controls which part of precipitation and melt water forms excess water and
how much is evaporated or stored in the soil; and the runoff generation routine consists
of an upper, nonlinear reservoir representing fast runoff components and a lower, linear
reservoir representing base flow. Flood routing processes are simulated with a simpli-
fied Muskingum approach. Precipitation, temperature and potential evapotranspiration
(PET) are required as input for the model. The temperature for each subbasin was
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Figure 2.5: Winter maxima of 10-day precipitation for the Semois subbasin from the
historical record for the period 1961-1998 and from Sim30 and Sim61.

set equal to the average of the four nearest stations using an altitude correction of 6oC
km−1. For the Belgian subbasins, sequences of daily PET have been made available
for the period 1967-1998 by the Belgian Meteorological Institute. For the calibration
of HBV in the French part of the basin, PET was set equal to the average PET of the
Belgian part. In the 3000-year simulations PET was obtained from the simulated daily
temperature T as:

PET =
[
1 + α

(
T − T

)]
PET , (2.3)

with T (oC) and PET (mm day−1) being the mean daily temperature and mean monthly
PET for the period 1967-1998 and α a constant factor. Van der Wal (2002) found for α
a value of 0.17oC−1. In the following chapters an improved estimate of α is used, which
varies seasonally.

2.4.1 Calibration and validation

The original calibration of HBV for the Meuse was carried out by Booij (2005). He
observed that the most influential parameters were three parameters in the soil moisture
routine and three parameters in the fast flow routine. These parameters were optimized
for the Lesse, the Ourthe, the Amblève and the Vesdre (respectively subbasins 8, 12, 13
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Table 2.2: Mean, maximum, standard deviation and the mean annual maximum of the
simulated and observed daily discharges (m3s−1) for the river Meuse (period 1968-1998).

Mean Maximum Standard deviation Mean annual max
Recorded discharge 267 3080 269 1474
HBV simulation 277 2976 286 1288

and 14 in Fig. 2.1). For the other subbasins, for which he had no discharge data, the
values of these parameters were derived from river basin characteristics, such as slope,
area and soil porosity. Default values were taken for the remaining parameters. In the
framework of this study, recalibration took place with more detailed meteorological in-
put and additional discharge records for the Semois (subbasin 5) and a gauging station
along the main branch of the river at the French Belgian border (Chooz, Fig. 2.1). For
the discharge at Borgharen this resulted in a Nash-Sutcliffe efficiency of 0.91 for the
calibration period 1969-1984 and 0.93 for the validation period 1985-1998.

Table 2.2 shows that the mean, the standard deviation and the maximum of the daily
discharges from the HBV simulation resemble those of the observed data. However, the
mean of the annual maximum discharges is underestimated considerably. An underesti-
mation of the mean annual maximum discharge is in line with the results in Eberle et al.
(2002) for the major subbasins of the river Rhine. Figure 2.6 compares the observed
and simulated discharges for four historical extreme events. The two highest peaks,
in December 1993 (panel C) and January 1995 (panel D), are well reproduced by the
HBV model. The peaks of February 1984 (panel A) and January 1993 (panel B) are
too low in the simulation. The simulated hydrograph is smoother than the observed
hydrograph, in particular for January 1993. The total volume of this event, however,
is well preserved. The underestimation of the February 1984 peak is partly due to an
inappropriate stage-discharge curve, which was used during 1984-1987 (Parmet et al.,
2001). The operation of weirs, sluices and small reservoirs upstream of Borgharen may
be another source of bias in peak flows. The regulation of those reservoirs is not included
in the HBV modelling.

2.4.2 Simulated extreme discharges

Two 3000-year generated sequences (one Sim30 and one Sim61) of areal precipitation
and station temperature were used to simulate the daily discharge at Borgharen with
the HBV model. Figure 2.7 shows the highest peak discharge for Sim61 and the cor-
responding basin-average precipitation amounts, illustrating that high discharge is the
result of long periods of persistent precipitation, rather than large rainfall amounts on
a single day. This is related to the integrating effect of a large river basin.
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Figure 2.6: Observed (solid) and simulated (dashed) daily discharge at Borgharen around
the winter maxima of (A) 1984, (B) 1993, (C) 1994 and (D) 1995.
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Figure 2.8 shows a Gumbel plot of the winter maxima of the observed daily discharge
record at Borgharen, the simulated discharge based on historical meteorological data
and the simulated discharge based on Sim30 and Sim61. The HBV simulation using the
Sim61 data shows a good correspondence with the simulation using historical meteoro-
logical data. However, the simulated maxima for December 1993 and January 1995 are
far above the plot of the extremes from the Sim61 data. This deviation is more apparent
for the discharges than for the 10-day precipitation amounts shown in Fig. 2.3. It is
rather accidental that two such floods occurred in the relatively short period 1968-1998.
These floods are among the three largest daily discharges in the 93-year record. There
is only one flood of comparable magnitude within the period 1911-1967 (January 1926).
The difference between the results for the two 3000-year simulations is small. As ex-
pected, the plot of Sim30 is somewhat below that of Sim61. A point of concern is the
systematic difference between the plot of the observed discharges and the plots of the
simulations at short and moderate return periods due to a systematic underestimation
of the flood peaks by the HBV model in this frequency range. This systematic difference
is not apparent in the extreme 10-day average discharges, as is shown in Fig. 2.9.

The largest historical 10-day average discharge occurred in 1995. Although the peak
discharge of the 1995 event was somewhat below that of the 1993 event, its volume was
much larger, due to the relatively long duration of discharges exceeding 2500 m3s−1.
The attenuation of the flood wave was therefore less in 1995, which resulted in higher
water levels downstream of Borgharen. It should be noted that in the 3000-year simula-
tions much larger 10-day average discharges are found than the historical 1995 maximum.

It is unclear how well HBV can describe flood peaks outside the range for which it
was calibrated. The model does not consider the possibility of inundations upstream of
Borgharen, which may limit the amount of water that can reach The Netherlands.

2.5 Conclusion

A stochastic weather generator for the Meuse basin upstream of Borgharen based on
nearest-neighbour resampling has been developed. Daily sequences of areal precipita-
tion for 15 subbasins and station temperatures were simultaneously generated using
nearest-neighbour resampling. Several 3000-year simulations were performed, driven by
the historical precipitation and temperature for the periods 1961-1998 and 1930-1998.
An additional nearest-neighbour step was applied to resample from records which did
not completely cover the base period. The generated precipitation and temperature se-
quences were used to perform 3000-year simulations of the daily discharge at Borgharen
with the HBV rainfall-runoff model.

The weather generator reproduces the distribution of the extreme 10-day precipitation
quite well both for individual subbasins and the entire basin. The choice of base period
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Figure 2.9: Winter maxima of the observed 10-day average discharge at Borgharen
(1968-1998) and those simulated using respectively historical meteorological data and
data from Sim30 and Sim61.

1930-1998 leads to somewhat lower extreme 10-day winter precipitation because of the
drier winters that occurred during 1930-1960. The distributions of the discharge win-
ter maxima from the 3000-year simulations resemble those from the HBV simulations
with historical meteorological data. The influence of the base period for resampling
turns out to be small. For the daily discharges there are significant differences between
the extreme-value distributions from the observed and simulated data because of the
tendency of HBV to underestimate flood peaks. Improvement requires more detailed
modelling (a finer temporal resolution, inclusion of the reservoir regulation and coupling
with a hydraulic model for flood routing) for which not all required data are readily
available. However, the major floods of December 1993 and January 1995 are already
adequately reproduced by the current HBV model. Moreover, the discrepancies between
the observed and simulated extreme-value distributions disappear if the 10-day average
discharges are considered. This indicates that the weather generator is able to provide
reliable estimates of the volumes and durations of extreme floods.
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Chapter 3
A two-stage resampling algorithm

R. Leander and T.A. Buishand, 2008. A daily weather generator based on a two-stage resam-
pling algorithm. Submitted to Journal of Hydrology.

Abstract
A two-stage time series resampling algorithm is presented that is capable of generating daily
values of weather variables outside their historical ranges. In this algorithm the simulated
daily values are composed of an expected value and a sampled historical residual. The residu-
als broaden the range of the simulated daily values. Both the estimation of the expected value
and the sampling of the residuals are based on the nearest-neighbours concept. In particu-
lar the influence of the neighbourhood sizes in both nearest-neighbour searches was studied.
The algorithm was tested with data generated by two theoretical time-series models. Using
observed precipitation and temperature data, a 12 000-year series of precipitation and tem-
perature for the Ourthe catchment (Belgium) are simulated and used as input for the HBV
rainfall-runoff model to produce a long synthetic sequence of daily discharge. The two-stage
algorithm correctly reproduces the mean, standard deviation and lag 1 autocorrelation of daily
precipitation. The simulated distributions of 4-day and 10-day precipitation maxima in winter
also show good correspondence with those observed, while the largest daily amounts substan-
tially exceed those in the original data. However, the widened range of daily precipitation
amounts has no discernible effect on the simulated discharge maxima in winter.

3.1 Introduction

The stochastic generation of weather variables relevant to hydrologic simulation has
long been of interest. This is reflected by the variety of papers on this topic, in par-
ticular on the generation of daily precipitation sequences (the oldest dating from the

29
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1970s). Initially parametric models were used. Quite often the occurrence of precipita-
tion was described by a two-state Markov chain or an alternating renewal process and
the amount of precipitation on a wet day by a positively skewed distribution (gamma or
mixed exponential), see Woolhiser (1992) for a review. Transformations of the multivari-
ate normal distribution have been considered for multi-site simulation (e.g., Richardson,
1977; Bárdossy and Plate, 1992; Wilks, 1998). Nonhomogeneous hidden Markov chains
have been developed for the conditional simulation of daily precipitation on large-scale
weather variables (e.g., Hughes and Guttorp, 1994; Charles et al., 1999). Parametric
models require rather restrictive assumptions regarding the probability distributions and
the correlation structure. Nonparametric models avoid this difficulty and are therefore
gaining in popularity. Examples of this approach are nearest-neighbour resampling (e.g.,
Young, 1994; Rajagopalan and Lall, 1999; Lall and Sharma, 1996) and methods involv-
ing kernel-density estimation techniques (e.g., Harrold et al., 2003a and 2003b). An
advantage of nearest-neighbour resampling is that it can easily be extended to multi-site
simulation (Buishand and Brandsma, 2001). A significant disadvantage of the algorithm
presented in Chapter 2 is, however, the fact that it cannot produce amounts beyond
those present in the sequences used as base material. This limitation may not hamper
applications relying mainly on extreme multi-day precipitation. However, in some ap-
plications it might be desirable to allow for daily amounts beyond the maximum found
in the historical record.

In this chapter an extension of the nearest-neighbour resampling algorithm is explored
that is capable of generating larger daily precipitation amounts than those observed. This
is achieved by a two-stage resampling scheme. In the first stage the expected amount
is determined, using a nearest-neighbour regression. In the second stage the expected
amount is multiplied by a randomly selected residual factor, which is also based on a
nearest-neighbour search. The general concept is first tested for two univariate cases
using simulated data from theoretical time-series models. Subsequently, this idea is used
to generate sequences of daily precipitation and temperature of a river catchment in the
Ardennes, Belgium. The properties of the resampled precipitation are studied in detail.
A 12 000-year synthetic series of daily precipitation and temperature serves as input
for simulations with the semi-distributed rainfall-runoff model HBV (Lindström et al.,
1997). The results for extreme floods are compared with the results of a traditional
single-stage algorithm. Additionally, a series resampled with the single-stage algorithm
is considered in which the largest daily precipitation amounts are perturbed.

3.2 Method

The simulation procedure is based on the decomposition of the variable X into an ex-
pected value M conditional on prior values of X and a non-negative residual factor e
with unit mean, i.e.

X = M e . (3.1)
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Simulating a value X∗
j for a certain day j proceeds in two stages, the estimation of its

expected value Mj from the simulated values for previous days and the generation of a
residual e∗j . This requires information on the distribution of e to be extracted from the
historical record.

Prior to the simulation, for each day i in the historical sequence the expected value
Mi of Xi is estimated by a nearest-neighbour regression. ‘Nearest-neighbour’ (Lall and
Sharma, 1996) here refers to a day l 6= i− 1 that is similar to day i− 1 in terms of
δl,i−1 = |Xl−Xi−1| (or the weighted Euclidean distance in the case of multiple variables

characterizing day i−1, see Eqn. 2.1). The estimate M̂i of Mi can be expressed as a
linear combination of the successors of the sorted kM nearest neighbours of day i−1 with
coefficients λk:

M̂i =

kM∑
k=1

λk Xnnb(k,i−1)+1 , (3.2)

where nnb(k, i− 1) refers to the k-th closest neighbour of Xi−1. The residual êi of day i

then equals the historical value Xi divided by M̂i.

The simulation of daily values proceeds in an analoguous way. For each new day j in
the simulation, an estimate M̃j of the expected value is calculated from the historical
successors of the nearest neighbours of the last simulated value X∗

j−1 as:

M̃j =

kM∑
k=1

λk Xnnb(k,j−1)+1 . (3.3)

From the ke historical days of which M̂i is closest to M̃j, one of the residuals êi is
randomly selected as the simulated residual e∗j , using the decreasing 1/k-kernel introduced
by Lall and Sharma (1996):

αk =
1/k

ke∑
k=1

1/k

1 ≤ k ≤ ke (3.4)

with αk the probability of selecting the residual of the k-th closest neighbour. From the
expected value and the residual factor the simulated value for day j then becomes:

X∗
j = M̃j e∗j . (3.5)

Based on a suggestion of Lall and Sharma (1996), Prairie et al. (2006) followed an ana-
loguous approach to simulate values beyond the observed range. They used an additive
algorithm instead of a multiplicative algorithm. In particular with a view to simulat-
ing precipitation, the latter has the advantage that the generation of negative values is
avoided. Another difference with the algorithm discussed here is that in their algorithm
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the residual was sampled from the successor of one of the nearest neighbours used for
estimating M .

The decomposition of the historical value Xi into an expected value M̂i and a residual
êi can be summarized as follows:

1. Find and sort the kM nearest neighbours of the historical day i− 1.

2. Determine the expected value M̂i from the historical successors of these nearest
neighbours (Eqn. 3.2).

3. Obtain the residual as êi = Xi/M̂i.

The simulation is then initialized by selecting a historical day at random and values at
subsequent days j are simulated:

1. Find and sort the kM nearest neighbours of the last simulated day j − 1.

2. Determine the expected value M̃j of the new day j as a weighted average of the
historical successors of these nearest neighbours (Eqn. 3.3).

3. Find and sort the ke historical days of which M̂ is nearest to M̃j.

4. Sample the residual ê of one of these days as e∗j using the 1/k-kernel (Eqn. 3.4).

5. Multiply M̃j and e∗j to simulate the value X∗
j for day j.

For the hydrological application in this study this algorithm has been extended in order
to generate daily precipitation and temperature simultaneously.

3.3 Theoretical models

The algorithm described above was first tested with data from theoretical time-series
models which both generate only positive values. The advantage of considering a theo-
retical model lies in the fact that its statistical properties can usually be derived exactly
from the model formulation. Two first-order autoregressive (AR1) models were consid-
ered, a lognormal AR1 model and an exponential AR1 model. The lognormal model was
chosen because it is multiplicative, similar to the algorithm. The exponential model is
useful to detect possible effects of non-multiplicativity on the algorithm. Both models
have commonly been used within a hydrologic context, usually for the stochastic simu-
lation of streamflows.
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The lognormal AR1 model

A sequence {Xi} of correlated standard lognormal variables can be generated by trans-
forming the values {Yi} of a normal AR1 process:

Yi = ρYi−1 + εi

√
1− ρ2 . (3.6)

Xi = exp(Yi) = exp
[
ρ log (Xi−1) + εi

√
1− ρ2

]
= Xρ

i−1 exp
(
εi

√
1− ρ2

)
, (3.7)

where the {εi} are independent standard normal variables. The {Xi} have mean
√

e ≈
1.65 and standard deviation

√
e(e− 1) ≈ 2.16. The lag 1 autocorrelation coefficient ̺1

of the lognormal process {Xi} can be derived from the lag 1 autocorrelation coefficient
ρ of the underlying AR1 process {Yi} using (Mej́ıa and Rodŕıguez-Iturbe, 1974):

̺1 =
exp (ρ)− 1

e− 1
. (3.8)

The expectation Mi follows from Eqn. 3.7:

Mi = E (Xi|Xi−1) = Xρ
i−1 exp

[
1

2

(
1− ρ2

)]

= exp

[
ρ log Xi−1 +

1

2

(
1− ρ2

)]
. (3.9)

Note that Mi is nonlinear in Xi−1. For this AR1 process the residuals

ei =
exp

(
εi

√
1− ρ2

)
exp

(
1
2
− 1

2
ρ2

) (3.10)

have a lognormal distribution with

E(ei) = 1 Var(ei) = exp
(
1− ρ2

)− 1 . (3.11)

Since the distribution of log Xi−1 in Eqn. 3.9 is standard normal, the distribution of Mi

is lognormal with mean and variance

E(Mi) = exp

(
1

2

)
≈ 1.65 Var(Mi) = exp

[
exp

(
ρ2

)− 1
]

. (3.12)

Here ρ = 0.5 was chosen, for which Var(Mi) ≈ 0.77, Var(ei) ≈ 1.12 and ̺1 ≈ 0.378.
Furthermore, Mi and ei are independent, because Xi−1 and εi are independent.
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The exponential AR1 model

An exponential AR1 model (EAR1) was presented by Gaver and Lewis (1980). Here this
model is used to generate a sequence {Xi} of correlated standard exponential variables.
The EAR1 process has the same additive form as a normal AR1 process:

Xi = ρXi−1 + εi . (3.13)

The innovation εi equals zero with probability ρ and is positive with probability 1− ρ,
in which case it is sampled from the standard exponential distribution, i.e. Pr(εi > x) =
(1 − ρ) exp(−x). A generalization of this process to gamma-distributed random vari-
ables (Gaver and Lewis, 1980; Lawrance, 1980) is related to the shot-noise models of
Weiss (1977) for the generation of daily streamflow data. If the innovations εi are zero,
the Xi decay exponentially, resembling streamflow recessions during dry periods. The
autocorrelation structure is the same as that of a normal AR1 process, i.e. the lag j au-
tocorrelation coefficient ̺j equals ρj. A value of ρ = 0.5 was chosen. Though a nonlinear
multiplicative first-order exponential autoregressive process is known in the literature
(McKenzie, 1982; Fernandez and Salas, 1986), the EAR1 process is considered here to
detect possible limitations of non-multiplicativity to the resampling procedure.

The conditional means {Mi} and the corresponding residuals {ei} for this model are
given by

Mi = ρXi−1 + (1− ρ) and ei =
Xi

Mi

= 1 +
εi − (1− ρ)

Mi

. (3.14)

The means of M and e are both equal to one and the variance of M equals ρ2. Contrary
to the lognormal model, the variance of ei depends on Mi:

Var (ei|Mi) =
1

M2
i

Var (εi) =
1− ρ2

M2
i

. (3.15)

This dependence may put a restriction on ke in the second step of the resampling algo-
rithm. The {Mi} follow a shifted exponential distribution with location parameter 1−ρ
and scale parameter ρ, i.e.

Pr(M ≤ x) = 1− exp

[
−x− (1− ρ)

ρ

]
, x ≥ 1− ρ (3.16)

Simulation results

With both AR1 models a sequence of 2000 values was generated (from here on referred
to as ‘data’). From these sequences, simulations with a length of 20 000 values were
obtained by applying the two-stage resampling algorithm. For the coefficients λk in
Eqns 3.2 and 3.3 the 1/k-kernel in Eqn. 3.4 was used, but with kM instead of ke. The
neighbourhood sizes kM and ke were expected to influence the statistical properties of
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the simulated series. Table 3.1 lists the mean, the standard deviation sd and the lag 1
autocorrelation r1 of resampled sequences from the data of the lognormal model (left)
and the exponential model (right) with various settings of kM and ke. For each model
the theoretical values and the empirical estimates derived from the data are given in the
first two rows.

The theoretical mean and standard deviation of both models are reasonably well re-
produced by most simulations and seem insensitive to the choice of kM and ke. Both
parameters are slightly overestimated in most simulations. In both cases (lognormal
as well as exponential) r1 is underestimated for all combinations of kM and ke. Since
persistence is introduced into the simulation through M , its estimation from the nearest
neighbours has been investigated in some detail. Figure 3.1 compares the values of M̂i

from the exponential data, using kM = 400 (dots) with the theoretical value from Eqn.

3.14 (solid straight line). The values of M̂i are considerably scattered. This scatter was
suspected to be the source of the negative bias in r1. To reduce the scatter, the LOESS
smoother (Cleveland, 1979) was studied as an alternative for the estimation of Mi. In
this method a polynomial is fitted to the successors of the nearest neighbours by means
of weighted least-squares with weights

Table 3.1: Sensitivity of the mean, standard deviation sd and lag 1 autocorrelation
coefficient to the neighbourhood sizes kM and ke for resampling from lognormal data
(left) and exponential data (right). The theoretical values, those extracted from the data
(2000 values) and those of several resampling simulations (20 000 values) are listed.

Lognormal Exponential
kM ke Mean sd r1 Mean sd r1

Theory 1.65 2.16 0.378 1.00 1.00 0.500
Data 1.69 2.22 0.376 1.02 1.01 0.500

50 100 1.69 2.24 0.281 1.04 1.02 0.406
100 100 1.66 2.23 0.288 1.03 1.01 0.422
200 100 1.71 2.29 0.298 1.03 1.01 0.440
400 100 1.68 2.23 0.329 1.02 1.02 0.458
800 100 1.69 2.25 0.308 1.02 1.00 0.454

400 50 1.67 2.16 0.321 1.04 1.01 0.440
400 200 1.70 2.26 0.309 1.05 1.02 0.441
400 400 1.70 2.25 0.315 1.03 1.02 0.439
400 800 1.72 2.33 0.323 1.02 1.03 0.439
400 1600 1.67 2.28 0.315 1.01 1.08 0.412
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wk =

[
1−

(
δk

δkM

)3
]3

, (3.17)

where δk is the distance between Xi−1 and its k-th nearest neighbour and δkM
the largest

distance within the neighbourhood. The estimate of Mi is calculated as the value of the
fitted polynomial at Xi−1. The LOESS smoothers of degree zero L0 (local constant) and
degree one L1 (local linear relation) are considered. In both cases the estimate of Mi

can be written as a linear combination of the successors of the nearest neighbours, as in

Table 3.2: Same as Table 3.1, but now for two modifications of the original algorithm
with respect to the estimation of M , respectively based on the zeroth-order (L0) and
first-order (L1) LOESS smoother.

Lognormal Exponential
kM ke Mean sd r1 Mean sd r1

Theory 1.65 2.16 0.378 1.00 1.00 0.500
Data 1.69 2.23 0.377 1.02 1.01 0.500

50 100 1.68 2.23 0.335 1.00 0.98 0.460


L0

100 100 1.69 2.20 0.345 1.01 0.97 0.481
200 100 1.65 1.99 0.359 0.98 0.98 0.497
400 100 1.70 2.17 0.387 0.95 0.95 0.508
800 100 1.69 2.22 0.359 1.00 0.99 0.489

400 50 1.70 2.25 0.340 0.97 0.97 0.503
400 200 1.70 2.17 0.373 0.95 0.96 0.510
400 400 1.66 2.11 0.356 0.97 0.99 0.497
400 800 1.68 2.19 0.339 0.98 0.98 0.482
400 1600 1.71 2.23 0.359 0.97 1.00 0.462

50 100 1.68 2.19 0.332 1.04 0.98 0.462


L1

100 100 1.73 2.27 0.368 1.01 0.97 0.478
200 100 1.75 2.24 0.338 1.03 0.97 0.481
400 100 1.67 2.15 0.348 0.97 0.99 0.510
800 100 1.73 2.33 0.350 1.00 0.99 0.494

400 50 1.67 2.14 0.366 0.98 0.97 0.494
400 200 1.68 2.17 0.373 1.00 1.00 0.503
400 400 1.73 2.35 0.356 0.97 0.98 0.509
400 800 1.70 2.26 0.359 0.99 1.00 0.508
400 1600 1.64 2.12 0.357 0.98 1.05 0.505
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Eqn. 3.2. For L0 the weights λk reduce to wk/
∑

wk. For L1 the expression of λk is more

complex. As is seen in Fig. 3.1, the use of L0 considerably reduces the scatter of M̂i.
However, it is also seen that M̂i based on the 1/k-kernel and L0 falls below the theoretical
line for Xi−1>3. Method L1, on the contrary, does not underestimate Mi at large Xi−1.
The mean, sd and r1 for methods L0 and L1 are listed in Table 3.2. Especially the
reproduction of r1 improves substantially, compared to the values in Table 3.1 for the
1/k-kernel. The best results are found for kM>100. This could be related to the scatter

of M̂i, which decreases with kM . In the case of the lognormal data a negative bias in r1

still remains in most simulations, probably induced by the long tail of the distribution.
Furthermore, the standard error of the estimated lag 1 autocorrelation is much larger
in the lognormal case than in the exponential case, due to the influence of fourth order
moments (Bartlett, 1946).

The upper panels of Fig. 3.2 show probability plots of X∗
j , resulting from resampling the

lognormal data (left) and the exponential data (right) with method L1 using different
values of kM and ke =100. The lower panels show the corresponding distributions of the
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Figure 3.1: Expected values M̂i versus the ‘historical’ predecessor Xi−1 for the 2000 values
from the exponential model, estimated as a weighted average with 1/k-weights and by the
zeroth- and first-order LOESS smoother (L0 and L1) with kM = 400. The straight line
represents the theoretical value from Eqn. 3.14 with ρ = 0.5.



38 Chapter 3. A two-stage resampling algorithm

simulated means M̃j. In the simulations with the lognormal data, the values hardly ex-
ceed the highest value in the data, irrespective of the choice of kM . These simulations are
also unable to reproduce the upper 0.5% of the distribution of M . For the exponential
data in the upper right panel the tail of the distribution of X∗ shows a better agreement
with the theoretical distribution when kM increases. This can solely be ascribed to the
fact that in this case the reproduction of the distribution of M is improved by increasing
kM . The difference between the results for both models may be due to the long tail of
the lognormal distribution.

For the simulations in Fig. 3.2 a relatively small value of ke was used. The (M̃j, e
∗
j)-pairs

will then generally be close to those in the data. Increasing the value of ke enhances
the simulation of new combinations of M and e and therefore leads to higher simulated
values, which is demonstrated in Fig. 3.3. For large ke the upper tail of the simulated
distribution approaches that of the underlying distribution. However, in the case of
the exponential data the distribution for ke = 1600 clearly overshoots the theoretical
distribution. This effect should be ascribed to variance heterogeneity: if ke is too large,
the residuals associated with the set of ke nearest neighbours can no longer be considered
as identically distributed random variables, due to the dependence of the variance of e
on M (Eqn. 3.15). The effect of variance heterogeneity becomes more pronounced if a
uniform kernel is used instead of the 1/k-kernel.

From the foregoing results it is concluded that kM should be chosen sufficiently large in
order to avoid an underestimation of r1 in the simulations. The value of ke has a direct
influence on the range of simulated values, in particular the highest value. To simulate
values that are substantially larger than those in the data, ke should be chosen sufficiently
large. However, too large values of ke should be avoided, because of possible dependence
of the distribution of e on M , which causes the reproduction of the distribution to
deteriorate. The optimum choice of these parameters depends on the characteristics of
the underlying data.
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Figure 3.2: Probability plots of resampled data X∗ and simulated means M̃ for different
values of kM and ke = 100. The upper panels show the probability plots of the data
(2000 values, dots) from the lognormal model (left) and the exponential model (right)
and the series resampled from these data with method L1 (20 000 values, curves). The

lower panels display the corresponding probability plots of M̃ and those of the empirical
distributions (2000 values, dots) calculated from the data through Eqns 3.9 and 3.14 with
ρ=0.5. The straight lines represent the theoretical distributions of X in the upper panels
and M in the lower panels.
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Figure 3.3: Probability plots of the data (2000 values, dots) from the lognormal model
(top) and the exponential model (bottom) and the values X∗ resampled from these data
with method L1 (20 000 values, curves), using different values of ke and kM = 400. The
straight lines represent the theoretical distributions of X.
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3.4 Simulation of precipitation and temperature for

the Ourthe catchment

This section compares the performance of different resampling algorithms for the simu-
lation of precipitation and temperature in the catchment of the river Ourthe upstream
of Tabreux (1588 km2), located in eastern Belgium (Ardennes) with altitudes varying
between 200 and 650 meters above mean sea level. The Ourthe is an important tributary
of the river Meuse (subbasin 12 in Fig. 2.1). Like most of the Belgian Ardennes, the
catchment largely consists of steep terrain and a soil of hard, impermeable rock. The
storage capacity of this area is therefore low and the response to precipitation relatively
fast. Through its position close to the Netherlands border, the Ourthe catchment con-
tributes significantly to the discharge of the river Meuse in the Netherlands during flood
waves.

Daily areal average precipitation for this area (derived from station records by the Royal
Meteorological Institute of Belgium by means of Thiessen interpolation) and daily tem-
perature from the enclosed station St. Hubert for the 32-year period 1967-1998 were
used. The average annual precipitation for this period amounts to 970 mm.

In Chapter 2 a nearest-neighbour resampling algorithm was used for the multi-site sim-
ulation of precipitation and temperature of the Meuse basin to assess the probability of
flood extremes. The same resampling algorithm, from here on referred to as ‘RG1’, is
also used in this chapter, with the modification that a five-day, instead of a four-day,
memory was included in the feature vector and nearest-neighbours were searched within
a moving window of 121 calendar days.

A method of simulating larger daily precipitation amounts than those observed was in-
troduced by Buishand (2007). In that study, the two largest historical daily amounts
in a 60-day season were replaced by a value sampled from a Generalized Pareto Dis-
tribution (GPD), whenever they occurred in the resampled sequence. The replacement
values were conditioned to exceed the third largest historical value x3 in the season. The
same approach was followed here to perturb a sequence generated with RG1, except that
the replacement values were sampled from an exponential distribution fitted to the ten
largest historical amounts in the season of interest. Seasons were defined as bimonthly
periods (January-February, March-April, etc.). The used exponential distribution is
equivalent to Buishand’s GPD with shape parameter θ = 0. The choice of zero shape
parameter was justified by a regional analysis of the daily precipitation from different
catchments in the Meuse area (Appendix A.1). From here on, this way of perturbing
resampled precipitation from RG1 is referred to as ‘RG1p’.

The concept of nearest-neighbour regression discussed in Section 3.2 was implemented
for the simulation of standardized precipitation and temperature (from here on referred



42 Chapter 3. A two-stage resampling algorithm

to as ‘RG2’). For precipitation the multiplicative model, X
P

= M
P
e

P
, was used. The

estimation of M
Pi for day i was based on the zeroth-order LOESS smoother L0 for

X
Pi−1<2 and on the first-order LOESS smoother L1 otherwise. In the latter only the

daily precipitation amounts for the nearest neighbours of day i− 1 and their successors
were considered. L1 was used here in combination with L0 because precipitation contains
zeroes, in contrast with the data of the theoretical examples. Applying L1 in cases where
X

Pi−1 is small could then lead to a negative value of M
Pi. Besides, the linear regression

in L1 is primarily intended to achieve a better estimate of M
Pi for large X

Pi−1. The
standardized temperature was simulated additively, i.e. X

T
= M

T
+ e

T
, where M

T
was

estimated with the zeroth-order LOESS smoother L0. The nearest neighbours of the
preceding day, needed to estimate M

P
and M

T
, were collected similarly to RG1. The

residuals e∗
Pj and e∗

Tj for day j in the simulation correspond to the same historical day.
In analogy to the algorithm described in Section 3.2, the selection of this day should
be conditioned on M̃

Pj and M̃
Tj. However, this resulted in an underestimation of the

lag 1 autocorrelation r1 of daily precipitation. In order to enhance the persistence of the
simulated daily precipitation amounts, the last simulated residual e∗

Pj−1 and its five-day
memory were also taken into account. At the end of each step, X∗

Pj was evaluated as

M̃
Pj e∗

Pj and the value of X∗
Tj as M̃

Tj + e∗
Tj. An important contrast between RG1 and

RG2 is that in the latter there is no longer a one-to-one correspondence between the
simulated values and historical dates.

To assess the sensitivity of RG2 to the neighbourhood sizes, several 320-year sequences of
daily precipitation and temperature were simulated with different settings of kM and ke.
For comparison, also a 320-year simulation was performed with RG1 and RG1p. Only
the winter half-year (October-March) was considered, because most floods take place in
that season. From all these simulations the mean, standard deviation sd, lag 1 autocorre-
lation coefficient r1 and maximum of the daily precipitation in the winter half-year were
compared with those of the 32-year observed record. The results are listed in Table 3.3.
For RG1 and RG1p the mean and sd show an underestimation, whereas r1 is close to that
observed. There is little difference between both simulations, confirming that the mean,
sd and r1 are not sensitive to the replacement of the largest values. In the simulations
with RG2 the mean is better reproduced than in those with RG1 and RG1p, but most
simulations slightly overestimate sd and underestimate r1. The latter is comparable to
the underestimation of r1 for the lognormal data in Table 3.2. In none of the simulations
does the bias of the simulated mean exceed twice the standard error of the estimate from
the historical record. However, in a few simulations the values of sd and r1 fall outside
their 2×se-intervals. In most of these cases either kM≤100 or ke≥800. The value of r1

generally tends to increase with kM , in line with the results for the theoretical models.
In most RG2-simulations, the largest winter amount is notably larger than that observed.
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Table 3.3: Properties of the daily precipitation in the winter half-year (October-March)
from 320-year simulations with RG1, RG1p and RG2, using various values of kM and
ke, compared with those observed (±2×se). The standard deviation sd and the lag 1
autocorrelation coefficient r1 and their standard errors se were estimated by means of the
jackknife method of Buishand and Beersma (1993, 1996). Estimates for the simulations
deviating more than 2×se from the historical value are printed in bold. In the last column
the largest daily winter amount (Max) is listed.

kM ke Mean (mm) sd (mm) r1 Max (mm)
Obs. - - 2.79± 0.206 4.59± 0.144 0.375± 0.033 54.7
RG1 - - 2.61 4.47 0.375 54.6
RG1p - - 2.61 4.48 0.373 66.8

RG2 50 200 2.78 4.79 0.324 136.5
100 200 2.70 4.62 0.330 64.0
200 200 2.68 4.62 0.346 62.3
400 200 2.76 4.71 0.354 67.9
800 200 2.73 4.69 0.364 62.4

1600 200 2.76 4.70 0.372 60.1

200 50 2.67 4.60 0.369 72.5
200 100 2.72 4.71 0.354 61.5
200 400 2.69 4.66 0.351 67.3
200 800 2.77 4.74 0.339 60.7
200 1600 2.93 4.95 0.314 64.3

400 50 2.73 4.65 0.364 56.5
400 100 2.71 4.56 0.363 68.5
400 400 2.74 4.64 0.361 71.9
400 800 2.76 4.70 0.362 65.3
400 1600 2.79 4.85 0.341 76.7

800 50 2.71 4.63 0.360 55.7
800 100 2.79 4.74 0.365 55.4
800 400 2.74 4.60 0.371 60.5
800 800 2.76 4.76 0.354 54.8
800 1600 2.72 4.78 0.346 69.4
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The distributions of daily precipitation and temperature

With the algorithms RG1, RG1p and RG2 described above, simulations of 12 000 years
were performed. For RG2 a value of 400 was selected for kM and ke, based on the per-
formance in Table 3.3 and the experiments with the theoretical models. Setting kM=400
leads to a satisfactory reproduction of the mean, sd and r1 of daily precipitation. Fur-
thermore, it is assumed that ke = 400 is sufficiently large to reasonably approximate
the tail of the distribution, while avoiding effects of variance heterogeneity. Figure 3.4
compares the simulated distributions of the daily precipitation amounts in the winter
half-year with the observed distribution. The simulations show a good agreement with
the observations. The figure clearly shows the exponential tail of the distribution in
the RG1p-simulation, extending beyond the historically largest amount which limits
the values in the RG1-simulation. The plot of RG2 is found roughly in between the
plots of RG1 and RG1p, which means that the two-stage resampling algorithm produces
a distribution of daily precipitation with a shorter tail than the exponential distribution.

Figure 3.5 shows that the RG1- and RG2-simulations reproduce the distribution of the
daily temperature in winter quite well. There is only a slight underestimation of the
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Figure 3.4: Exponential probability plots of daily precipitation amounts in the winter
half-year for the 12 000-year RG1-, RG1p- and RG2-simulations, compared with the plot
of the observed daily precipitation.
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probability of very low temperatures. The highest simulated daily temperatures exceed
the highest observed temperature. For the RG1-simulation this can be ascribed to two
causes (Buishand and Brandsma, 2001). The values resampled for days in the winter
half-year can originate from a historical date outside this season, due to the moving
window. Furthermore, differences between the historical and simulated values can arise
from the standardization and de-standardization.
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Figure 3.5: Normal probability plots of the daily temperature in the winter half-year for
the 12 000-year RG1- and RG2-simulations, compared with the plot of the observed daily
temperature.

The distribution of 4-day and 10-day precipitation maxima in winter

From the perspective of flood risks, the extremes of aggregated amounts of simulated
precipitation in the winter half-year are of particular interest. The top panel of Fig. 3.6
compares the Gumbel plots of the 4-day precipitation maxima in the winter half-year
for the different resampling algorithms. Up to a return period of 20 years the differences
between the simulation methods are minor. The plots for RG1p and RG1 even coincide.
For longer return periods, the plots diverge. The highest 4-day maxima are generated
by RG2, followed by RG1p. For the Gumbel plots of the 10-day maxima, displayed in
the bottom panel of Fig. 3.6, the differences between the three algorithms are negligible
over the entire range of return periods. This is directly related to the exponential tail
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Figure 3.6: Gumbel plots of the 4-day (top) and 10-day (bottom) precipitation maxima
in the winter half-year for the 12 000-year RG1-, RG1p- and RG2-simulations, compared
with those observed.
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of the distribution of daily precipitation in the winter half-year. For such a distribution
extreme 10-day totals are mainly due to a cluster of moderately large daily amounts,
rather than an isolated very large daily amount (Buishand, 2007). There is a good
agreement between the Gumbel plots for the three resampling algorithms and the plot
for the observed maxima. The main difference is that the three highest observed maxima
are somewhat above the plots for the simulated data.

3.5 Extreme river discharges

To assess the effect of the different resampling algorithms on floods, the generated 12 000-
year sequences of daily precipitation and temperature were used to drive the rainfall-
runoff model HBV, already introduced in Section 2.4, for the river Ourthe at Tabreux
in the same configuration and with the same model parameters.

Beside daily precipitation and temperature, the HBV model requires daily potential eva-
potranspiration (PET) values. These were derived from the daily temperature in the
same way as in Chapter 2 (Eqn. 2.3), except that the proportionality constant α was de-
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Figure 3.7: Gumbel plots of the winter maxima of daily discharge for the river Ourthe
at Tabreux from the 12 000-year RG1-, RG1p- and RG2-simulations compared with the
plot based on observed daily precipitation and temperature.
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termined for each calendar month separately. This is explained in Section 4.4. From the
simulated daily discharges the maxima of the winter half-years were extracted. Figure
3.7 compares the Gumbel plots of these maxima with the plot obtained by driving HBV
with observed daily precipitation and temperature (and PET derived from these temper-
atures). The plots for the generated 12 000-year sequences show a good correspondence
with the observed data. Up to a return period of about 200 years there is no distinction
between the three simulations. For longer return periods the plot of RG1p and RG2
remain close together and are somewhat higher than that of RG1. This result points
out that being able to simulating daily precipitation amounts beyond the observed range
hardly influences the simulation of winter extremes of daily discharge for a tributary of
the river Meuse, such as the river Ourthe.

3.6 Conclusion and discussion

A two-stage nearest-neighbour algorithm (RG2) is explored that allows for the simu-
lation of daily precipitation amounts and temperatures beyond the range of observed
values. The simulation of a new daily value in this algorithm proceeds by the subse-
quent estimation of the value that is expected to follow the preceding simulated values,
and resampling a residual associated with one of the historical observations. Different
implementations of this algorithm were tested on data from two AR1 processes. The
best results were achieved with an algorithm which estimates the expected value by
means of a local linear regression (first-order LOESS smoother). The influence of the
neighbourhood size for the determination of the expected values, kM , and that for the
sampling of the residuals, ke, was studied in detail. It was found that kM should be
chosen sufficiently large in order to achieve a satisfactory reproduction of the lag 1 au-
tocorrelation. Furthermore, a small value of ke limits the potential to simulate larger
values than observed. On the other hand, a very large value of ke may worsen the dis-
tribution of the simulated values due to variance heterogeneity.

The two-stage algorithm was further used to resample historical sequences of daily pre-
cipitation and temperature for the Ourthe catchment. Though an underestimation of
the lag 1 autocorrelation and a slight overestimation of the standard deviation are found
for most settings of the neighbourhood sizes, the bias was only significant in a few cases
associated with a high value of ke or a small value of kM . With a suitable choice of
kM and ke, a 12 000-year simulation was conducted with RG2. For comparison an ad-
ditional simulation of the same length was conducted with the conventional single-stage
algorithm RG1. A modified version RG1p of this simulation was created by perturbing
the highest resampled values in each bimonthly season, in such a way that the distri-
bution of the daily precipitation amounts was extended with an exponential tail. For
all three simulations the distributions of the 4-day and 10-day winter maxima were in
agreement with the observed data. At return periods longer than 100 years differences
were seen between the Gumbel plots of the 4-day maxima, showing the influence of the
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larger daily amounts. The plots of the 10-day maxima, however, barely differ. The
simulated data were used to drive the HBV rainfall-runoff model for the Ourthe catch-
ment. It was found that the larger daily precipitation amounts produced by RG1p and
RG2 had no discernible effect on the distribution of the winter maxima of daily discharge.

A disadvantage of RG2 is that it is a very time-consuming algorithm, because a large
number of nearest neighbours have to be sorted twice. A great saving in computer time
can be achieved by using the same nearest neighbours for the estimation of the expected
value and the resampling of residuals as in Prairie et al. (2006). However, for the Ourthe
data this leads to a substantial positive bias in the standard deviation and a negative
bias in the autocorrelation. A possible explanation is that conditioning on the expected
precipitation and temperature of the new day yields a more homogeneous set of residuals
than conditioning on the characteristics of the previously simulated day.

The RG1 algorithm has been extended to perform multi-site simulations (Buishand and
Brandsma, 2001). A similar extension is possible for the RG2 algorithm. There is no
need to generate from a multivariate normal distribution as in multi-site versions of the
nonparametric weather generator based on kernel-density estimation techniques (Mehro-
tra and Sharma, 2006a, 2006b and 2007), which involves quite strong assumptions on the
spatial dependence structure. A multi-site extension of the RG1p algorithm would also
rely on assumptions on spatial dependence and is not straightforward. The extension
of RG2 to multi-site generation is less complicated and requires less assumptions about
the data.
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Chapter 4
Resampling of regional climate model output

R. Leander and T.A. Buishand, 2007. Resampling of regional climate model output for the
simulation of extreme river flows. Journal of Hydrology, 332, 487–496.

Abstract

The objective of this chapter is to investigate whether resampling of the output from a regional
climate model (RCM) can provide realistic long-duration sequences of precipitation and tem-
perature for the simulation of extreme river flows. Resampling of RCM data is potentially be
usefull to assess the impact of climate change on river flooding. Daily streamflows of the river
Meuse in western Europe are considered. Resampling is performed with the nearest-neighbour
algorithm that was applied to observed daily precipitation and temperature of the Meuse basin
(Section 2.2). The HBV rainfall-runoff model of Chapter 2 was used to simulate streamflows.
Two model runs of the KNMI regional climate model RACMO are considered. One of these
model runs is driven by the global atmospheric model HadAM3H of the UK Meteorological
Office for the period 1961-1990 and the other by ERA40 reanalysis data. Much attention is
given to the bias correction of RCM precipitation. It is found that a relatively simple nonlinear
correction adjusting both the biases in the mean and variability leads to a better reproduction
of observed extreme daily and multi-day precipitation amounts than the commonly used lin-
ear scaling correction. This also results in more realistic discharge extremes, suggesting that
a correct representation of the variability of precipitation is important for the simulation of
extreme flood quantiles. For the Meuse basin it is further shown that it is advantageous to
correct for the variability of the 10-day precipitation amounts rather than that of the daily
amounts. Despite the remaining biases in the RCM data, the simulated extreme flood quantiles
correspond quite well with those obtained using observed precipitation and temperature.
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4.1 Introduction

General Circulation Models (GCMs) are considered to be the most advanced tools cur-
rently available for simulating the response of the global climate system to changing
atmospheric composition (Mearns et al., 2001). There is a great interest in the impact
of the climate changes projected by these models on river flooding (e.g. Prudhomme
et al., 2002). It is well known that the magnitude of the climate-change impact de-
pends partly on the characteristics of the river basin (e.g. Arnell and Reynard, 1996;
Nijssen et al., 2001). Streamflow simulations are therefore needed to assess this im-
pact. However, the precipitation produced by GCMs is generally not suitable to feed
into hydrological models, partly because of the coarse spatial resolution of GCMs. A
downscaling procedure is therefore needed to provide the required input. One approach
is to use a high-resolution Regional Climate Model (RCM), driven by lateral boundary
conditions from the GCM of interest. The popularity of this approach is growing, due to
increased computer resources and the enhanced performance of RCMs and processing.
Recent applications are presented by Kay et al. (2006a,b), who used a high-resolution
RCM to assess changes in flood frequency for 15 catchments in the UK, and Lenderink
et al. (2007), who investigated future discharges of the river Rhine.

A problem with the use of RCMs for hydrological purposes is that the simulated pre-
cipitation differs systematically from the observed precipitation (e.g. Frei et al., 2003).
Lenderink et al. (2007) corrected for this bias by applying a (seasonally and spatially
varying) correction factor, while Hay et al. (2002) made use of the gamma distribution
to match the distribution of the modelled daily precipitation with that of observed daily
precipitation. Arnell et al. (2003), on the other hand, did not use any bias correction.

Apart from the bias in the simulated precipitation, the estimation of flood quantiles
suffers from the limited length of the RCM simulations (usually no longer than 30 years
for present-day models). A strong extrapolation of the distribution of the simulated dis-
charges is then needed to estimate the extreme flood quantiles if the hydrological model
is run directly with the (bias-corrected) RCM output.

In this chapter both problems are tackled for the basin of the river Meuse upstream of
Borgharen in the Netherlands (see Subsection 2.2.2). The weather generator of Chapter
2 is applied to RCM output instead of observed data. After bias correction the resam-
pled data are used for streamflow simulations using the HBV rainfall-runoff model. The
objective is to establish whether the use of RCM output in a hydrological model can
yield extreme discharges (with return periods typically in the order of 1000 years) which
are comparable to those based on observed meteorological data.

The remainder of the chapter is organized as follows. The use of RCM output and
the applied bias corrections are discussed in Section 4.2. In Section 4.3 the resampling
algorithm is briefly explained. Furthermore, the autocorrelation of daily precipitation
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and the distribution of 10-day winter maxima of basin-average precipitation from the
resampled sequences are presented. In Section 4.4 the hydrological simulations are de-
scribed and results of extreme discharges are shown. Section 4.5 closes the chapter with
a summary and a short discussion on the usefulness of the presented approach.

4.2 RCM output for the Meuse basin

4.2.1 The KNMI model RACMO

In this study the output of the KNMI regional climate model RACMO (Regional Atmo-
spheric Climate MOdel) was used (Lenderink et al., 2003). This model has a resolution
of about 50 km. Its domain roughly stretches from 40oW to 50oE and from 30oN to
70oN. The Meuse basin is located in the center of the domain and is almost covered by
15 grid boxes, as shown in Fig. 4.1. For the hydrological simulations described in Section
4.4, the Meuse basin is subdivided into 15 subbasins. The modelled area-average precip-
itation for each of the subbasins was obtained as a weighted average over the grid boxes
covering the subbasin. The weights were determined as the fraction of the subbasin area
falling within a specific grid box, using a 2.5km grid. The nearest grid box was assigned
to those parts of the basin that were not covered by the 15 grid boxes.

Two multi-year RACMO runs were made available. In the framework of the EU-funded
project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining
EuropeaN Climate change risks and Effects, see e.g. Christensen and Christensen, 2007),
RACMO was driven by lateral boundaries from the atmospheric model HadAM3H of
the Hadley Centre of the UK Meteorological Office. HadAM3H (short for Hadley Centre
Atmospheric Model 3, High resolution) is operated at a resolution of 1.25o in latitude
and 1.875o in longitude, corresponding to grid cells of about 150 km near the RACMO
domain. For the control run of this configuration (reference period 1961-1990) the ob-
served sea surface temperature and sea ice are used (Jones et al., 2001). This model
run will from here be referred to as RACMO-HCCTL. The second RACMO run, from
here denoted as RACMO-ERA40, was driven by 40 years of reanalysis data (ERA40)
of the European Centre for Medium-Range Weather Forecasting (Uppala et al., 2005).
A reanalysis is an estimate of the state of the atmosphere, based on observations and
a numerical weather forecast. Its circulation is therefore expected to be more realistic
than that of any GCM. Hence, the comparison between a GCM-driven RCM run and one
driven by reanalysis data provides insight into the influence of the driving GCM on the
considered RCM run. The forecast model used for the reanalysis is operated at a resolu-
tion of about 125 km. RACMO uses data from either the driving GCM (HadAM3H) or
the reanalysis to set the boundary conditions of the horizontal velocity, heat and mois-
ture (on all vertical levels) and the sea-level pressure. Details on the RACMO model
can be found in Lenderink et al. (2003).
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From the RACMO-ERA40 run the data for the 30-year period 1969-1998 were extracted
in order to have two runs of the same length. The period 1969-1998 was preferred to
1961-1990, because streamflow simulations with observed data were available for that
period (see Section 2.2). With the simulation driven by ERA40 boundaries it is possible
to discriminate between the bias resulting from the driving HadAM3H GCM and the
bias introduced by RACMO. For each of the subbasins the interpolated area-average
precipitation was compared with the corresponding subbasin precipitation for the his-
torical reference period 1969-1998 from the records used in Chapter 2.

The left panel of Fig. 4.2 shows an area-weighted average of the relative bias of the mean
daily precipitation amount in each calendar month. The largest biases are found in the
winter half-year (October-March), on average 26% in RACMO-HCCTL and 16% in the
RACMO-ERA40. Except for a few months, RACMO-HCCTL shows a larger bias than

Borgharen

0 50 100    km

Figure 4.1: Locations of the 15 RACMO grid boxes used in this study, relative to the
Meuse subbasins (thick grey contours) and the river Meuse with tributaries. State bound-
aries (dashed) and the location of the gauging station Borgharen are also shown.
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RACMO-ERA40 The relative bias of the former is comparable with that found for the
regional climate models HadRM2 (Shabalova et al., 2003) and HadRM3H (Lenderink
et al., 2007) of the Hadley Centre for the adjacent Rhine basin. The wet bias is partly
a result of the fact that the observed precipitation amounts were not corrected for the
systematic undercatch inherent to rain gauges. Frei et al. (2003) report a systematic
undercatch of about 8% for the lowland stations in the Alps (below 600 m). For the
Meuse basin (almost entirely below 600 m), the undercatch may differ somewhat from
this value, due to climatological differences and other types of rain gauges. It is unlikely
that all precipitation biases found here are due to undercatch.

The right panel of Fig. 4.2 presents the basin-average temperature bias. This bias refers
to the difference between the area-weighted average Tarea of the subbasin temperatures
obtained from RACMO and the Thiessen average Tstns of 11 stations, serving as a refer-
ence temperature. The bias in RACMO-HCCTL is similar to that in RACMO-ERA40,
except for October, which is colder and the period December-February, which is warmer
than in RACMO-ERA40.

Van Ulden et al. (2007) analyzed the circulation bias of HadAM3H for Europe. They
report a positive bias in the strength of the westerlies in winter, leading to a wetter and
milder climate. This is consistent with the relatively large positive bias in precipitation
and temperature in RACMO-HCCTL during winter.

Table 4.1 compares several characteristics of daily precipitation from both RACMO runs
with those of the observed precipitation. Results are presented for the winter half-year
as well as the summer half-year (April-September). The coefficient of variation (CV)
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Figure 4.2: Basin-average relative bias in the monthly precipitation (left) and the absolute
bias in the mean monthly temperature (right). The data from RACMO-HCCTL for the
period 1961-1990 and RACMO-ERA40 for the period 1969-1998 are compared with the
observations for the period 1969-1998.
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Table 4.1: Mean, Coefficient of Variation (CV) and lag 1 autocorrelation coefficient r1

of daily precipitation, fraction fwet of wet days (with 0.3 mm or more) and mean wet-
day amount mwet. These statistics are area-weighted averages over subbasins. The last
row contains the mean correlation rs between the daily precipitation amounts in different
subbasins (averaged over all pairs of subbasins) for the observations and both RACMO
runs. Results are given for the winter half-year (October-March) as well as the summer
half-year (April-September).

Winter half-year Summer half-year
Obs. HadAM3H ERA40 Obs. HadAM3H ERA40

Mean (mm/day) 2.78 3.49 3.20 2.40 2.64 2.59
CV 1.73 1.48 1.46 1.81 1.69 1.79
r1 0.37 0.35 0.34 0.27 0.25 0.24
fwet (%) 55.79 67.91 68.34 50.28 57.13 56.13
mwet (mm/day) 4.94 5.10 4.65 4.75 4.58 4.57
rs 0.85 0.90 0.90 0.73 0.81 0.82

displayed in this table is defined as the ratio between the sample standard deviation
and the sample mean. Both RACMO runs show a considerable underestimation of
the CV of the daily precipitation amounts in the winter half-year. The overestimation
of the mean daily precipitation in winter is accompanied by an overestimation of the
fraction of wet days in both the RACMO-HCCTL and RACMO-ERA40, whereas the
mean wet-day amount is rather well preserved. There are also too many wet days in
the summer half-year in both RACMO simulations. In the RACMO-HCCTL run the
lag 1 autocorrelation coefficient r1 of daily precipitation is slightly underestimated in
both seasons. The bias in r1 is even somewhat larger in RACMO-ERA40. This bias is
mainly due to the inability of RACMO to reproduce the relatively large values of r1 for
the French part of the basin (r1 = 0.40 in the winter half-year, compared to r1 = 0.35 for
the Belgian part in the winter half-year). The correlation rs between the precipitation
amounts in different subbasins is higher than observed in both runs, in the summer as
well as the winter half-year. The differences between the HadAM3H-driven and ERA40-
driven runs are small, suggesting that the bias is mainly an artefact of RACMO.

4.2.2 Bias correction

Because the bias in precipitation and temperature was found to vary spatially, bias cor-
rections were carried out for each subbasin individually. For precipitation a simple linear
correction using a scaling factor was compared with a slightly more advanced nonlinear
correction. To reduce the effect of sampling variability, the scaling factor was deter-
mined for every five-day period of the year as the ratio between the average observed
precipitation and that of the RACMO run in a window including the 30 days before and
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after the considered five-day period.

The linear correction adjusts the mean precipitation, but leaves the CV unaffected,
because both mean and standard deviation are multiplied by the same factor. As an
alternative, a power transformation was studied, which corrects the CV as well as the
mean. In this nonlinear correction each daily precipitation amount P is transformed
into a corrected amount P ∗ using

P ∗ = a P b . (4.1)

Shabalova et al. (2003) used this expression to modify observed 10-day precipitation
amounts in order to obtain a scenario of a future climate with a changed mean and CV.
For the estimation of the parameters a and b they assumed that these 10-day precipi-
tation amounts have a Weibull distribution. For the daily precipitation amounts in the
Meuse basin this assumption is too restrictive. The parameters a and b were therefore
obtained with a distribution-free approach. As in the case of the linear scaling factor,
these parameters were estimated for each five-day period, using the same 65-day window.
First, the value of b was determined such that the CV of the corrected daily precipita-
tion matched that of the observed daily precipitation. This was done iteratively, using
a root-finding algorithm. The factor a was then determined such that the mean of the
transformed daily values corresponded with the observed mean. The resulting value of
a depends on b. By contrast b depends only on the CV and its determination is inde-
pendent of the value of a. The left panel of Fig. 4.3 displays the annual cycle of the
exponent b for both RACMO runs.

A value greater than unity indicates that the CV of the precipitation is enhanced by
the correction. In RACMO-HCCTL this is the case throughout the year. In RACMO-
ERA40 the correction reduces the CV in the months June, July and August. The
correspondence between the two curves suggests that the bias in the CV originates from
RACMO itself rather than the driving GCM.

Alternatively, a and b can be chosen such that two different quantiles Qp1 and Qp2 of the
corrected precipitation match those of the observations. Since the transformation in Eqn.
4.1 is monotone, the quantiles of the transformed daily precipitation amounts are simply
obtained by applying the same transformation to the quantiles Qp1,RCM and Qp2,RCM of
the uncorrected daily precipitation amounts from RACMO. From the requirement that

aQb
p1,RCM = Qp1,OBS and aQb

p2,RCM = Qp2,OBS , (4.2)

where Qp1,OBS and Qp2,OBS are the corresponding observed quantiles, it follows by elim-
ination of a and taking logarithms that

b =
log (Qp2,OBS/Qp1,OBS)

log (Qp2,RCM/Qp1,RCM)
. (4.3)

For RACMO-HCCTL the values of b obtained from Eqn. 4.3 with p1 = 65, p2 = 99 or
p1 = 65, p2 = 95 are compared with those fitted on the CV. The 65% quantile roughly
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corresponds with the mean daily precipitation amount. The results are shown in the
right panel of Fig. 4.3. The curve based on Q65 and Q99 closely follows that based on
the CV, except for small deviations in summer. Taking Q95, instead of Q99, results in
slightly larger values of b. In order to cope with bias in the variability of multi-day
amounts, the use of the CV is preferred to determine the parameter b in Eqn. 4.1.

Figure 4.4 shows the basin-averaged exponential probability plots of daily precipitation
for the winter half-year for both RACMO runs. The plots clearly illustrate the effect
of both corrections. After applying the linear bias correction to the RACMO precipita-
tion, the intermediate quantiles (exceedance probabilities > 0.1) agree better with the
observed quantiles, but the more extreme quantiles (exceedance probabilities < 0.1) are
too low and actually worse than those for the uncorrected data. This is consistent with
the underestimation of the CV. With the nonlinear correction it is possible to adjust
both the intermediate and the more extreme quantiles of the distribution, while keeping
the number of parameters in the correction formula at a minimum. For the summer
half-year, the effect of the nonlinear correction is smaller (not shown), because the bias
in the CV is smaller in this season, as shown in Table 4.1.

Though the distribution of the nonlinearly corrected daily precipitation amounts re-
sembles that of the observations quite satisfactorily, this is not necessarily true for the
distribution of the multi-day precipitation amounts. Large multi-day events can be more
important for the generation of floods than an extreme daily event. Extreme flows in
the lower part of the Meuse basin are often associated with large multi-day precipita-
tion totals in winter over periods of about 10 days, rather than extreme daily events
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Figure 4.3: Annual cycle of the area-averaged exponent b in Eqn. 4.1. On the left the
exponents derived for RACMO-HCCTL and RACMO-ERA40 are shown. On the right
the values of b based on the CV and those based on two different pairs of quantiles:
Q65 −Q99 and Q65 −Q95 are given for RACMO-HCCTL.
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(Tu, 2006). Fig. 4.5 is similar to Fig 4.4, but now for the (non-overlapping) 10-day
precipitation amounts. For RACMO-HCCTL the nonlinear correction leads to a bet-
ter agreement with the observations than the linear correction. The same is found for
RACMO-ERA40, but the larger quantiles of the distribution of the 10-day precipita-
tion amounts (exceedance probabilities < 0.1) are still somewhat underestimated. This
is partly due to an additional negative bias in the autocorrelation of the daily values,
resulting from the nonlinear transformation of the data. The autocorrelation generally
decreases if a value of b > 1 is needed to increase the CV, as is demonstrated in Section 3
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Figure 4.4: Exponential probability plots of the daily precipitation in the winter half-year,
averaged over individual subbasins for RACMO-HCCTL (left) and RACMO-ERA40
(right). The plots for the uncorrected, linearly-corrected and nonlinearly corrected pre-
cipitation are compared to the plot for the observed precipitation.
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Figure 4.5: Similar to Fig. 4.4, but now for the (non-overlapping) 10-day precipitation
amounts.
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of this chapter. This decrease of the autocorrelation leads to a decrease of the standard
deviation of the multi-day precipitation amounts, resulting in an underestimation of the
large quantiles of these amounts. The most obvious and least complicated solution to
this problem is to ‘overcompensate’, i.e. to use a larger value of b, such that the CV
of the n-day totals, CVn, of the transformed RACMO precipitation equals that of the
n-day totals of the observations for some n > 1.

In Fig. 4.6 the observed values of CVn for n ≤ 15 are compared to those of uncorrected
and corrected RACMO data for two different nonlinear corrections, one based on CV1

and one based on CV10. For the uncorrected RACMO data all CVn are underestimated.
With a nonlinear correction based on CV1, the multi-day CVs improve, but they are still
too low, in particular for RACMO-ERA40. With a nonlinear correction based on CV10

the underestimation of the multi-day CVs disappears, at the cost of an overestimation
of CV1 and CV2.
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Figure 4.6: Basin-average coefficient of variation of n-day precipitation amounts CVn

for RACMO-HCCTL (left) and RACMO-ERA40 (right) for the winter half-year. The
uncorrected runs and the nonlinearly corrected runs based on CV1 and CV10 are compared
with the observations.
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Figure 4.7: Exponential probability plots of the 10-day precipitation amounts in the win-
ter half-year for RACMO-ERA40, after a nonlinear correction of the daily precipitation
amounts with b fitted on CV1 and CV10 respectively.
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Figure 4.7 shows how the exponential probability plot of the 10-day precipitation amounts
of RACMO-ERA40 changes due to fitting b on CV10 instead of CV1. The correction
based on CV10 results in a better correspondence with the observed 10-day precipitation
amounts, due to a slightly larger value of b in the correction.

The bias correction of temperature is more straightforward than that of precipitation,
involving shifting and scaling to adjust the mean and variance respectively. For each
subbasin, the corrected daily temperature T ∗ is obtained as

T ∗ = T +
σ (Tstns)

σ (Tarea)

(
T − T

)
+

(
T stns − T area

)
, (4.4)

where T is the uncorrected daily temperature from RACMO, Tstns is the Thiessen average
for the basin of observed temperatures from 11 stations, and Tarea is the corresponding
basin-average temperature obtained from RACMO. In this equation an overbar denotes
the 30-year average and σ the standard deviation. Both statistics were determined for
each 5-day period of the year separately, using the same 65-day window as for the bias
correction of daily precipitation. A similar transformation was used by Shabalova et al.
(2003) to perturb observed temperature with the changes of the mean and standard de-
viation projected by an RCM scenario run. Note that the temperature anomalies were
scaled by the same factor for all subbasins and the temperature means were shifted by
the same offset. The annual cycle of the scaling factor is shown in Fig. 4.8. The devi-
ation from unity is within 0.15 for RACMO-HCCTL and nearly always less than 0.05
for RACMO-ERA40. Roughly the same factors were obtained for individual grid boxes
containing one or more temperature stations.

4.3 Resampling of RCM output

In Chapter 2 nearest-neighbour resampling was based on station data. In this study re-
sampling was driven by the uncorrected RACMO subbasin data instead. Furthermore,
a five-day memory and a moving window of 121 days were used, instead of a four-day
memory and a 61-day moving window in order to improve the simulation of extreme
multi-day precipitation amounts. The bias corrections described in Section 4.2 were ap-
plied afterwards to the resampled 3000-year sequences.

It was shown in Chapter 2 that the resampling algorithm described above preserves the
autocorrelation of its base material quite well. However, Table 4.1 shows that RACMO
tends to underestimate the lag 1 autocorrelation of daily precipitation and a nonlinear
bias correction influences the autocorrelation. Fig. 4.9 compares the basin-average au-
tocorrelation coefficients of corrected and uncorrected resampled precipitation for both
RACMO runs with those observed for the winter half-year. For the observations also
the standard errors se were calculated, using the jackknife method of Buishand and
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Figure 4.9: The basin-average autocorrelation coefficients of the observed daily precipita-
tion, the 3000-year resampled RACMO-HCCTL run (left) and the RACMO-ERA40 run
(right) for the winter half-year, before and after the nonlinear correction. The autocor-
relation coefficients of the observations are represented by error bars, which indicate the
2×se-intervals of the coefficients.
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Figure 4.10: Winter maxima of basin-average 10-day precipitation amounts from re-
sampled RCM data (9000 years), either uncorrected or after applying a linear correction
or a nonlinear correction, compared with observed precipitation. The exponent b of the
nonlinear correction was based on CV1 for RACMO-HCCTL in the left panel and on
CV10 for RACMO-ERA40 in the right panel. The upper horizontal axes indicate the
mean recurrence time Tr (return period) in years.

Beersma (1993). Apart from a significant negative bias in the lag 1 autocorrelation, the
uncorrected resampled data from RACMO-HCCTL reproduce the autocorrelation coef-
ficients quite well. The transformation in Eqn. 4.1, however, results in a decrease of the
autocorrelation coefficients, in particular for shorter time lags in the winter half-year.
The resampled data from RACMO-ERA40 show a larger bias in the autocorrelation
coefficients than those from RACMO-HCCTL. Transformation based on CV10 leads to
a further decrease of the autocorrelation coefficients. The effect of this decrease on the
variability of the 10-day precipitation amounts is compensated by an overestimation of
CV1. The nonlinear correction also leads to a slight decrease of the spatial correlation
rs of the daily precipitation amounts (not shown). The spatial correlation of the nonlin-
early corrected sequences remains, however, too high. This bias has little effect on the
simulated floods for the Meuse, because these are more sensitive to the spatial correlation
of the 10-day precipitation amounts. The latter is better reproduced by RACMO than rs.

In Fig. 4.10 the 10-day winter maxima of basin-average precipitation from observations
and those from the resampled 3000-year sequences for both RACMO runs are shown.
Each plot displays the average ordered maxima of three independent sequences of 3000
years. The plot for the nonlinearly corrected data corresponds quite well with that of
the observations. A linear correction appears to be worse than no correction at all.
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4.4 Rainfall-runoff simulations

For the simulation of streamflow, the HBV rainfall-runoff model of Chapter 2 was used
with the same schematization and parameters. For temperature areal averages of the
subbasins were used instead of station data. Daily values of potential evapotranspiration
(PET) for the Belgian subbasins were made available by RMIB. Since similar PET values
for the French subbasins were not available, the average over the Belgian part of the basin
was used for these subbasins. In the hydrological simulations with RACMO output, PET
was derived for each of the subbasins from the daily temperature T using the relation:

PET = [1 + αm(T − Tm)] PETm (4.5)

with Tm the mean observed temperature (oC) and PETm the mean observed PET (mm
day−1) for calendar month m in the period 1967-1998. Tm was obtained from the average
of the four nearest stations to the subbasin of interest using an altitude correction of
−0.6oC per 100 m. In the simulation with bias-corrected (resampled) RACMO output,
the bias-corrected (resampled) temperature T ∗ was used for T in Eqn. 4.5. The propor-
tionality constant αm was determined for each calendar month by means of a regression
of the observed values of PET for the Belgian part of the basin on the observed daily
temperatures. The values of αm range from approximately 0.08oC−1 in the summer half-
year to 0.13oC−1 in the winter half-year. These values are considerably lower than the
value of 0.17oC−1 used in Chapter 2.
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Figure 4.11: Mean annual cycle of the 10-day average discharge simulated by HBV with
observed precipitation and temperature (historical, squares) and with corrected and un-
corrected data from RACMO-HCCTL.

Figure 4.11 shows the mean annual cycle of the discharge as simulated by HBV with
observed precipitation and temperature and with corrected and uncorrected data from
RACMO-HCCTL. Although the annual cycle of the mean discharge from the RACMO
data appears realistic, the mean discharge during December-February is overestimated
if no bias correction is applied. This is a result of the bias in the mean winter pre-
cipitation, shown in the left panel of Fig. 4.2. Figure 4.12 compares the Gumbel plots
of the discharge winter maxima as obtained from the bias-corrected 30-year RACMO
runs (using the nonlinear correction) with those simulated using observed data. There
is a close correspondence between the plots for the HBV simulation with bias-corrected
RACMO data and the plot for the HBV simulation with observed data, except for the
two highest maxima from RACMO-HCCTL. The two highest maxima in the simula-
tion with observed data correspond with two known flood events in December 1993 and
January 1995. In RACMO-ERA40 these two events are reproduced correctly, because
they are related to large-scale weather features, which influence RACMO through the
boundary conditions. Figure 4.12 further shows the average Gumbel plots of the dis-
charge winter maxima resulting from the use of the resampled sequences from RACMO
data. The plots are similar to those of the corresponding 10-day precipitation maxima
in Fig. 4.10. There are marked differences between the plots for the HBV simulations
with uncorrected resampled RACMO data and those for the simulations with observed
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precipitation and temperature. The differences are even larger if a linear correction is
applied to the precipitation input data. The quantiles of the distribution of the winter
discharge maxima are then underestimated considerably as a result of the underestima-
tion of the CVs of the multi-day precipitation amounts. For the nonlinearly corrected
precipitation input data, the resulting Gumbel plots are much closer to those obtained
with observed precipitation and temperature. The correction of the variability of multi-
day precipitation is thus essential for a realistic simulation of the discharge maxima. A
matter of concern is that the simulated maxima for December 1993 and January 1995 are
clearly above the plots for the resampled data for both RACMO-HCCTL and RACMO-
ERA40. This was also found when resampling from the observed daily precipitation and
temperature in Chapter 2. The December 1993 and January 1995 maxima would have
been plotted at a longer return period if longer discharge simulations were available. The
95-year discharge record at Borgharen contains only one other event (January 1926) that
is comparable with the floods of December 1993 and January 1995.

For RACMO-ERA40, Fig. 4.13 shows the effect of using different CVs for fitting the
exponent b in the nonlinear correction on the simulated winter discharge maxima. For
return periods beyond five years the correction based on CV1 results in rather low quan-
tiles compared to those obtained with observed precipitation. A better agreement is
achieved if b is fitted on CV10. For RACMO-HCCTL the differences are small (not
shown). Nevertheless, for the Meuse basin it is recommendable to base the value of b on
CV10 rather than CV1.
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Figure 4.12: Winter maxima of discharge as simulated by HBV with observed me-
teorological data (boxes), nonlinearly corrected RACMO data (crosses) and resampled
9000-year sequences of RACMO data, either uncorrected or with a linear or a nonlinear
correction. The exponent b of the nonlinear correction was based on CV1 for RACMO-
HCCTL in the left panel and on CV10 for RACMO-ERA40 in the right panel.
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Figure 4.13: Discharge winter maxima from two 3000-year HBV simulations based on
the resampled RACMO-ERA40 run. Both simulations are based on the same resampled
sequences, but with different values of the correction parameter b, based respectively on
CV1 and CV10.

4.5 Conclusion and summary

In this study output of the KNMI regional climate model RACMO was resampled with
a nearest-neighbour technique to produce long-duration sequences of daily precipitation
and temperature for the Belgian and French subbasins of the river Meuse. Bias cor-
rections were applied to synthetic 3000-year sequences of precipitation and temperature
to reproduce statistical properties of observed data. With the bias-corrected resampled
sequences the daily discharge in Borgharen was simulated with the HBV rainfall-runoff
model.

It was found that the correction for the bias in the mean precipitation by linear scal-
ing of the daily precipitation amounts leads to an underestimation of large quantiles of
their distribution. As a result, the occurrence of extreme river flows is underestimated
considerably. This problem was encountered with both model runs in this study (either
driven by HadAM3H or ERA40). A marked improvement was achieved with a nonlin-
ear transformation, adjusting the mean as well as the CV of daily precipitation. For
RACMO-ERA40 even better results for extreme river flows were obtained by fitting the
exponent in the nonlinear correction on the CV of the 10-day precipitation amounts. De-
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spite a slight overestimation of the variability and a negative bias in the autocorrelation
coefficients of the daily precipitation amounts, the distribution of the 10-day precipita-
tion maxima is reproduced adequately. In order to reproduce the distribution of extreme
discharges for a relatively large river basin like that of the Meuse, it is generally more
appropriate to correct for biases in statistical properties of the multi-day precipitation
totals instead of daily precipitation.

The used correction does not adjust the frequency of wet days. Biases in the wet-day fre-
quency, or more general, the left tail of the frequency distribution of daily precipitation
have usually little influence on the distribution of extreme river flows. However, the CVs
of both the daily and multi-day precipitation amounts depend on the wet-day frequency.
As a result, the nonlinear transformation may do less well for RCM simulations having
a larger bias in the wet-day frequency than the RACMO simulations considered in this
study. The bias in the autocorrelation (and the spatial correlation) of the simulated
daily precipitation amounts may also restrict the use of this transformation.

The flood quantiles simulated with the bias-corrected resampled RCM precipitation re-
semble those simulated with observed precipitation quite well. The next question is
whether the presented approach can successfully be applied to the output of RCM sce-
nario runs. This question will be addressed in a subsequent study.
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Chapter 5
Estimated changes in flood quantiles

Based on:
R. Leander, T.A. Buishand, B.J.J.M van den Hurk and M.J.M. de Wit, 2008. Estimated
changes in flood quantiles of the river Meuse from resampling of regional climate model output.
Journal of Hydrology, 351, 331–343.

Abstract

Precipitation and temperature data from three regional climate model (RCM) experiments
are used to assess the effect of climatic change on the flood quantiles of the French-Belgian
river Meuse. In two of these experiments the RCM is driven by the global atmospheric model
HadAM3H of the Hadley Centre (HC), and in the other experiment the RCM is driven by
the global coupled atmosphere-ocean model ECHAM4/OPYC3 of the Max-Planck Institute
for Meteorology (MPI). RCM simulations for the control climate (1961-1990) and the SRES-
scenario A2 (2071-2100) are available. The HBV rainfall-runoff model is used to simulate river
discharges. Long synthetic sequences of precipitation and temperature are resampled from
the RCM output using a nearest-neighbour technique to obtain the flood quantiles for long
return periods. The maxima of 10-day precipitation and discharge for the winter half-year
(flooding season) are analysed. It is found that the changes in the extreme quantiles of 10-day
precipitation and discharge are highly sensitive to the driving GCM. In the runs driven by HC,
there is little change in the most extreme quantiles, whereas the MPI-driven run projects a
remarkable increase. It is shown that this difference between the HC- and MPI-driven runs is
strongly related to the change in the coefficient of variation of the 10-day precipitation amounts,
which decreases in the former and hardly changes in the latter. The relevance of bias correction
of RCM output with regard to the estimated changes of flood quantiles is demonstrated.
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5.1 Introduction

From the perspective of policy making the interest in the impacts of local climatic
change on river flows is increasing. It is generally believed that climate change will lead
to increased flooding in many areas (Kay et al., 2006b). For the Netherlands potential
changes in the statistics of extreme flows are highly relevant, since the major part of the
country is situated in the delta of the rivers Rhine and Meuse.

Most of the research on the impact of climate change on river discharges in the Nether-
lands relates to the river Rhine. To assess the impact of climate change on the monthly
mean and peak discharges of the river Rhine, Kwadijk and Rotmans (1995) applied
gridded patterns of changes in temperature and precipitation, obtained from seven equi-
librium experiments with general circulation models (GCMs), to the observed monthly
precipitation and temperature and used the perturbed data to drive a distributed hy-
drological model (RHINEFLOW) for the river basin. The same approach was followed
in a study coordinated by the International Commision for the Hydrology of the Rhine
Basin (CHR) using the output from one transient and two equilibrium GCM experi-
ments (Grabs, 1997 and Middelkoop, 2001). As in Kwadijk and Rotmans (1995), the
effect of climate change was calculated by applying the changes found in the GCM ex-
periments to the baseline climate and RHINEFLOW was used at a monthly resolution
for the rainfall-runoff modelling of the Rhine basin. The assessment of the changes in
river discharges was limited to the mean annual cycle at different gauging stations. In
a later study (Middelkoop, 2000) the RHINEFLOW model was operated at a temporal
resolution of ten days, using data from the UKHI GCM of the Hadley Centre of the UK
Met Office. Shabalova et al. (2003) were the first to use data from a regional climate
model (RCM) to assess the impact of climate change on the discharges of the river Rhine
in the Netherlands. They used HadRM2 of the Hadley Centre nested within the global
coupled climate model HadCM2. The changes in 10-day precipitation and temperature
were applied to the observed baseline series. Using RHINEFLOW, it was found that the
changes in extreme 10-day flows were very sensitive to the type of transformation (linear
or nonlinear) applied to the precipitation amounts. This sensitivity was also observed
in a study of Prudhomme et al. (2002) for the Severn catchment (UK). Lenderink et al.
(2007) investigated the direct use of bias-corrected 10-day HadRM3H regional climate
model data (also from the Hadley Centre) as input to RHINEFLOW. They compared
the changes in discharge with those obtained by perturbing the RCM control run. One
of their findings was that direct use of RCM data should be preferred if other discharge
characteristics than the mean (such as extremes) are of interest.

Several other studies have been performed for individual subbasins of the river Rhine
upstream of the Netherlands. A number of relatively small subbasins were considered in
the CHR study described by Grabs (1997) and Middelkoop (2000). Detailed hydrological
models were used to estimate climate change impacts. As in the RHINEFLOW applica-
tion to the entire river basin, scenarios for future climate were obtained by perturbing
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the baseline climate with the changes from three GCM experiments. Bárdossy and Zehe
(2002) studied the impact of climate change on floods and the runoff regime of the ma-
jor German subbasins of the river Rhine, using a stochastic downscaling technique for
generating daily precipitation and temperature, conditional on the circulation patterns
of a control and a scenario run of the ECHAM4 GCM, and the semi-distributed HBV
model (Lindström et al., 1997) for hydrological simulations. Kleinn et al. (2005) nested
the distributed hydrological model WaSiM-ETH for the Rhine upstream of Cologne into
a cascade of two versions of the Swiss/German regional climate model CHRM (with
respective spatial resolutions of 14 km and 56 km). The 56-km model was driven by
observed lateral boundary conditions from a 5-year ECMWF reanalysis. Future climate
conditions were not considered in that study.

For the Meuse basin an extensive study has been carried out by Booij (2002, 2005).
He used a first order Markov chain to generate a time series of daily basin-average pre-
cipitation and developed a discrete random cascade model for spatial disaggregation of
precipitation. The parameters of the Markov chain for the current and the future cli-
mate were obtained from transient runs of three GCMs (CGCM1, HadCM3 and CSIRO9)
and two RCMs (HadRM2 and HIRHAM4). The parameters for the cascade model were
estimated from the two RCMs. HBV was used for the hydrological simulations. A sub-
division of the Meuse basin into 15 subbasins was compared with a subdivision into 118
subbasins and no subdivision. De Wit (2007) analysed the impact of climate change on
the occurrence of low flows in the river Meuse, using RCM simulations from the EU-
funded PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining
EuropeaN Climate change risks and Effects) project, see e.g. Christensen and Chris-
tensen (2007). Their study indicates that climate change will lead to a decrease in the
average discharge of the Meuse during the low flow season. Considerable problems were,
however, encountered with the simulation of critical low flow conditions of the Meuse.
Bultot et al. (1988) and Gellens and Roulin (1998) investigated the impact of climate
change for some Belgian subbasins of the river Meuse by perturbing the baseline climate.

In Chapter 4 a detailed study of bias correction of RCM output for the Meuse basin
was presented. Also nearest-neighbour resampling was applied to obtain long sequences
of daily precipitation and temperature required to simulate long-duration series of river
flows. The study in that chapter was restricted to two experiments with the KNMI
regional climate model RACMO under current climate conditions. The simulated series
were successfully used to estimate flood quantiles for return periods far beyond the ex-
tent of the original RCM runs. Therefore, this approach offers a possibility to estimate
extreme flood quantiles for a future climate using data from scenario runs.

In this chapter the methodology presented and tested in Chapter 4 is employed to assess
the effects of RCM climate change projections on rare flood quantiles. The work in this
chapter could also be regarded as an extension of the work done by Lenderink et al.
(2007), because it demonstrates a new way to take advantage of RCM output for the
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investigation of rare flood quantiles, by using a resampling method and a more sophisti-
cated bias correction. Furthermore, the hydrological model is operated at a daily, rather
than a 10-day timestep. Three RCM-GCM configurations are considered. Since for
rivers like the Meuse the occurrence of extreme flows depends strongly on the variability
and the extremes of multi-day precipitation amounts (Tu (2006) mentions durations be-
tween seven and ten days), the statistics of 10-day precipitation amounts receive much
attention.

First, a description of the study area is given and the RCM-GCM configurations, the
nearest-neighbour resampling scheme and the rainfall-runoff model are discussed. This is
followed by an explanation of the bias correction of RCM output and its implications for
the three RCM-GCM configurations. Then the changes in precipitation and temperature
characteristics, found by comparing the control and scenario runs, are discussed with par-
ticular attention to the quantiles of extreme 10-day precipitation amounts. Subsequently,
the simulated changes of flood quantiles resulting from the hydrological simulations are
presented. Finally, the results are summarized and some concluding remarks are made.

5.2 Study area, models and methods used

The river Meuse is the second largest river in the Netherlands. It originates in the
north-east of France and traverses the Belgian Ardennes, which is the source of a major
portion of its discharge. The gauging station Borgharen, considered in this study, is
located near the Belgian-Netherlands border (drainage area ≈ 21,000 km2). The mean
discharge at this gauging station ranges from 100 m3s−1 in September to about 500
m3s−1 in January. This strong seasonal cycle can mainly be ascribed to that of the
evapotranspiration (de Wit et al., 2007).

For 15 subbasins the daily area-average precipitation was available for the historical pe-
riod 1961-1998. These data were obtained from the Royal Meteorological Institute of
Belgium for the Belgian subbasins and calculated from station data (63 stations) for the
French subbasins. Daily potential evapotranspiration (PET) data were available for the
Belgian subbasins for the period 1967-1998. The PET values for the French subbasins
were set equal to the area-weighted average of the Belgian subbasins. This is justified
by the fact that in the flood situations of interest PET only plays a minor role. Daily
temperature was available for 11 stations in and around the Meuse basin.

Three RCM-GCM configurations are considered in this study. One consists of the re-
gional climate model RACMO of KNMI (Lenderink et al., 2003), driven by the high-
resolution global atmospheric model HadAM3H (Jones et al., 2001) of the Hadley Cen-
tre. In the other two configurations the regional climate model RCAO (Räisänen et al.,
2004) of the Swedish Meteorological and Hydrological Institute (SMHI) was used, either
coupled to HadAM3H or the global atmosphere-ocean model ECHAM4/OPYC3 of the
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Max-Planck-Institute of Meteorology (MPI) in Hamburg, Germany (Roeckner et al.,
1999), also used by Bárdossy and Zehe (2002). These model configurations are from
here denoted as RACMO-HC, RCAO-HC and RCAO-MPI, respectively.

The specific choice of RCM runs and driving GCMs allows for a distinction between
effects related to the driving GCM and those produced by the RCM itself. For each
configuration two runs were considered, one for the control period 1961-1990 and one for
the period 2071-2100, based on the SRES-scenario A2. These RCM runs were performed
in the framework of the PRUDENCE project (Jacob et al., 2007). RCAO and RACMO
have a resolution of ≈ 50 km over the Meuse basin, which is located near the centre
of their domains. From both models 15 grid boxes were selected which almost entirely
cover the basin (Fig. 5.1).

The main goal of the current study is to investigate events with return periods in the

Borgharen

0 50 100    km

RACMO grid

RCAO grid

subbasins

state boundaries

Figure 5.1: Locations of the 15 used grid boxes of RACMO (solid) and those of RCAO
(dotted), relative to the Meuse subbasins (grey).
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order of 1000 years, relevant to the design water levels of the embanked part of the
river Meuse in the Netherlands. Since all model runs have a length of only 30 years,
this requires strong extrapolation, introducing large uncertainties in precipitation and
flood quantiles to be estimated. Therefore, a data-driven weather generator was used
in this study to generate long-duration time series of precipitation and temperature.
This weather generator is based on nearest-neighbour resampling and uses precipitation
and temperature data from the RCM integrations. The algorithm implemented for this
study essentially samples days from the model runs with replacement. The selection of
a day being added to the synthetic sequences is conditioned on the spatially averaged
standardized precipitation and temperature of the last added day and the precipitation
total of its five predecessors. The general principles of nearest-neighbour resampling and
the application to daily precipitation and temperature are described in Rajagopalan and
Lall (1999). One of the features of the algorithm is that it is capable of reproducing
the daily variability and persistence in the underlying data, and hence the variability
of multi-day aggregates (Chapter 2). Besides, the spatial correlation of precipitation
and temperature and the correlation between those two variables on a daily resolution
are preserved by definition. Therefore, it is a particularly suitable tool in the study of
extreme discharges. More on the specific implementation of the algorithm used in this
study can be found in Chapter 2 and Chapter 4.

For rainfall-runoff modelling the semi-distributed HBV model, developed at SMHI, was
used (Lindström et al., 1997). The Meuse basin upstream of Borgharen was divided
into 15 subbasins, depicted in Fig. 5.1. Beside daily precipitation and temperature, the
HBV model also requires daily PET for each subbasin. In the simulations with observed
meteorological data the available observed PET values were used. For the simulations
with RCM data, daily PET was derived from the (bias-corrected) daily temperature
using Eqn. 4.5. An elaborate description of the HBV model and its application to the
Meuse basin can be found in Booij (2005).

5.3 Bias correction of RCM data

In Chapter 4 the precipitation bias in the control simulation of RACMO-HC for the
study area was discussed. Table 5.1 summarizes the performance of the used model
configurations for the Meuse basin for the winter as well as the summer half-year. The
observations for the 30-year period 1969-1998 were used as a reference. This period
was also considered in Chapter 4. All three model runs show a positive bias in the
mean precipitation, in particular RCAO-MPI. This bias is mainly related to that of the
fraction fwet of wet days (≥ 0.3 mm), because the mean wet-day amount mwet is fairly
well reproduced. The left panel of Fig. 5.2 shows the basin-average relative precipitation
bias for each calendar month. RACMO-HC and RCAO-HC have similar biases, whereas
RCAO-MPI has a much larger bias in the months July through October. The large pos-
itive bias in this part of the year is characteristic for control simulations driven by MPI
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Figure 5.2: Basin-average relative bias in the monthly precipitation (left) and the absolute
bias in the mean monthly temperature (right) for the control simulations of RACMO-HC
(squares), RCAO-HC (crosses) and RCAO-MPI (triangles) for the period 1961-1990.
Biases are calculated with respect to the observed means for the period 1969-1998.

Table 5.1: Performance of the three model configurations for precipitation during the
winter half-year (October-March) and the summer half-year (April-September). The
mean daily amount, the coefficient of variation CV1, the lag 1 autocorrelation coefficient
r1, the fraction fwet of wet days and the mean wet-day amount mwet are area-weighted
averages over all subbasins.

Winter Observed RACMO-HC RCAO-HC RCAO-MPI
Mean (mm/day) 2.77 3.49 3.25 3.58
CV1 1.73 1.48 1.36 1.26
r1 0.37 0.35 0.40 0.35
fwet (%) 56 68 70 76
mwet (mm/day) 4.94 5.10 4.60 4.72

Summer Observed RACMO-HC RCAO-HC RCAO-MPI
Mean (mm/day) 2.40 2.64 2.58 2.97
CV1 1.81 1.69 1.69 1.54
r1 0.27 0.25 0.31 0.22
fwet (%) 50 57 56 63
mwet (mm/day) 4.75 4.58 4.52 4.69
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for western Europe and is possibly related to a positive bias in the westerlies (van Ulden
et al., 2007). Furthermore, the coefficient of variation (CV) of daily precipitation (CV1)
is too low in all RCM runs. This is also the case for the CV of the 10-day precipitation
amounts (not shown).

The lag 1 autocorrelation coefficient r1 in winter is overestimated by RCAO-HC and
slightly underestimated in the other two model configurations. In summer the same is
found, though the differences between the models and the observations are somewhat
larger.

A linear scaling of precipitation does not correct the underestimation of CV1 or that of
the multi-day CVs. It was shown in Chapter 4 that this can have undesirable effects
on large quantiles of multi-day precipitation. Hence, such a correction is unsuited for
any study of extreme precipitation and simulated discharge. A slightly more advanced
nonlinear correction in the form

P ∗ = a P b (5.1)

was introduced in Chapter 4 to correct the variability as well as the mean precipita-
tion. The seasonally and spatially varying (i.e. among subbasins) parameters a and b
were determined for each interval of five calendar days in the year by considering days
within a moving window of 65 days centred on the 5-day period of interest. For each
window the values of a and b were chosen such that the mean precipitation and the CV
of 10-day precipitation amounts (CV10) matched those of the corresponding days from
the observed precipitation. Figure 5.3 shows how the basin-average exponent b varies
throughout the year for all three control simulations. As observed for the biases in the
mean precipitation, there is a strong resemblance between the values of b for the two
HC-driven simulations. For the RCAO-MPI simulation the values of b are considerably
higher. In particular in the months September through November (roughly between day
240 and day 330) the values of the exponent are rather large. It was suspected that these
large values were related to the positive bias in fwet. To investigate this, the bias in fwet

was removed prior to the nonlinear correction. A small, seasonally varying reduction
was applied to the wet-day precipitation amounts, such that the fraction of days with
precipitation amounts above the wet-day threshold (of 0.3 mm) matched the observed
fwet. Negative precipitation amounts were set to zero. Though this adjustment resulted
in smaller values of the exponent b, the reduction was only marginal.

The right panel of Fig. 5.2 shows the absolute monthly temperature biases. These were
obtained by comparing the basin-average temperature calculated from the grid boxes
with the reference temperature for the basin, obtained from data of 11 stations using
Thiessen interpolation. For the three configurations the temperature biases are roughly
of the same order, though the bias of RCAO-HC is on average larger than that of the
other two model configurations. The daily temperatures of the subbasins were corrected
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in the same way as in Chapter 4, involving a translation and a scaling which respectively
adjust the mean and the variability. The same translation and scale factor were used for
all subbasins, but these parameters were determined separately for each 5-day interval
in the year, again using a moving window of 65 calendar days.

5.4 Changes of temperature and precipitation in the

RCM runs

For each model configuration precipitation and temperature for the Meuse basin in the
A2-scenario run were compared with those in the control run. The left panel of Fig. 5.4
displays the relative change of the mean precipitation. All model configurations show an
increase in winter and a decrease in summer. The changes in RCAO-MPI are the largest
in magnitude, ranging from a decrease of about 70% in August to an increase of 60% in
December. The decrease in summer precipitation is accompanied by a strong decrease
in the number of wet days (30% to 50% in the summer months June, July and August).
In winter the change in precipitation frequency is small, but there is a clear increase in
the mean wet-day amounts. For December, January and February, this increase ranges
from 16% for the HC-driven runs up to 32% for RCAO-MPI.
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Figure 5.3: Annual cycle of the area-averaged correction parameter b for RACMO-HC,
RCAO-HC and RCAO-MPI.
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Figure 5.4: Relative change in the monthly precipitation (left) and the absolute change
in the monthly mean temperature (right), resulting from the A2 scenario, as projected by
RACMO-HC, RCAO-HC and RCAO-MPI.

The right panel of Fig. 5.4 displays the change of the mean monthly temperature.
Throughout the entire year an increase is found in all model configurations. The changes
in both HC-driven runs do not differ much, except for August and September, where
RCAO-HC shows a considerably larger increase. This is probably related to the drying-
out of the soil, the effects of which can also be seen in the precipitation in the summer
months. In the RACMO model several modifications of the soil scheme were made to
reduce the positive feedback between soil moisture and temperature. The soil depth
was increased, the response of the evapotranspiration to the available soil moisture was
modified and the percolation of soil water to deeper layers was reduced. Furthermore,
the cloud scheme was altered to increase the cloud cover in summer (Lenderink et al.,
2003). In RCAO-MPI the change of the temperature in the summer months is even
larger than in RCAO-HC, especially in August, which shows an increase of more than
10 degrees.

In Fig. 5.5 the relative change of CV10 is shown for all model configurations. The close
correspondence between both HC-driven runs (except for May and June) suggests a
strong influence of the driving GCM. For RACMO-HC and RCAO-HC the change in
winter is comparable to that found by Buishand and Lenderink (2004) for the Rhine
basin, using an RCM from the Hadley Centre also driven by HadAM3H boundaries.
They observed a decrease of 16% for the months December, January and February. In
summer the relative change shown in Fig. 5.5 is larger than the relative change found by
Buishand and Lenderink (2004).

The change in CV10 can be understood from the changes in certain basic statistical prop-
erties of the daily precipitation amounts. For a stationary daily sequence the variance
of 10-day totals, V10, and the variance of daily amounts, V1, are related through (Cox
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and Lewis (1966), page 72):

V10 = 10V1

(
1 + 2

9∑
i=1

ri
10− i

10

)
, (5.2)

where ri denotes the lag i autocorrelation coefficient. Dividing both sides by the squared
mean 10-day amount leads to the following expression for CV10:

CV2
10 =

CV2
1

10

(
1 + 2

9∑
i=1

ri
10− i

10

)
(5.3)

For CV1 Räisänen (2002) derived

CV2
1 =

CV2
wet + 1

fwet

− 1 (5.4)

where CVwet is the CV of the wet-day precipitation amounts. From the last two equa-
tions it can be seen that CV10 decreases with the number of wet days and increases with
CVwet and the autocorrelation coefficients. Figure 5.6 shows the relative change of fwet

and CVwet (left panel) and the relative change of CV1, CV10 and r123 = r1 + r2 + r3

(right panel) for the RACMO-HC run. From the latter it is seen that the direction
of change of the autocorrelation coefficients determines whether or not the change of
CV10 exceeds that of CV1 (in accordance with Eqn. 5.3). In January, February and
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Figure 5.5: Relative change of CV10 for each calendar month.
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March fwet increases and CVwet decreases, resulting in a decrease of CV1. This effect
is accompanied by a decrease of the autocorrelation, leading to a larger decrease for
CV10 than for CV1. The rather large increase of CV10 for the months June, August and
September (≈ 60%) can be attributed to an increase of CVwet and the strength of the
autocorrelation in combination with a decrease of fwet. The seasonal changes of fwet,
CVwet and the autocorrelation in RCAO-HC are similar to those in RACMO-HC. The
results for RCAO-MPI for the winter half-year are, however, quite different. There is a
slight increase in CV10 (≈ 5%), mainly due to an increase in CVwet.

Figure 5.7 shows the spatial pattern of the change of CV10 over a part of western Eu-
rope, derived from the (overlapping) 10-day totals of grid-box precipitation for each of
the three model configurations. There is a striking resemblance between RACMO-HC
and RCAO-HC, which confirms the strong influence of the driving GCM on these prop-
erties mentioned earlier. Both model configurations show a decrease of CV10 over a large
part of the North Sea, southern Norway, The Netherlands, Belgium and western France,
in contrast with an increase over central Europe. In the model configuration RCAO-
MPI, on the other hand, CV10 only decreases in southern Scandinavia and an increase is
seen over larger areas. The resemblance between the two HC-driven configurations and
their difference from RCAO-MPI confirms the strong influence of the driving GCM on
the relative variability of multi-day precipitation in these months.

The changes in CV10 in the three RCM simulations are comparable to those in the CV of
monthly precipitation found in an extensive study by Räisänen (2002). In that study 19
atmosphere-ocean GCMs were considered, all forced with an increase in the atmospheric
CO2 concentration of 1% yr−1. For most areas of the world an increase in the CV of
monthly precipitation was found. However, for the high northern latitudes (50oN and
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corresponding relative change of CV1, CV10 and the sum of the first three autocorrelation
coefficients r123 (right panel).



5.4. Changes of temperature and precipitation in the RCM runs 83

RCAO-HC

-10

-10

-10
-10

-1
0

-10

-10-10

-7.5
-7

.5

-7.5

-7.5

-7.5

-7.5

-7.5
-7.5

-7.5

-7.5

-7.5
-7.5

-7.5

-7.5

-7.5

-7
.5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-2
.5

-2
.5

-2.5

-2.5

-2
.5 -2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

 0

 0

 0

 0

 0

 0

 0

 0

 2.5
 2

.5

 2
.5

 2.5

 2.5

 2.5

 2.5

 5

 5

 5
 7.5

 7.
5

RACMO-HC

-10

-10

-10

-10

-10

-10

-1
0

-10

-10

-10
-10

-1
0

-7.5

-7.5

-7.5

-7
.5

-7.5

-7.5

-7.5

-7.5

-7
.5

-7.5

-7.5

-7.5
-7.5

-5

-5 -5

-5-5

-5

-5
-5

-5

-5

-5

-5

-5

-5

-5-5

-5

-5

-2.5

-2.5

-2.5
-2

.5

-2
.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 2.5

 2
.5

 2.5

 2.5

 2.5

 2.5
 2.5

 5

 5

 5

 5

 5

 7.5

 7.5

 7.5

 7.5

 7.5

10

10

10

15

RCAO-MPI

-7.5

-7
.5

-7.5

-7.5

-7.5

-5

-5

-5

-5

-5

-5

-5

-2.5

-2.5

-2.5

-2.5

-2
.5

-2.5

-2
.5

-2
.5

 0

 0

 0

 0

 0

 0

 0

 0

 2.5

 2
.5

 2.5

 2
.5

 2.5

 2.5

 2.5

 2.5

 2.5

 2.5

 2.5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5
 5

 5

 7
.5

 7.5

 7.5
 7.5

 7.5

 7.
5

 7.5

10

10

10

10

10

10

12.5

12.5

12.5

12.5

15
15

15 17.5

 -10

0

+10

[%]

+20

+30

Figure 5.7: Relative change (%) of CV10 over western Europe in the months December
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higher) a decrease was observed for autumn and winter. This decrease was associated
with a relatively large increase in the mean monthly precipitation. Similar results have
been found for the response of the CV of seasonal amounts in GCM climate change
simulations (Rowell, 2005; Giorgi and Bi, 2005).

5.5 Simulated changes in precipitation extremes

The nearest-neighbour resampling algorithm explained earlier was applied to the RCM
control runs to generate daily sequences of precipitation and temperature for the 15 sub-
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Figure 5.8: Gumbel plots for the 10-day winter maxima of basin-average precipitation
obtained after resampling and bias correction. Panels A, B and C show the results for the
three model configurations: RACMO-HC, RCAO-HC and RCAO-MPI. Panel D shows
the effect of limiting the bias correction on the resampled A2-scenario run from RCAO-
MPI (dashed) and the ‘delta’ scenarios, obtained by applying the relative changes found
in RCAO-MPI to the control runs of the three model configurations (dotted) and the
observations (triangles).
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basins simultaneously, each with a length of 9000 years. The corrections discussed earlier
were used to adjust the mean and CV10 of modelled precipitation amounts and the mean
and standard deviation of the daily temperatures. This procedure was repeated for the
A2-scenario runs, using the same corrections. In this section the distribution of the sim-
ulated 10-day maxima of basin-average precipitation for the winter half-year (flooding
season) are discussed. The three panels A, B and C in Fig. 5.8 compare the Gumbel plots
of these maxima in the control run and the A2-scenario run for each model configuration.

For RACMO-HC (panel A) a slight decrease is seen for return periods longer than five
years. The change of the highest quantiles of the distribution is less than 10 mm. The
effect of the increase in the mean precipitation is counterbalanced here by the decrease
of CV10, shown in Fig. 5.5. Describing the distributions of the 10-day precipitation
amounts by a square-root-normal distribution, it is demonstrated in Appendix A.2 that
the changes in the mean and CV10 can account for the changes in the extreme value
distribution. Although a slight increase in the most extreme quantiles of 10-day precip-
itation is seen for RCAO-HC (panel B), the magnitude of the changes is comparable to
that of RACMO-HC.

The results found for RCAO-MPI (panel C) are, however, strikingly different. The most
extreme quantiles are roughly doubled. This large increase is most likely related to the
nonlinear bias correction. Figure 5.9 presents the ratios between the corrected and un-
corrected daily precipitation amounts in the months of October and December for the
Ourthe subbasin. From the left panel it can be seen that in October the highest values
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Figure 5.9: Ratio between the corrected and uncorrected precipitation amounts for indi-
vidual wet days in October (left) and December (right) in RCAO-MPI for the Ourthe
subbasin (1588 km2). The results for both the A2-scenario run and control run are
shown. The days falling within the same 5-day period in the year (and thus having the
same bias-correction parameters) seem to fall along a curve in the plot.
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Figure 5.10: The upper bound of the ratio between the corrected and uncorrected daily pre-
cipitation amount Rmax for each subbasin (the numbers correspond with those in Fig. 2.1).

in the A2-scenario run are multiplied by more than a factor of three, due to the large
correction exponent b in Eqn. 5.1 for that month (see Fig. 5.3). This results in daily
precipitation amounts exceeding 160 mm. In some occasions, two such values occurred
within a short time span, leading to extremely large 10-day amounts. For December
(right panel) the correction ratios are all below 1.5.

To restrict the effect of the nonlinearity of the bias correction on large daily precipitation
amounts, a modification was made to limit the ratio of corrected to uncorrected daily pre-
cipitation amounts. Using the same moving window of calendar days as for the determi-
nation of the coefficients a and b in Eqn. 5.1, the averages M20,RCM(i), i = 1 . . . 73 of the
20 largest daily precipitation amounts from the control run data were calculated for all 73
consecutive 5-day periods of the year. In the same way the values of M20,OBS were calcu-
lated for the observations. Then the ratios R20(i) = M20,OBS(i)/M20,RCM(i), i = 1 . . . 73
were determined and the largest value Rmax = max

1≤i≤73
R20(i) was used as an upper bound

for the ratio of corrected to uncorrected rainfall amounts. This procedure was carried
out for each subbasin separately. From Fig. 5.9 it can be seen that Rmax varies between
1.2 and 1.9.

The effect of the limited correction is shown in panel D of Fig. 5.8. For the control run, the
quantiles of the 10-day winter maxima are somewhat lower than if no restriction would
have been applied (Panel C). The agreement with the observed quantiles is, however,
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still satisfactory. Limiting the bias correction has a substantial effect on the extreme
quantiles of the A2-scenario run. Because for the RCAO-MPI runs the average change
in CV10 was found to be small in winter (see Fig. 5.5), it was expected that a ‘delta’
scenario, i.e. scaling the daily precipitation amounts of the control run by a seasonally
varying factor (which represents the relative changes in the mean precipitation) may
sufficiently describe the changes of the winter extremes. Therefore, the changes in the
mean precipitation in RCAO-MPI were applied to the observations and the control runs
from all three model configurations. Panel D of Fig. 5.8 shows that the 10-day winter
maxima in the resulting delta scenarios resemble those from the A2-scenario run with a
limited nonlinear bias correction. Thus, the change of the extreme quantiles obtained by
applying the limited nonlinear bias correction to the resampled RCM runs is consistent
with that expected in the case of a little change of the CV10 of winter precipitation. This
makes the limited correction much more plausible than the original correction.

5.6 Estimation of changes in flood quantiles

The bias-corrected resampled series of daily precipitation and temperature discussed
earlier, were used to drive hydrological simulations with the HBV rainfall-runoff model.
Figure 5.11 shows the Gumbel plots of the simulated winter maxima of daily discharge
at Borgharen.

The flood quantiles obtained from RACMO-HC (panel A) and RCAO-HC (panel B)
show roughly the same response to the A2 scenario. For both model configurations a
slight decrease is seen for intermediate return periods, whereas the quantiles for the
longest return periods tend to increase, in particular for RACMO-HC. For RCAO-MPI
(panel C) the response of flood quantiles to the A2 scenario is much larger than for the
HC-driven simulations. This is consistent with the change of the 10-day precipitation
maxima. These results suggest that, at least for the winter half-year, the change of flood
quantiles is more sensitive to the change of large-scale characteristics produced by the
GCM, than to local effects produced by the RCM. The plots for the annual maxima
(not shown) are almost identical to those shown in Fig. 5.11, in particular for the RCAO
simulations. For RACMO there is a slight difference due to a number of large April
events in the A2-scenario run.

Figure 5.12 displays the relative change of the flood quantiles as a function of the stan-
dardized Gumbel variate, showing the different responses of the three model configura-
tions to the A2 scenario more clearly. The changes for the RACMO-HC and RCAO-HC
simulations are slightly different from those found by Buishand and Lenderink (2004)
and Lenderink et al. (2007) for the flood quantiles of the river Rhine. They found a rise
of 10% in the 100-year flood. This increase is, however, less than the increase of the
mean winter discharge, which is most likely related to the decrease of the CV of 10-day
precipitation amounts in winter in the HC-driven runs mentioned earlier. For RCAO-
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Figure 5.11: Gumbel plots for the maxima of daily discharge in the winter half-year for
the three model configurations RACMO-HC, RCAO-HC and RCAO-MPI, the latter with
the limited bias correction.

MPI the relative change is between 35% and 55% over virtually the entire range of return
periods. This is roughly comparable to the relative changes in the flood quantiles of the
river Rhine from the delta scenario based on the UKHI experiment by Middelkoop (2000).

In order to explore the influence of the bias correction on the changes of the flood quan-
tiles, the HBV simulations were repeated with the uncorrected resampled data from
RACMO-HC and RCAO-MPI. For the control runs of these model configurations con-
siderable biases were found in the flood quantiles (29% for RACMO-HC and 15% for
RCAO-MPI for the 5-year event). The relative changes of the flood quantiles are com-
pared in Fig. 5.13. For the RACMO-HC simulations (left panel) the relative change of
flood quantiles is only slightly affected by the bias correction up to a return period of 100
years. For return periods beyond 500 years, the flood quantiles from the corrected data
increase by about 15%, whereas those from the uncorrected data decrease by approxi-
mately the same amount. For the RCAO-MPI simulations the relative change obtained
from uncorrected data is systematically lower than that obtained with the nonlinear
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bias correction. Thus, biases in the mean and variability of precipitation not only affect
the absolute values of flood quantiles, but also their relative changes for future climate
conditions. Bias correction is recommended, as it leads to realistic flood quantiles for
current climate conditions.
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Figure 5.13: Influence of the nonlinear bias correction on the relative change of the
simulated flood quantiles for RACMO-HC (top) and RCAO-MPI (bottom).
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5.7 Discussion and conclusion

Daily precipitation and temperature from three RCM simulations (RACMO-HC, RCAO-
HC and RCAO-MPI) were used to estimate the changes in flood quantiles of the river
Meuse. For each model configuration, two 9000-year sequences were generated by re-
sampling from the control run (1961-1990) and the A2-scenario run (2071-2100). These
sequences were corrected for differences in the mean and variability between the control
run and observed climate. The HBV rainfall-runoff model was used to simulate the daily
discharges at the gauging station Borgharen. The changes in the flood quantiles for the
winter half-year were studied.

A substantial difference was found between the changes in flood quantiles from the two
HC-driven simulations and those obtained from the RCAO-MPI simulations. In the
HC-driven simulations there was little change in both the quantiles of extreme 10-day
precipitation and the flood quantiles, despite a clear increase in the mean winter pre-
cipitation (Fig. 5.4). This could be explained by the fact that the increase in the mean
precipitation was counteracted by a decrease in CV10. By contrast, in the RCAO-MPI
simulations there was little change in the CV10. Mainly due to the increase in the mean
precipitation amounts the quantiles of the 10-day precipitation maxima and the daily
discharges increase by about 50%. The results confirm the relevance of the CV of multi-
day winter precipitation as an indicator of the changes in flood quantiles, beside the
change in the mean.

The change in the CV of multi-day precipitation is entirely determined by the changes in
the frequency of wet days, the CV of the wet-day precipitation and the autocorrelation
of daily precipitation. For the decrease of CV10 in the HC-driven simulations, all these
factors had some influence. This decrease is consistent with that of the CV of monthly
precipitation for high northern latitudes, averaged over an ensemble of GCM simulations
as discussed by Räisänen (2002). However, he also reports substantial variation among
the changes predicted by individual GCMs. An ensemble of RCM runs nested in differ-
ent GCM runs is needed to complete the picture of the potential changes in CV10 and
flood quantiles of the river Meuse.

It was observed that the relative change of simulated flood quantiles depends on whether
or not a bias correction was used, in particular for the RCAO-MPI simulation. In Chap-
ter 4 it was stated that a nonlinear bias correction, adjusting the relative variability of
multi-day precipitation amounts, is essential for a realistic simulation of extreme flood
quantiles. However, for the RCAO-MPI simulation the correction had to be restricted
to avoid the occurrence of unrealistically large daily precipitation amounts.

The bias correction used in this study does not take the physical causes of the precipi-
tation bias into account. It was noted that the precipitation bias is likely to be related
to biases in the atmospheric circulation. A natural alternative would be to correct for
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the bias in the circulation first. Nearest-neighbour methods conditioned on circulation
indices might then be useful. Though such a correction has a more physical basis, its
practical value is not clear. Furthermore, it is not certain whether the same correction
should be applied to the circulation of the SRES A2-scenario run.

Possible trends in precipitation and temperature are disregarded in the resampling pro-
cedure. A trend could bias the selection of a new day towards the years surrounding the
previous selection. For daily precipitation the trend is small compared to its variability.
Daily temperature has a smaller variability and shows a considerable trend in the A2
scenario. Though the temperature in itself hardly influences the simulated extreme flows
directly, the basin-averaged temperature has an influence on the resampling algorithm.
The effect of the temperature trend was investigated for the A2-scenario run of RCAO-
MPI. Two additional 9000-year resampling simulations were performed: one driven by
the detrended temperatures and one by temperatures of which the trend had been dou-
bled. No systematic influence of the temperature trend was found on the distribution of
the maximum 10-day precipitation in winter.

It should be noted that the uncertainty in the change of the flood quantiles increases
with the return period. Part of the uncertainty can be reduced by prolonging the me-
teorological sequences in the resampling stage. However, the uncertainty related to the
limited length of the RCM runs remains. Since there is only one 30-year realization for
each model experiment, this uncertainty is difficult to quantify. Furthermore, it is not
clear whether the linear relation between PET and temperature derived for the current
climate, is still valid in a changed climate or should be modified. However, it was shown
by Lenderink et al. (2007) that the influence of assumptions regarding the potential
evapotranspiration on extreme discharges are very small compared to other sources of
uncertainty.

Summarizing, this study has shown that meaningful estimates of changes in extreme
flood quantiles can be obtained from the daily output of RCM experiments. Apart from
the change in the mean precipitation, the change in the CV of 10-day precipitation
amounts emerged to be important for the Meuse basin. These changes are controlled
strongly by the driving GCM. It is therefore recommended to use a comprehensive set
of GCM simulations for future evaluations of the change in flood quantiles. Finally, it
should be noted that bias corrections of precipitation can have a strong influence on the
estimated changes of flood quantiles, but should be applied with care.
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Chapter 6
Conclusions and discussion

6.1 Summary and conclusions

In this thesis the applicability of time-series resampling was studied within the context
of simulating extreme flows for the river Meuse. Time-series resampling should be seen
as a non-parametric means to generate realistic stationary sequences of arbitrary length
based on a sequence of limited length (e.g., a historical record). As demonstrated by
Beersma (2007), time-series resampling is useful to simulate very rare extreme hydro-
meteorological events that are not present in the original short sequence and that result
from a rearrangement of the individual values. Resampling of areal precipitation and
temperature for a river basin in combination with rainfall-runoff modelling offers a pow-
erful tool to study unprecedented extreme discharge events.

How large are floodquantiles at long return periods (in particular the design
discharge) under current climate conditions?

To answer this question, a nearest-neighbour resampling technique was applied to ob-
servational data to generate long-duration (order 1000 years) sequences of daily precip-
itation and temperature for 15 subbasins of the river Meuse upstream of the Belgian-
Netherlands border. The used algorithm was basically the same as that of Buishand
and Brandsma (2001) for the Rhine basin, though a few modifications were required to
make it suitable for the Meuse basin. A four-day memory element was included in the
feature vector for the search of nearest neighbours to improve the reproduction of the
autocorrelation of daily precipitation. Furthermore, a method was devised for passive
(i.e. indirect) resampling from short or incomplete records of areal precipitation for the
15 subbasins, whilst the selection of nearest neighbours was driven by station records for
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a longer historical period. The resampled sequences were used as input to the rainfall-
runoff model HBV for the Meuse basin, resulting in a long-duration daily series of river
discharge. From the latter the extremes in the winter half-year have been investigated,
which follow the same distribution as the annual discharge maxima (except at very short
return periods), since the largest flood events mainly occur in winter.

Gumbel plots of the simulated extremes agree fairly well with the Gumbel plot of the
observed discharge extremes for the 38-year period 1961-1998. The historical 1993 and
1995 floods deviate noticably from the plots for the simulations. This deviation is mainly
due to the large variability of the highest values in a 38-year record. There is furthermore
a systematic difference between the quantiles of the observed discharges and those of the
simulations at short and moderate return periods due to a systematic underestimation
of flood peaks in this regime by the HBV model. The difference vanishes when 10-day
average discharges are considered, which indicates that extreme flood volumes are well
represented by the simulations.

During this study, four 3000-year simulations of precipitation and temperature based on
the historical period 1961-1998 were performed, ‘Sim61’ in Chapter 2 being one of them.
These simulations only differed in the random-number seed used, which makes them
comparable but independent. The generated sequences were used by Aalders et al. (2004)
to simulate extreme discharges. The simulations were chained to form a 12 000-year
simulation (de Wit and Buishand, 2007). Due to the length of the simulated discharge
series, the 1250-year discharge level can be obtained as an empirical quantile from the
simulated maxima without the need to fit a parametric distribution. This resulted in a
1250-year discharge level of approximately 3750 m3s−1. The same procedure was followed
with four 3000-year simulations based on the period 1930-1998 (‘Sim30’ in Chapter 2),
resulting in a 1250-year level of about 3400 m3s−1. To translate these levels to maxima
of hourly discharge, a relative increase of 1% should be applied in combination with an
absolute increase of 80 m3s−1 (Kramer and Schroevers, 2008). This leads to a value of
3867 m3s−1 for Sim61 and 3514 m3s−1 for Sim30. The value based on Sim30 comes in the
order of the design discharge of the Becht Committee in 1977 (3600 m3s−1), but is still
considerably lower than the currently used value of 3800 m3s−1. The value from Sim61 is
higher, due to a more pronounced influence of the wet years in the period 1961-1998. It is
possible that the underestimation of the flood peaks by the HBV model also influences
these estimates. Recently, the calibration of the HBV model for the meuse has been
reinvestigated (Kramer and Schroevers, 2008). A large ensemble of parameter sets has
been considered. For five of these sets a number of historical floods have been hindcasted.
It was concluded that, in terms of the Nash-Sutcliffe efficiency and the reproduction of
the flood peaks, the new parameter sets outperform the original parameter set used in
this study. This at least illustrates that there is room for improvement in the tuning of
the HBV model.
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How should the output of regional climate models be processed to be useful
for the determination of flood quantiles?

This question was dealt with in Chapter 4. The performance of the regional climate
model RACMO of the Royal Netherlands Meteorological Institute (KNMI) under cur-
rent climate conditions was studied in detail. One 30-year run of this model driven at
its lateral boundaries by the Hadley Centre’s global atmospheric model HadAM3H (HC)
and one run driven by the ERA40 reanalysis were used for resampling and rainfall-runoff
simulation. In both runs the mean winter precipitation was overestimated, whereas the
relative variability (coefficient of variation) was generally underestimated. The correc-
tion of the mean and the relative variability of 10-day precipitation, CV10, turned out
to be essential for a realistic simulation of flood events. To achieve this, a nonlinear bias
correction, capable of simultaneously adjusting the mean daily precipitation and CV10,
was applied to the daily precipitation of the resampled sequences. The parameters in the
correction formula were fitted using the precipitation from the model runs and the ob-
servations. With the correction a satisfactory agreement was seen between the simulated
flood quantiles and those obtained by driving the HBV model with observational data.
A minor drawback of this nonlinear correction is that it slightly changes the autocorre-
lation of daily precipitation. Furthermore, in a climate-change scenario unrealistically
large precipitation amounts may arise. To avoid this side effect, the ratio between the
corrected and uncorrected precipitation amounts was restricted.

How do rare flood quantiles change in a climate-change scenario represented
by a regional climate model?

This is the topic of Chapter 5. For the study to the effects of climate change, three differ-
ent RCM-GCM configurations were considered: RACMO-HC, RCAO-HC and RCAO-
MPI, where RCAO is the regional climate model of the Swedish Meteorological and
Hydrological Institute (SMHI) and MPI refers to the coupled atmosphere-ocean model
ECHAM4/OPYC3 of the Max-Planck-Institute for Meteorology. All these model ex-
periments are part of the EU-funded integrated project PRUDENCE (Christensen and
Christensen, 2007). For each configuration the control simulation (1961-1990) and a
simulation for the SRES-scenario A2 (2071-2100) were used. Bias-corrected precipita-
tion and temperature data were fed into the HBV model. The changes in the mean and
variability of precipitation for the winter half-year are more similar in model simulations
driven by the same GCM than in those of the same RCM, driven by different GCMs.
This is not surprising, since the weather in this season is dominated by large scale fea-
tures that control the RCM boundary conditions. At least for the mid-western part of
Europe, the pattern of changes in the mean and CV10 indirectly induced by the respec-
tive GCMs was fairly different. The model experiments driven by HadAM3H project a
moderate increase in the mean precipitation, accompanied by a decrease of the relative
variability of 10-day precipitation in a region covering the Netherlands, Belgium and
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northern France. Hence, the increase of the absolute variability is less than proportional
to that of the mean and the increase of the flood quantiles is small. At a return period of
1250 years, the increase shown by both RCM experiments is below the 10% per degree of
de Wit et al. (2008). The increase in annual mean temperature is, however, larger than
2oC. In the ECHAM4-driven experiment the mean precipitation in the area of interest
increases considerably and the change of the relative variability is small. As a result, the
flood quantiles roughly increase in proportion with the mean precipitation. The 1250-
year discharge level rises by approximately 45%. Given a rise of 3oC of the mean global
temperature in the A2 scenario (Fig. 9.6 of Boer et al., 2001) for ECHAM3/OPYC4, this
is about 15% per oC. The relative changes in the quantiles of extreme discharge can be
sensitive to the application of the nonlinear bias correction. Conversely, these changes
may be sensitive to an underestimation in the relative variability of precipitation. Thus,
it might not be sound to base conclusions concerning the change in flood extremes on
uncorrected model runs.

Modification of the resampling algorithm

By definition the resampled time series can only contain individual values that are present
in the original series, which also limits the highest resampled value. To investigate
whether this limitation puts an unnatural restriction to the simulation of extreme river
discharges, a two-stage resampling algorithm, capable of generating daily precipitation
amounts beyond the highest value in the observations (or climate model run), was de-
veloped. In this algorithm the principle of nearest neighbours is used to estimate the
expected value conditioned on the previously simulated amounts and to sample residu-
als. A first-order LOESS smoother (a locally weighted regression line) was found to a be
suitable estimator. Before applying the algorithm to meteorological data, it was tested
with data from two theorectical AR1-processes with known distributions. The two-stage
algorithm was then tested for the basin of the river Ourthe, one of the Meuse’s trib-
utaries. The resulting synthetic precipitation and temperature sequences were used to
drive the HBV model for the Ourthe basin in order to simulate the daily discharge.
The experiments with the two-stage algorithm show that it produces higher values than
those in the original data. The estimation of the expected values and the number of
nearest neighbours for selecting the residuals strongly influenced the tail of the distri-
bution of the simulated values. In contrast to the single-stage algorithm, the number
of neighbours involved in the determination of the expected values and the selection of
residuals in the two-stage algorithm was rather large. Though the algorithm produces
daily precipitation amounts beyond the observed range, this hardly had any effect on
the simulated discharge maxima. This indicates that at least for the Ourthe, the single-
stage resampling of historical daily precipitation amounts does not put an unrealistic
restriction to the simulated discharge extremes.
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6.2 Other developments and prospects

Regarding the estimated 1250-year discharge, it is important to identify the sources
of uncertainty inherent to the presented resampling approach. Firstly, a rather long
simulation is required to obtain an accurate estimate of the 1250-year discharge. The
variance of the empirical quantile x̂T with return period T determined from the annual
(or seasonal) maxima of an N -year resampling simulation, is approximated by (e.g.,
David, 1981):

Var (x̂T ) ≈ 1

N + 2

1/T (1− 1/T )

f 2 (x̂T )
≈ 1

NTf 2 (x̂T )
, (6.1)

for T and N large. Here, f denotes the probability density function of the maxima,
evaluated at the estimated quantile. Several methods have been proposed to estimate f
or 1/f , see for instance Bloch and Gastwirth (1968) and McKean and Schrader (1984).
Here, a Gumbel distribution was fitted (censored, only using the upper 2% of the max-
ima). For the 12 000-year simulation of Sim61 a standard deviation of 136 m3s−1 was
derived for the 1250-year event. For Sim30 a standard deviation of 88 m3s−1 was found
(see also de Wit and Buishand, 2007).

The original meteorological sequences used for resampling form another source of uncer-
tainty. In Chapter 2 it was already found that resampling from the relatively wet period
1961-1998 resulted in higher quantiles of the winter maxima of 10-day precipitation than
resampling from the entire period 1930-1998. To investigate the sensitivity of the simu-
lations to the selection of historical years, 20 000-year simulations were conducted with
different subsets of 33 years taken from the interval 1930-1998 (Leander and Buishand,
2008). The length of the simulations guarantees that the aforementioned uncertainty of
the resampling itself can be neglected. The Gumbel plots of the simulated 10-day pre-
cipitation maxima are presented in Fig. 6.1. A reference simulation using data from the
entire historical period is also shown. Furthermore, a distinction is made between the
simulations from subperiods that either include or exclude the year 1995. The 1250-year
level of the 10-day precipitation maximum roughly ranges from 165 mm upto 210 mm,
about 25% of the value from the reference simulation (≈180 mm). Furthermore, the
influence of 1995 is seen. The plots of the simulations including 1995 are above, whereas
those of the simulations without 1995 are below that of the reference simulation. It
was noticed that some days of the winter of 1995 occurred relatively frequently in the
simulation, due to the resampling algorithm being trapped within certain sequences of
historical days. This is more likely to happen when the historical sequence is short.

The foregoing also applies to resampling from short RCM runs introducing uncertainty
in the outcome. A long model run or an ensemble of model runs is therefore desirable.
Because of the computational expenses of models, it might be necessary to reconsider
the tradeoff between the length of simulations and the spatial (and temporal) resolution.
For the river Meuse it is concluded that increasing the spatial resolution of the RCMs
contributes little to the accuracy of the estimated changes of flood quantiles, due to
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the strong influence of large scale features from the driving GCMs. Instead, it is more
worthwhile to prolong the model runs.

The two-stage resampling algorithm of Chapter 3 is a more general algorithm than the
single-stage algorithm introduced in Chapter 2 and has more advantages than just the
ability of generating larger daily precipitation amounts than observed. It may also miti-
gate the aforementioned trapping of the simulation. An extension to a multi-site version
could therefore be valuable. In multi-site simulations the two-stage algorithm would
facilitate the generation of unprecedented spatial patterns of daily precipitation.

Although the results in this study demonstrate the feasibility of using RCM output for
the assessment of extreme discharges in a future climate, the bias in the variability of
precipitation from RCMs should be considered with care, as well as the bias in the mean
precipitation. However, it is anticipated that the performance of GCMs and RCMs im-
proves with each new generation of models and the required bias correction will gradually
decrease. More important, the signals of change emerging from different GCMs (influ-
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20 000-year simulations using different subsets of years from the historical period 1930-
1998. The historical maxima (dots) and the reference simulation (thick curve) using the
entire historical period, are also shown.
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ential to precipitation in winter) diverge. The lack of consensus among different models
regarding this point is illustrated in Fig. 6.2. Here the change of the relative variability of
10-day precipitation, CV10, in the months December through February is plotted against
the change of the mean precipitation for the three RCM experiments in this study and
four GCMs. For the latter, the precipitation is used from the grid box closest to the
Meuse basin. For all GCMs in the plot the mean precipitation increases. However, two
of the GCMs (GFDL-CM2 and CCCMA-CGCM) show only a minor change in CV10,
while in the other two CV10 either increases (MIROC3) or decreases (ECHAM5) in the
order of 10%. RCMs driven by these four GCMs are bound to show a similar spread. To
represent the uncertainty of models, it is recommended to consider experiments with an
ensemble of driving GCMs, rather than an ensemble of RCMs driven by the same GCM.
This is the objective of the EU-funded integrated project ENSEMBLES, aimed at pro-
viding policy-relevant information on climate and climate change and with an emphasis
on probablistic methods. A large number of model experiments from state-of-the-art cli-
mate models participating in this project will shortly become available. The application
of the presented resampling methodology within this context is currently in preparation.
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Figure 6.2: Relative change of the coefficient of variation of 10-day precipitation (CV10)
versus that of the mean precipitation in the months December-February, as obtained
from various GCM experiments and the RCM experiments used in this study. For the
RCM experiments (crosses) the mean and coefficient of variation of overlapping 10-day
basin-average precipitation amounts were determined in the control climate (1961-1990)
and the A2 scenario (2071-2100). The relative differences between the scenario and the
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GCMs the same procedure was followed for the daily data from the nearest grid point,
using the control simulations for the control climate and the A1B scenario . These data
were obtained from the Climate Explorer website (http://climexp.knmi.nl)



Appendix A
The GEV distribution

A.1 Regional estimation of the shape parameter

The perturbation of the RG1-simulation (RG1p) requires that the shape of the upper tail
of the distribution of daily precipitation is known. To find a suitable representation for
the tail, the bimonthly maxima of the daily precipitation amounts for 15 subcatchments
of the river Meuse (upstream of the Netherlands) were analysed. It is assumed that the
largest amount X in a bimonthly period follows a Generalized Extreme Value (GEV)
distribution:

Pr(X ≤ x) = exp

[
−

(
1− θ

x− µ

σ

)1/θ
]

. (A.1)

The location parameter µ and the scale parameter σ vary over the year and over the
subcatchments. A common shape parameter θ is assumed for all subcatchments, which
varies over the year. The regional L-moments approach (Hosking and Wallis, 1997) was
followed to estimate the common θ.

First, the probability weighted moments b0, b1 and b2 were determined from the ordered
maxima x1 ≤ x2 ≤ . . . ≤ xn as (Landwehr et al., 1979)

b0 =
n∑

j=1

xj

n
, b1 =

n∑
j=2

(j − 1)xj

n(n− 1)
, b2 =

n∑
j=3

(j − 1)(j − 2)xj

n(n− 1)(n− 2)
. (A.2)

The sample L-moments ℓ2 and ℓ3 were derived using (Hosking and Wallis (1997), page
26)

ℓ2 = 2b1 − b0 , ℓ3 = 6b2 − 6b1 + b0 . (A.3)
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Figure A.1: Regional estimates of the GEV shape parameter θ of bimonthly maxima of
daily precipitation for 15 subcatchments of the river Meuse.

For each subcatchment, the sample L-skewness t3 = ℓ3/ℓ2 was determined and then
averaged over the catchment. The estimated shape parameter θ̂ of the GEV distribution
then follows from the average sample skewness tR3 as (Hosking and Wallis (1997), page
196).

θ̂ = 2.9554 c2 + 7.8590 c with c =
2

3 + tR3
− log 2

log 3
. (A.4)

Figure A.1 shows the values of θ̂ calculated from the data for the 15 subcatchments.
In November-December a positive θ̂ is found, whereas in January-February the value is
negative. In March-April, again, a positive value of 0.21 is seen. Averaging θ̂ over the
winter half-year results in a value of about 0.02. Given the fact that this is close to zero,
the distribution of the bimonthly maxima of daily precipitation is close to the Gumbel
distribution:

Pr(X ≤ x) = exp

[
− exp

(
−x− µ

σ

)]
(A.5)

in this season, which implies that the exceedances of a high threshold are approximately
exponentially distributed. For the summer half-year there is a tendency towards a neg-
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ative shape parameter. Thence, for this season the exponential distribution underesti-
mates the tail of the distributions. This is, however, not relevant for the simulation of
extreme discharges in winter.

A.2 Penultimate approximation of the extreme value

distribution

This appendix investigates whether the change in the quantiles of the extreme 10-day
precipitation amounts in the RACMO-HC simulations can be explained by the changes
in the mean and CV alone. The distribution of the 10-day precipitation amounts P10

can satisfactorily be described by the square-root-normal distribution, i.e. X =
√

P10 is
normally distributed with mean µ

X
and standard deviation σ

X
. These two parameters

determine the mean µ
P

and standard deviation σ
P

of P10 (Katz, 1999):

µ
P

= µ2
X

+ σ2
X

and σ2
P

= 2σ2
X

(
σ2

X
+ 2µ2

X

)
. (A.6)

Here these relations are used to derive µ
X

and σ
X

from µ
P

and σ
P
:

σ2
X

= µ
P
−

√
µ2

P
− 1

2
σ2

P
and µ2

X
=

√
µ2

P
− 1

2
σ2

P
. (A.7)

The distribution of the 10-day winter maxima can be derived from the distribution of P10,
F (x) = Prob (P10≤x), using extreme-value theory. Let Mn be the maximum of the 10-
day precipitation amounts in n subsequent, non-overlapping 10-day periods. Assuming
independence between these precipitation amounts, the distribution of Mn is given by
(Leadbetter et al., 1983):

H(x) = Prob (Mn ≤ x) = {F (x)}n ∼ exp {−n[1− F (x)]} . (A.8)

This distribution can be approximated by a GEV distribution (Smith, 1990):

H(x) ≈ exp
{−[1− θ(x− µ)/σ]1/θ

}
. (A.9)

The parameters µ, σ and θ of H depend on n. The location parameter µ is obtained as
the 1/n upper quantile of F , i.e.

1− F (µ) = 1/n . (A.10)

Subsequently, the scale parameter σ and the shape parameter θ are calculated using the
first and second derivatives F ′ and F ′′ of F in µ:

σ =
1

n

1

F ′(µ)
and θ = σ

F ′′(µ)

F ′(µ)
+ 1 . (A.11)
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Figure A.2: Penultimate approximation of the distributions of extreme 10-day basin-
average precipitation totals for the winter half-year (dashed), compared with the empirical
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run (squares).

This approximation is known as the penultimate distribution. Since the winter half-year
is considered here, a value of 18.5 was chosen for n. Because

(√
P10 − µ

X

)
/σ

X
is assumed

to be standard normally distributed, the solution of Eqn. A.10 is given by

µ =

[
µ

X
+ σ

X
Φ−1

(
1− 1

n

)]2

, (A.12)

where Φ−1 is the inverse of the standard normal distribution function. The probability
density F ′ and its derivative F ′′ in µ, which are required to calculate the scale parameter
σ and the shape parameter θ, are given by

F ′(µ) =
1

2σ
X

√
µ

ϕ(z) (A.13)

and

F ′′(µ) = − 1

4µσ
X

ϕ(z)

(
1√
µ

+
z

σ
X

)
, (A.14)

where ϕ denotes the standard normal density and z =
(√

µ− µ
X

)
/σ

X
.
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The 10-day precipitation maxima considered in this thesis refer to overlapping 10-day
periods. These maxima are generally larger than those for consecutive 10-day periods.
To account for this decrepancy, the location parameter µ and the scale parameter σ were
multiplied by 1.13, which implies that the quantiles of the distribution of Mn change
with the same factor. The factor 1.13 is due to Hershfield (1961). It has been used to
adjust the quantiles of clock-hour and 1-day maxima to the corresponding quantiles of
sliding 60-minute and 24-hour maxima, respectively.

Figure A.2 compares the Gumbel plots for the 10-day precipitation maxima in winter
from the 30-year run and the 9000-year resampled series with the penultimate approxi-
mation. For the latter, µ = 79.4 mm, σ = 21.2 mm and θ = 0.0755. It is seen that this
GEV distribution slightly overestimates the quantiles of the resampled maxima, though
there is a good agreement with those of the 30-year RCM run. Figure A.3 shows the rel-
ative change of the quantiles of the derived from the penultimate approximation roughly
agrees with that found from the resampled sequences. This indicates that the changes
of the mean and CV10 indeed can account for the change of the quantiles of the maxima
in winter.
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cipitation, extracted from the bias-corrected 30-year control run and A2-scenario run
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krachten voor WB21. Unpublished document, Delft Hydraulics (WL); Royal Nether-
lands Meteorological Institute (KNMI); Institute for Inland Water Management and
Waste Water Treatment (RIZA).

Kramer, N. and R. Schroevers, 2008. Generator of rainfall and discharge extremes
(GRADE) - partF. Deltares report Q4424, Deltares, Delft.

Kwadijk, J. and J. Rotmans, 1995. The impact of climate change on the river Rhine: A
scenario study. Climatic Change, 30, 397–426.

Lall, U. and A. Sharma, 1996. A nearest neighbor bootstrap for resampling hydrologic
time series. Water Resources Research, 32, 679–693.

Lammersen, R., 2004. Effects of extreme floods along the Niederrhein (LowerRhein).
final report, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen,
Düsseldorf, Germany; Provincie Gelderland, Arnhem, The Netherlands; Rijkswater-
staat Directie-Oost, Arnhem, The Netherlands.

Landwehr, J.M., N.C. Matalas, and J.R. Wallis, 1979. Probability weighted moments
compared with some traditional techniques in estimating Gumbel parameters and
quantiles. Water Resources Research, 15, 1055–1064.

Lawrance, A.J., 1980. Some autoregressive models for point processes. In: Proceed-
ings Colloquia Mathematica Societatis János Bolyai, P. Bartfai and J. Tomko (eds.).
Elsevier, Amsterdam.



112 Bibliography

Leadbetter, M.R., G. Lindgren, and H. Rootzén, 1983. Extremes and related properties
of random sequences and processes. Springer-Verlag, New York.

Leander, R. and T. A. Buishand, 2008. Rainfall Generator for the Meuse Basin: Descrip-
tion of 20 000-year simulations. KNMI-publication 196-IV, in press, Royal Netherlands
Meteorological Institute (KNMI), De Bilt.

Lenderink, G., T.A. Buishand, and W. van Deursen, 2007. Estimates of future discharges
of the river Rhine using two scenario methodologies: direct versus delta approach.
Hydrology and Earth System Sciences, 11, 1145–1159.

Lenderink, G., B.J.J.M. van den Hurk, E. van Meijgaard, A.P. van Ulden, and H. Cuij-
pers, 2003. Simulation of present-day climate in RACMO2: first results and model
developments. Technical Report TR-252, Royal Netherlands Meteorological Institute
(KNMI), De Bilt.

Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström, 1997. Devel-
opment and test of the distributed HBV-96 hydrological model. Journal of Hydrology,
201, 272–288.

McKean, J.W. and R.M. Schrader, 1984. A comparison of methods for Studentizing
the sample median. Communications in Statistics, Simulation and Computation, 13,
751–773.

McKenzie, E., 1982. Product autoregression: A time-series characterization of the
gamma distribution. Journal of Applied Probability, 19, 463–468.

Mearns, L.O., M. Hulme, T.R. Carter, R. Leemans, M. Lal, and P. Whetton, 2001.
Climate scenario development. In: Climate Change 2001: The Scientific Basis. Con-
tribution of Working Group I to the Third Assessment Report of the Intergovernmental
Panel on Climate Change. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van
der Linden, X. Dai, K. Maskell and C.A. Johnson (eds.), pp. 739-768. Cambridge
University Press, Cambridge, UK and New York, NY, USA.

Mehrotra, R. and A. Sharma, 2006a. A nonparametric stochastic downscaling framework
for daily rainfall at multiple locations. Journal of Geophysical Research, 111, D15101,
doi:10.1029/2005JD006637.

Mehrotra, R. and A. Sharma, 2006b. A semi-parametric model for stochastic generation
of multi-site daily rainfall exhibiting low frequency variability. Journal of Hydrology,
335, 180–193.

Mehrotra, R. and A. Sharma, 2007. Preserving low-frequency variability in generated
daily rainfall sequences. Journal of Hydrology, 345, 102–120.
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Samenvatting

Tijdreeksresampling is een methodiek om uit tijdreeksen van een beperkte lengte wil-
lekeurig lange tijdreeksen te produceren met vergelijkbare statistische eigenschappen,
zónder expliciet aannamen over die eigenschappen te doen. Hoewel de gegenereerde
reeksen bestaan uit de individuele waarden van de oorspronkelijke reeks, bevatten zij
sequenties die in de korte reeksen niet voorkomen. In dit proefschrift is de techniek
van tijdreeksresampling benut voor de simulatie van extreme rivierafvoeren van de Maas
ter hoogte van Borgharen. Extreme rivierafvoeren ontstaan vaak door aanhoudende
neerslag in het stroomgebied over meerdere dagen, iets dat bij uitstek gesimuleerd kan
worden door middel van resampling van neerslag dagsommen voor het stroomgebied. In
combinatie met neerslag-afvoer modellering is resampling daarom een bruikbaar instru-
ment als men de statistiek van nog niet eerder voorgekomen extreme rivierafvoeren wil
bestuderen. Voor neerslag-afvoer modellering is gebruik gemaakt van een conceptueel
model van de Maas, waarin het stroomgebied bovenstrooms Borgharen is opgedeeld in
15 deelstroomgebieden. Als invoer vereist dit model neerslag, temperatuur en potentiële
verdamping voor elk deelstroomgebied op dagbasis. Deze laatste variable wordt uit de
dagelijkse temperatuur afgeleid. De lange reeks van gesimuleerde dagafvoer die uit deze
aanpak voortvloeit, biedt de mogelijkheid de kwantielen van extreme afvoer voor zeer
lange herhalingstijden (vele malen groter dan de lengte van de meetreeksen) te schatten
met een grotere nauwkeurigheid dan mogelijk zou zijn enkel op basis van de gemeten
extreme afvoeren. Deze schatting is bovendien ongevoelig voor veranderingen in het
stroomgebied, die wel effect hebben op de meetreeks. Een bijkomend voordeel is dat
de gevolgde aanpak ook geschikt is te maken om de effecten van klimaatverandering te
onderzoeken. Dit is gedaan door, in plaats van historische neerslag en temperatuur data,
uitvoer van regionale klimaatmodellen (RCMs) te resamplen. Die RCMs zijn elk aange-
dreven door simulaties van globale klimaatmodellen (GCMs) voor het huidige klimaat
en een mogelijk toekomstig klimaat. Het doorrekenen van de geresamplede modeluitvoer
met het neerslag-afvoer model leidt tot inzicht in de effecten van dit toekomstig klimaat
op de statistiek van extreme rivierafvoer.
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Hoofdstuk 1 schetst de historische achtergrond en de motivatie van dit onderzoek. Van-
wege de Wet op de Waterkering is het nodig dat eens per vijf jaar de maatgevende
afvoer opnieuw bepaald wordt. Deze is gedefinieerd als de extreme rivierafvoer met een
herhalingstijd van 1250 jaar. De methodiek die men daar tegenwoordig voor gebruikt,
wordt in dit hoofdstuk ruw geschetst. Ook wordt toegelicht dat de informatie uit RCM
simulaties op meer dan één manier aangewend kan worden om een uitspraak te doen over
extreme neerslag en rivierafvoer in een toekomstig klimaat en dat die niet noodzakelijk
naar dezelfde uitkomsten leiden. Tot slot wordt kort aangegeven wat de rode draad is
die de rest van de hoofdstukken verbindt.

In hoofdstuk 2 wordt het gebruikte resampling algoritme toegelicht en getest in com-
binatie met het neerslag-afvoermodel. Het resampling algoritme is gebaseerd op het
principe van ’nearest neighbours’. Als invoer worden historische neerslag- en temper-
atuurreeksen gebruikt voor lokaties in en om het Maasstroomgebied uit de 38-jarige
periode 1961-1998. De verdeling van de 10-daags neerslagmaxima voor het stroomge-
bied wordt realistisch gesimuleerd. Ook is er een redelijke overeenstemming tussen de
verdeling van de gesimuleerde afvoermaxima en die gemeten in de 38-jarige basisperiode.
De afvoerpieken van de historische 1993- en 1995-hoogwaters wijken echter opmerkelijk
af van de curve van de verdeling van gesimuleerde extreme afvoeren. Deze afwijking kan
echter worden toegeschreven aan de grote variabiliteit van de grootste extremen uit een
38-jarige afvoerreeks. Voorts is er een systematisch verschil te zien bij de kleinere en
middelgrote extremen die verband houdt met de onderschatting van afvoerpieken door
het neerslag-afvoer model in dit regime van afvoeren. Dit verschil verdwijnt nagenoeg als
de extreme 10-daags gemiddelde afvoer beschouwd wordt, hetgeen aantoont dat extreme
afvoervolumes wel goed in de simulatie worden gerepresenteerd. Naast deze simulatie
is er ook een simulatie uitgevoerd met data uit de periode 1930-1998 (met uitzondering
van 1940). Hiervoor is het resampling algoritme uitgerust met een extra stap, waarin
het nearest-neighbour principe nogmaals wordt toegepast. Deze stap dient om uit een
simulatie op basis van een beperkte set van lange stationsreeksen en korte reeksen van
gebiedsneerslag, een simulatie te krijgen die het stroomgebied dekt. Deze simulatie lev-
ert extreme afvoeren op die lager liggen dan die uit de eerste simulatie (ongeveer 5%),
doordat de gehele periode 1930-1998 droger is dan de deelperiode 1961-1998.

Hoofdstuk 3 bespreekt een aanpassing van het resampling algoritme om dagwaarden
(neerslag en temperatuur) te kunnen simuleren buiten het interval van waarden waaruit
geresampled wordt. Het principe van ‘nearest-neighbours’ wordt gebruikt om verwacht-
ingswaarden van neerslag en temperatuur op de te simuleren dag te schatten, condition-
eel op neerslag en temperatuur van eerder gesimuleerde dagen. Vervolgens wordt bij het
random trekken van een residu dit principe nogmaals toegepast. Voor neerslag worden
de verwachtingswaarde en het residu met elkaar vermenigvuldigd en voor temperatuur
bij elkaar opgeteld om aan de gesimuleerde waarden te komen. Het aangepaste algoritme
is getest op de gebiedsgemiddelde neerslag voor het stroomgebied van de Ourthe, een
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zijrivier van de Maas, en de temperatuur van een representatief station (St. Hubert).
De lange gegenereerde reeksen worden vervolgens gebruikt om een neerslag-afvoer model
voor de Ourthe (onderdeel van dat voor de Maas) aan te drijven. Het nieuwe algoritme
leidt ertoe dat de waarschijnlijkheidsverdeling van gesimuleerde neerslag dagsommen
voorbij de hoogst waargenomen dagsom op een aannemelijke wijze wordt voortgezet en
dat ook het gemiddelde, de variantie, de autocorrelatie en meerdaagse extremen goed
worden gereproduceerd. De aanwezigheid van grotere dagsommen in de simulatie geeft
echter in het winterhalfjaar geen aanleiding tot een noemenswaardige verhoging van de
afvoerextremen van de Ourthe.

In hoofdstuk 4 is onderzocht of de verdeling van extreme rivierafvoeren ook met geresam-
plede neerslag- en temperatuurreeksen van het regionale klimaatmodel RACMO (KNMI)
realistisch gesimuleerd kunnen worden, zoals dat in de voorgaande twee hoofdstukken
voor historische data is beschreven. Twee verschillende 30-jarige simulaties van RACMO
worden hierin gebruikt, één aangedreven door (randen uit) het globale atmosferische
model HadAM3H (Hadley Centre, UK Meteorological Office) voor de periode 1961-1990
en één door de ERA40 reanalysis voor de periode 1969-1998. Beide 30-jarige perio-
den worden geassocieerd met het huidige klimaat en historische data voor de periode
1961-1990. Voor beide zijn voor de deelstroomgebieden reeksen van gebiedsneerslag en
-temperatuur met een lengte van 9000 jaar simultaan gegenereerd en doorgerekend met
het neerslag-afvoer model. In beide modelruns wordt de gemiddelde winterneerslag over
het stroomgebied overschat, terwijl anderzijds de relatieve variabiliteit wordt onderschat.
Uit de gesimuleerde extreme meerdaagse neerslag en extreme afvoeren blijkt dat het niet
alleen nodig is de afwijking in het gemiddelde te corrigeren, maar dat ook de relatieve
variabiliteit van belang is. Een correctie van de gemiddelde neerslag alléén leidt tot een
sterke onderschatting van gesimuleerde extremen. Om beide aspecten onafhankelijk van
elkaar te kunnen corrigeren, wordt een niet-lineare correctie gëıntroduceerd. Deze correc-
tie, afgeleid van de 30-jarige modelruns en toegepast op de gegenereerde neerslagreeksen,
blijkt toereikend om de verdeling van geobserveerde meerdaagse neerslagextremen te re-
produceren, en ook de afvoerextremen die met geobserveerde neerslag gesimuleerd zijn.

In hoofdstuk 5 worden resampling, samen met de correctie van hoofdstuk 4, toegepast
op zowel de model runs voor het controle klimaat (1961-1990) als die voor het SRES-
scenario A2 (2071-2100). Drie modelconfiguraties worden hierin bekeken: het regionale
model RACMO aangedreven door HadAM3H (zoals besproken in het vorige hoofdstuk)
en het regionale model RCAO (Swedish Meteorological and Hydrological Institute), zowel
in combinatie met HadAM3H als ECHAM4/OPYC (Max Planck Institute, Hamburg).
Hoewel de methodiek hetzelfde is als in het voorgaande hoofdstuk (interpolatie van neer-
slag en temperatuur uit modelruns, resampling, biascorrectie en hydrologische modeller-
ing), is de stuatie gecompliceerder bij de RCAO-run aangedreven door ECHAM4. De
onderschatting van de relatieve variabiliteit is hier zo groot dat de correctie ervan leidt
tot onrealistisch grote neerslaghoeveelheden en verandering van de extremen. Om dit
op te lossen, wordt een aannemelijke bovengrens voor de correctiefactor gëıntroduceerd.
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Uit de modelexperimenten blijkt dat de verandering van het gemiddelde en de relatieve
variabiliteit van de meerdaagse neerslagsommen een sleutelrol spelen als het gaat om de
verandering van extreme meerdaagse neerslag en extreme afvoeren. In het winterhalfjaar
worden deze karakteristieken sterk bepaald door het drijvende globale model, zodat de
verandering van de extremen in de twee HadAM3H-aangedreven configuraties hetzelfde
beeld geeft, terwijl die uit de ECHAM4-aangedreven configuratie daar sterk van afwi-
jkt. De HadAM3H randen geven aanleiding tot een afname in de relatieve variabiliteit
van meerdaagse neerslag, die de toename van het gemiddelde compenseert, terwijl met
ECHAM4 de relatieve variabiliteit nauwelijks verandert en de toename in de extremen
parallel loopt met die in het gemiddelde. Verder wordt nog gedemonstreerd dat het
weglaten van de biascorrectie tot afwijkende relatieve veranderingen van de afvoerextre-
men leidt, wat impliceert dat de bias in modeldata niet zomaar genegeerd kan worden.

In hoofdstuk 6, tenslotte, worden kort de belangrijkste conclusies van dit onderzoek
op een rij gezet. De waarden van de maatgevende afvoer die volgen uit de verschillende
simulaties in hoofdstuk 2 worden hier nader besproken en de nauwkeurigheid ervan wordt
afgeschat. Simulaties van 12 000 jaar gebaseerd op de basis periode 1961-1998 leveren
een maatgevende afvoer van ruwweg 3870±136 m3s−1 op, terwijl dat 3515±88 m3s−1

is voor simulaties uit de periode 1961-1998. Het verschil tussen deze twee uitkomsten
demonstreert dat de historische basisperiode voor de simulatie ook onzekerheid in het
eindantwoord introduceert. Deze onzekerheid wordt kleiner naarmate de historische
periode langer wordt. Dit geldt ook voor het resamplen uit modelruns, waardoor het
aan te bevelen is lange modelruns te gebruiken. Dit is belangrijker dan het verhogen van
de ruimtelijke resolutie van de RCMs, temeer omdat grootschalige aspecten de doorslag
geven als het om de verandering van afvoerextremen in de winter gaat. Een punt van
zorg is wel dat modelruns uit verschillende GCM-RCM configuraties (met name die
van verschillende GCMs) sterk uiteenlopende resultaten opleveren. Dit manifesteert de
onzekerheid die momenteel nog in klimaatmodellen zit. Het is te verwachten dat deze
onzekerheid kleiner wordt als de modellen verbeteren, waardoor ook de noodzaak van
biascorrecties vermindert.
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zich bezighoudt met de toesnijden van klimaatscenarios op de praktijk van professionele
eindgebruikers (‘Tailoring’, oftewel ‘Maatwerk’ in goed nederlands).
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Op 16 september van het jaar 2002 begon ik mijn KNMI-carriere als medewerker in het
project “Neerslaggenerator Rijn-Maas”. Aanvankelijk zou het een kort dienstverband
van anderhalf jaar worden en mijn taak zou zijn om de al bestaande neerslaggenerator
voor het stroomgebied voor de Ourthe uit te breiden tot het gehele Maasstroomgebied.
In dat eerste jaar had ik zelfs niet kunnen vermoeden dat die eerste stappen uiteindelijk
zouden uitmonden in een proefschrift. Mijn toenmalige afdelingshoofd Günther Können
stond altijd erg positief tegenover mijn werk en heeft mij er toe aangezet om aan een
publicatie te werken over de eerste resultaten van het project, met als argument dat het
voor mijn verdere carriere wel goed zou zijn als er tenminste één serieus artikel op mijn
publicatielijst stond. Er zou echter nog behoorlijk wat water door de Maas stromen eer
uit dat prille begin een proefschrift zou groeien. Dat het uiteindelijk toch zover gekomen
is, heb voornamelijk te danken aan mijn co-promotor Adri Buishand, die, naar later
bleek, mijn promotie traject al heel lang voor ogen had. Beste Adri, ik besef dat dingen
niet altijd liepen zoals ze hadden moeten lopen. Ik waardeer het daarom des te meer dat
je ondanks alles zo veel inspanning in dit proefschrift hebt gestoken. Niet zelden heb je
daarvoor kostbare vrije tijd opgeofferd. Het lijdt geen enkele twijfel dat ik zonder jou
nooit gepromoveerd zou zijn. Mijn (overigens bescheiden) kennis van statistiek heb ik
ook geheel aan jou te danken. In de eerste jaren, toen alles nog nieuw voor me was, heb ik
ontzettend veel hulp gehad van mijn kamergenoot Jules Beersma, die niet alleen verstand
heeft van klimaatonderzoek maar van eigenlijk alles: van fietsreparaties tot het kopen
van een huis. Jules, het was me een eer en genoegen om bij jou op de kamer te zitten.
Ook mijn promotor Bart van den Hurk ben ik veel dank verschuldigd. Hoewel pas in een
laat stadium als promotor, was hij inhoudelijk al vroeg bij dit onderzoek betrokken en
heeft veel bijdragen door met ons mee te denken over het gebruik van klimaatmodellen.
Bart, ik waardeer vooral je positieve insteek, enthousiasme en optimisme. Uiteraard was
dit onderzoek onmogelijk geweest zonder de medewerking van Marcel de Wit van het
(toenmalige) RIZA, en Rita Lammersen en Hendrik Buiteveld van de (tegenwoordige)
Waterdienst. Ik ben hen zeer “GRADEful” voor de vele vruchtbare gesprekken die we
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hebben gevoerd en, niet in de laatste plaats, de mogelijkheid om van het HBV-model
gebruik te maken. Ook wil ik Günther Können, Albert Klein Tank en Arnout Feijt
bedanken voor de ondersteuning die zij als afdelingshoofden aan mijn onderzoek hebben
gegeven. Verder bedank ik iedereen van de afdeling KA (vroeger Klimaat Analyse en
tegenwoordig Klimaatdienstverlening en -Advies) voor de leuke tijd die niet alleen achter
me ligt, maar nog steeds voort duurt. Dankzij de goede onderlinge sfeer heb ik me van
het begin af aan in de groep thuisgevoeld. Als laatste wil ik zeker niet vergeten mijn
ouders te bedanken, die altijd klaar staan om mij te helpen en bij wie ik altijd mijn
verhaal kwijt kan. Rest mij nog om de twee volgende promovendi van deze afdeling,
Alexander Bakker en Aart Overeem (toch zo’n beetje half in onze groep) alle succes te
wensen in hun promotieonderzoek en de afronding van hun proefschrift.






