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Summary
A main purpose in a frequency or extreme value analysis is to obtain an estimate for some
hydraulic or hydrologic quantity (e.g. a water level or a discharge at some location) that
corresponds to a given return period. In traditional methods of frequency analysis
observations are used. These are statistically extrapolated when estimates of extremes are
desired for return periods much longer than the time period covered by the data. To
overcome limitations in such traditional methods, GRADE (Generator of Rainfall And
Discharge Extremes) can be used as an alternative. In GRADE a chain of mathematical
models is used for the generation of ‘arbitrary’ long term time series of discharges in a river
system. Such GRADE systems are presently available for the rivers Rhine and Meuse.

The main issue addressed in this report is the derivation of the uncertainty that should be
assigned to the estimates that GRADE produces for discharge extremes. These uncertainties
in the by GRADE computed discharges are derived from uncertainties in GRADE’s model
components.

One of these components is formed by the temporally long term and spatially distributed
weather (rainfall and temperature) series. The uncertainty in this component is here quantified
by means of an ensemble of synthetically generated series of length 20,000 years.  As  a
matter of the construction (using a stochastic weather generator) the variability in this
ensemble reflects the current climate uncertainty.

The hydrological HBV models form a second source of uncertainty in the GRADE system.
The uncertainty in these hydrological models is also quantified by means of an ensemble.
This ensemble consists of five sets of HBV model parameter-combinations, which reflect the
model parameter uncertainty of the HBV model.

Uncertainties in the hydrodynamic SOBEK models that are used for the routing of (extreme)
flows along the main river channel are a third source of uncertainty. In the present work these
uncertainties are not yet taken into account, however.

For every combination of the synthetic weather series and a set of HBV-parameters a
GRADE simulation of 20,000 years is carried out. In the report below it is described how the
results of these GRADE computations are combined to obtain the uncertainty in the estimates
of the extreme discharges.
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1 Introduction

1.1 Background of GRADE
A main purpose in a frequency or extreme value analysis is to obtain an estimate for some
hydraulic or hydrologic quantity (as for example a water level or a discharge at one or more
locations in a water system) that corresponds to a given probability of exceedence or some
return period.

Traditionally observed extreme values of the ‘target’ variable are used in frequency analysis.
The common procedure is to select the annual extremes of an observed time series, or peak
values that exceed some (sufficiently high) threshold. This sample of extreme values is then
used to identify the parameters of a probability distribution that provides a statistical model for
the selected extreme values. From this fitted distribution estimates of the target variable can
be derived for any desired return period and particular for return periods that may be much
longer than the length of the observed data record. In that case the identified distribution is
actually used for statistical extrapolation.
This method of frequency analysis is quite generic and straightforward to apply. On the other
hand several limitations can be present. For example, the sample of selected extreme values
should be sufficiently large to obtain accurate estimates for the parameters in the probability
distribution. Also the results of the frequency analysis may depend heavily on the chosen
probability distribution. At the same time estimates for larger return periods than the
observation time length are only meaningful if the observed data (or actually the underlying
physical system) represent a stationary and/or homogeneous physical process. For other and
a more detailed inventory and discussion of such limitations of the traditional method of
frequency analysis one is referred to e.g. Ogink (2012).

Until now, this traditional frequency analysis was also used for the estimation of extremely
high discharges of the Rhine at Lobith, and the Meuse at Borgharen. To overcome many of
the limitations of the frequency analysis an alternative method called GRADE has been
developed in joint cooperation by Rijkswaterstaat Water, Verkeer en Leefomgeving (WVL),
Royal Netherlands Meteorological Institute (KNMI), and Deltares. GRADE stands for
Generator of Rainfall And Discharge Extremes. In GRADE a chain of mathematical models is
used for the generation of ‘arbitrary’ long term time series of discharges in a river system.
Rather than observed values the so generated time series are used in a frequency analysis.
At the moment such GRADE-models have been developed for the Meuse and the Rhine
system. In this modelling all contributing (sub-)basins and/or tributaries of each river system
and their (geophysical) characteristics relevant for the genesis of extreme flows in the main
river are in large detail taken into account.

The “architecture” of GRADE systems for the Meuse and Rhine is graphically illustrated in
Figure 1.1. In this figure three main (model) components can be recognised.

The first component (“Stochastic weather generator”) is a stochastic rainfall and temperature
generator. With this component spatially distributed (covering all relevant catchment areas of
the river basin) and temporally arbitrary long series of daily precipitation and temperature can
be produced. The core of this weather generator is a nearest neighbour resampling of historic
observed (and also spatially distributed) weather variables. As a matter of the procedure
statistical properties (as for example mutual correlations of the simulated variables) of so
generated synthetic weather data are preserved compared to the historic data.
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For detailed information on this generation of long synthetic rainfall/temperature series one is
referred to Buishand and Brandsma (2001), Leander et al. (2005), Buishand and Leander
(2011), and Schmeits et al. (2014a, b).

Figure 1.1 Architecture of the GRADE systems for the Meuse and Rhine

The second component in the GRADE system (“Hydrological model”) consists of hydrological
models to simulate the precipitation-runoff processes in the various (sub) basins of the river
system. For both the Meuse and the Rhine the HBV model developed by the SMHI (Sweden)
is used for this purpose. The HBV-model is a lumped-distributed or semi distributed
conceptual model with a large number of parameters in the formulation of the several rainfall-
runoff sub-processes. A main activity in the preparation of the present GRADE systems was
the calibration of the HBV models for the various sub-basins. See Winsemius et al. (2013),
Hegnauer and Van Verseveld (2013); Kramer et al. (2008). In this calibration measured data
of rainfall and runoff is used. In GRADE computations, however, the synthetic weather
variables described above serve as input for the thus calibrated hydrological models.

The third component in the GRADE-systems (“Hydrodynamic model”) involves the simulation
of the (propagation of) most extreme flows along the main river system with a hydrodynamic
model. In general the 1D flow model SOBEK is used for this simulation. But also in the HBV-
models flow routing facilities are present. However, the HBV-schematization of this routing is
rather “rough” and may not sufficiently accurately represent the river and flood plain
characteristics (such as plain dimensions, roughness, conveyance limits, etc.) that affect the
propagation and attenuation of flood waves. These effects are particular relevant for extreme
floods and in that case the SOBEK results are expected to provide better estimates than
those produced by HBV.

1
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As a matter of its set up the GRADE system has important advantages compared to the
traditional method of frequency analysis. In fact:

• By means of the conceptual hydrological and hydraulic models the system has a
sound physical basis.

• In this way, and in contrast to the traditional method, GRADE can also deal with the
effects of overflows, inundations, conveyance limitations, etc., that may turn up for
very high flows. In these circumstances GRADE based estimates of (very) extreme
flows will be much more accurate than those found by statistical extrapolation of
measurements.

• The data record with extreme values can be made arbitrarily long.
• It is possible to simulate the effect of changes/interventions in the flow area, and/or

climate changes.
• Estimates for extreme values for prescribed return periods (and/or return level plots)

can be generated for virtually any location in the river system and are not restricted to
monitoring positions.

1.2 Uncertainty analysis GRADE
The main issue in this report is an uncertainty estimation of the extreme discharges computed
by GRADE. The ultimate goal is the derivation of discharge frequency curves for the river
Rhine at Lobith and the river Meuse at Borgharen, together with the 95% confidence bands
for these discharges. In frequency curves peak discharges are plotted or tabulated versus the
corresponding return period (for this reason frequency curves are sometimes also called
return level plots).
In this uncertainty analysis the amount that the various sources of uncertainty within GRADE
contribute to the total uncertainty is considered in particular. In this case these sources of
uncertainty refer to two model components of GRADE: the weather climate (rainfall and
temperature series providing the input for the hydrological models) and the hydrological
models (HBV). Presently, uncertainties in a third important component, the hydrodynamic
model (SOBEK) used for the propagation of the flood along the main river, are not taken into
account.
For the river Rhine the uncertainty analysis is carried in twofold. In one case using a SOBEK
version in which upstream flooding is not modeled, and in the other case a SOBEK model in
which flooding is also taken into account. In this way the effect of flooding on the frequency
curves and associated uncertainty can quantitatively be established. In advance it is
mentioned that the effects of flooding (on both the discharges and their uncertainty) turn out
to be large.
As already mentioned uncertainties in the hydrodynamic SOBEK models have not been taken
into account. Instead results of a sensitivity analysis will be presented for the SOBEK model
with flooding for the Rhine. These results indicate that uncertainties in the modeling of
flooding may also have non-negligible effects on the total uncertainty in the Lobith frequency
curve.

The remainder of this report is organized as follows. Chapter 2 provides a description of the
uncertainties of the individual model components of GRADE. Chapter 3 deals with the
procedure for the combination of these uncertainties. In Chapter 4 the results of the
uncertainty analysis can be found for the Rhine at Lobith, and in Chapter 5 for the Meuse at
Borgharen.
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Within the present scope (with GRADE brought into the WTI 1  project) estimates and
uncertainties for extreme discharges at Lobith and Borgharen are desired for return periods
up to 100,000 years. Because of computation time the GRADE simulations in the uncertainty
analysis were limited to a length of 20,000 years, however. The so called Weissman method
is used to determine the uncertainties in the frequency curves for return periods between 250
and 100,000 years. These ‘final’ results for the discharge frequency curves are shown in
Chapter 6.
In Chapter 7 the main results and conclusions of the present study are summarized while
further remarks and discussion are finally presented in Chapter 8.

1 WTI stands for “Wettelijk Toets Instrumentarium”. WTI is the Dutch method for analyzing dikes along the Dutch primary
and secondary flood defense structures.
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2 Description of the uncertainties in the GRADE components

2.1 Uncertainties in the stochastic weather generators for the Meuse and Rhine basins
In this section the main aspects of the representation of uncertainties in the rainfall and
temperature series generated by the stochastic weather generator are described.

Section summary

The uncertainty in the first component of the GRADE system for the Meuse and the Rhine is
made available through a set of synthetically generated weather time series.

Within the uncertainty analysis these series will all be of length 20,000 years. However, in the
estimation of the ‘final’ return levels for extreme discharges up to return periods of 10,000
years at Lobith (Rhine) and Borgharen (Meuse), the “reference” 50,000 years synthetic
weather series and corresponding GRADE simulations have been used.

As a matter of the construction of the synthetic rainfall and temperature series each of these
series represents a “possible” realization of the weather variables according to the present
weather climate. The variability in the various realizations thus reflects the current climate
uncertainty.

The set of these synthetic weather series can be considered as a “discrete” or “empirical”
probability distribution for the uncertainty in the precipitation and temperature, expressed as
the uncertainty in weather series simulated with the weather generator. Within GRADE this
uncertainty represents the uncertainty in the input for the rainfall-runoff models.

For the Rhine basin a set of 11 of such synthetic rainfall and temperature series is
constructed, compared to a set of 24 series for the Meuse.

Estimates of (extreme) discharges at Borgharen and/or Lobith (and in the event at other
locations along the rivers) are needed for return periods much longer than the time period for
which measurements are available. Therefore very long synthetic rainfall and temperature
series are used, rather than short measurement series. The synthetic rainfall and temperature
series are generated by means of a stochastic weather generator which uses a resampling
procedure of available historic (observed) rainfall and temperature data. In this way arbitrary
long time series of rainfall and temperature can be generated, and consequently also long
enough with respect to the return periods which are required. An important characteristic of
the method is that the statistical properties of the long synthetic series are consistent with
those of the historic data on which the synthetic series are based. For a more detailed
description of the background and construction of long synthetic rainfall and temperature
series and the associated uncertainties one is referred to Buishand and Brandsma (2001),
Leander et al. (2005), Buishand and Leander (2011), and Schmeits et al. (2014a,b).
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In first instance all available historic weather data can be used as the basis set for the
generation of a long synthetic time series of the weather variables. This would provide merely
one realization of a long synthetic series. A main source of uncertainty is the
representativeness of this basis set and the subsequent synthetic series. To quantify the
effect of this uncertainty on the resulting statistics of extreme discharges a resampling
method is followed. See Efron and Tibshirani (1993) for an introduction to resampling
techniques and the way such techniques can be used for the estimation of uncertainties in a
statistic derived from a data set.

In resampling (not to be confused with the nearest neighbor resampling mentioned above that
is used within the stochastic weather generator) an ensemble of replicates is constructed of
an ‘original’ observed data set. Each replicate is a subset of the original data set (actually a
sample taken from the original set to which an empirical probability distribution is assigned;
for this reason the replicate is usually called a resample). In the present case resamples are
constructed from the observed rainfall and temperature data set. Each resample serves as a
‘new’ basis set for the weather generator and for each resample a separate long synthetic
series is constructed. In the end this gives an ensemble of long synthetic rainfall and
temperature series. In GRADE these series serve as input for the rainfall-runoff models and in
this way climate uncertainty is imported in the modeling.

In the presently applied resampling a Jackknife procedure is followed for the construction of
an ensemble of basis sets. In this case blocks of consecutive observations are deleted. For
the Meuse basin these blocks are chosen of length three years. With an available data record
of length 72 years (within the time period 1930-2008), this leads to 24 resampled basis sets
for the weather generator, resulting in an ensemble of 24 generated synthetic weather data
sets for the uncertainty analysis of GRADE. In a similar way 11 long synthetic rainfall data
sets were derived for the Rhine basin (55 years of historic weather data and a block length of
five years in the Jackknife resampling). In the choice of the block length and/or ensemble size
a balance had to be found between accuracy in the representation of uncertainties in the
weather climate (promoting a block length as small as possible and an ensemble size as
large as possible) and the associated computational burden (ensemble size as small as
possible).

As already mentioned, estimates and uncertainties for extreme discharges at Lobith (Rhine)
and Borgharen (Meuse) are desired for return periods up to 10,000 years. Therefore the
length of the synthetic weather series should preferably be of this length (or even longer) as
well. The reference GRADE simulations consist of 50,000 years simulations for both the
Meuse and the Rhine. However, for the uncertainty analysis the length of the GRADE
simulations was limited to 20,000 years, due to the extensive computing time.

The “reference” GRADE simulations correspond to the case with the reference weather
generator series (which are based on the full set of historical precipitation and temperature
data), combined with the reference parameter set for the hydrological models (see Section
2.2). To improve the uncertainty estimates for the highest extremes (with return periods
between 250 and 100,000 years), use is made of Weissman’s method (Weissman, 1978).
This method is described in Section A.3 of Appendix A.
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2.2 Uncertainties in the HBV rainfall-runoff models
This section describes the origin and construction of the HBV parameter combinations.

Section summary

For both the Rhine and Meuse the uncertainty in the hydrological models is represented by
five different combinations of HBV-model parameters.

In preceding work these five combinations were derived within a joint calibration and
uncertainty analysis of the HBV models for the various sub-basins.

Due to the way these five combinations were selected (from a much larger set of parameter
combinations that satisfy the calibration criteria) they are not equally likely. In the uncertainty
analysis a different weight is therefore assigned to each of these five combinations. In the end
the five parameter combinations and their weight are then used as an (“empirical”) probability
distribution for the total uncertainty in the hydrological models.

An important activity in the set-up of the GRADE system was the calibration of the HBV
rainfall-runoff models for the various river (sub-) basins. In this calibration observed data of
the model’s input and output (such as rainfall, temperature, and discharges) was used to
derive estimates for a selected set of uncertain parameters in the HBV-models. Three criteria
were defined to quantify the quality of the models for reproducing the observed data and to
determine for which setting(s) of the parameters the best performance is found. A detailed
description of the set up and the results of the calibration of the HBV-models in the GRADE
systems for the Meuse can be found in Kramer et al. (2008). For the Rhine basins one is
referred to Winsemius et al. (2013) and Hegnauer and Van Verseveld (2013).

In the calibration of the HBV models a Generalized Uncertainty Estimation method (GLUE,
see Beven and Binley, 1992) was used. In this way the calibration of the models is actually
combined with an uncertainty assessment. As a result the final outcome of the calibration of
an HBV-model for a particular basin consists of a set of “behavioral” parameter combinations
rather than a single ‘deterministic’ estimate for the uncertain model parameters. A parameter
combination is called “behavioral” if the resulting model response satisfies the calibration
criteria. Elsewhere in this report (Section A.5 in Appendix A) it is described how to each
parameter combination a probability is assigned. At that moment the set of parameter
combinations can be considered as an empirical probability distribution for the parameters,
and as such a representation of the uncertainty in the parameters and thus in the HBV-
models. Apart from these parameters no other uncertainties were taken into account in the
HBV-models.

For a given state of the climate (represented by a member from the Weather Generator set)
the uncertainties in the output of the HBV-models are thus determined by the uncertainties in
the model parameters. Due to the complexity of the HBV-models the uncertainty in their
response cannot be obtained in analytical form. To obtain quantitative estimates for the model
predictions one cannot do much better than to evaluate the model for all (or a subset, see
below) behavioral parameter combinations and in this way (again) produce an empirical
distribution of the output. From this distribution additional measures for the representation of
the uncertainty in the output can be derived such as a mean, spread, quantiles, or a
confidence interval.
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For individual (sub-) basins of the Rhine or Meuse the number of behavioral parameter
combinations varied from about ten to several hundred. For the river basin as a whole,
parameters from the individual sub-basins is combined to obtain a single parameter
combination. For the Meuse 15 of such sub-basins are discriminated within the hydrological
modeling, while for the Rhine in total 148 sub-basins are defined for the 15 major sub-basins.
See Figure 2.2.1 (Meuse) and Figure 2.2.2 (Rhine).

Due to the large number of sub-basins the total number of behavioral combinations for the
whole river basin (especially for the Rhine) becomes extremely large. In fact, much too large
to allow an uncertainty assessment where the model is evaluated for all possible
combinations of the behavioral parameter combinations of the sub-basins.

Therefore the number of parameter combinations for which in an uncertainty analysis the
model is evaluated must be substantially reduced. This in particular is the case in an
uncertainty analysis where 20,000 years long synthetic series are used.

Selection procedures have been applied to reduce the number of behavioral parameter
combinations for the Rhine to form a representative and for computationally manageable
subset. In the end for each major sub-basin of the Rhine the number of behavioral parameter
combinations for that sub-basin was reduced to five. This was done in a way that these
selected combinations reasonably cover the uncertainty range of the HBV model in predicting
extremes and thus provide a representative subset. See Winsemius et al. (2013) for further
details.

Figure 2.2.1 Sub-basins (15) in the hydrological modelling of the Meuse
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Figure 2.2.2 Major sub-basins (15) and sub-basins (148) in the hydrological modelling of the Rhine
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The period for which the model’s calibration took place is 1985-2006. For each parameter
set the annual maxima were derived and subjected to an empirical frequency analysis.
For a return period of 10 years the corresponding discharge extreme (at a sub-basin’s
downstream location) was selected. From the empirical distribution of these ‘extreme’
discharges (as many as the number of behavioral HBV-parameter combinations) the 5%,
25%, 50%, 75%, and 95% quantiles were determined and the corresponding HBV
parameter combination selected.

To investigate the sensitivity for the chosen return period, also for the discharges of the 2
and 5 year return period selection procedure was performed. However, it was found that
the return period had no significant influence on the selected parameter sets and thus the
return period of 10 years was used in the remainder. For a more complete description of
this selection procedure one is referred to Winsemius et al. (2013), and Hegnauer and
Van Verseveld (2013).

Finally five representative parameter combinations are constructed for each major sub-
basin. For the whole Rhine basin, consisting of 15 major sub-basins, combinations of
these representative parameter sets should be made. This would result in 515 possible
parameter combinations for the whole Rhine basin. This number of possibilities is still
much too large and a further reduction is needed. This further reduction is achieved by
“quantile-wise combination” of the parameter sets of the sub-basins. Effectively this
means that for the 5%-parameter combination for the whole Rhine basin the 5%-
parameter sets from all 15 major sub-basins are used. The same procedure is followed
for the 25%-, 50%-, 75%- and 95%-parameter combinations.

With this procedure it is implicitly assumed that the parameter combinations of the major
sub-basins are fully (or at least to a high extent) dependent. This assumption is not
unreasonable as in the calibration/GLUE procedure the selection of behavioral
combinations was first done for the upstream HBV sub-basins. Subsequently the results
for these upstream basins were used in the construction and selection of the behavioral
parameter combinations of next downstream sub-basins.

For the Meuse a slightly different approach was followed to select and reduce the number
of behavioral parameter combinations to five. In this case the selection is based on the
simulated once in 100 year discharges at Borgharen. These were determined for a
subset of 500 (out of 2949) behavioral HBV-parameter combinations for the Meuse sub-
basin upstream of Liège. In this case simulations of length 3000 years were carried out
with synthetically generated rainfall and temperature series. From the distribution of the
Borgharen discharges for the 100 year return period, the 5, 25, 50, 75, and 95% quantiles
were again determined and the corresponding HBV-parameter combinations selected.
For further details see Kramer et al. (2008) and Ogink (2012).

2.3 Uncertainties in the hydrodynamic SOBEK models
In this section, the uncertainties in the hydrodynamic models are discussed.
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Section summary

In the present uncertainty analysis no extensive uncertainty analysis was performed for
hydrodynamic SOBEK models.

Instead, for the Rhine a comparison is made of frequency curves with and without flooding
taken into account.

For the SOBEK model with flooding, a basic sensitivity (rather than uncertainty) analysis is
presented to get an impression of the effects of – and sensitivities for – uncertain parameters
in the modeling of flooding mechanisms.

SOBEK is used as hydrodynamic model for the propagation of the flow along the main river
system. For reasons of computation time, merely time intervals of about one month around
the downstream discharge peaks (at Lobith or Borgharen) according to HBV are simulated.
SOBEK is thus used to improve the HBV-estimates of discharge peaks and in this way obtain
more accurate discharge frequency curves.

In calibration uncertain parameters were varied until model predictions agree as good as
possible with measured water levels and/or discharges. The calibration of the SOBEK-models
was not combined with a GLUE procedure (as done for the hydrological HBV-models for the
sub-basins) or any other form of uncertainty analysis. As a result a quantitative representation
of the uncertainty in the parameters and/or the uncertainty in model predictions is not
available. This is the main reason that in the present approach uncertainties in the
hydrodynamic models have not been taken into account. As long as effects of flooding or dike
breaks are absent or relatively small this is expected not to be a serious omission. The
reason is that the total uncertainty in the predictions of the hydrodynamic models is in excess
due to uncertainties in the model’s input in the form of the lateral inflows produced by the
hydrological models of the contributing sub-basins. As a matter of the sound
physical/conceptual basis of the model the ‘intrinsic’ uncertainty in the models will be much
smaller, and in the end (after combination of all uncertainty sources) hardly contribute to the
total uncertainty.

In the hydraulic modelling of flows in the main river system SOBEK models are used in
twofold. First a SOBEK version is used where (effects of) flooding, overflows, inundation, and
or dike breaks are not included. This is not a serious “omission” for the Rhine and Meuse as
long as flow conditions are simulated with return periods less than (approximately) 50 year
(see Figure 4.4.1). However, for more extreme flow conditions overflow will take place and in
particular in the German part of the Rhine relatively large effects on peak discharges are
expected (Lammersen, 2004; IKSR, 2012).
To deal with this a second SOBEK model is applied as well, which takes into account the
effects of flooding. Through comparison of the results of both SOBEK models the effect of
flooding can be quantified.

Despite a sound physical basis of the hydrodynamic SOBEK models, several uncertainties
remain. A relevant source of uncertainty is the model’s schematisation (i.e. representation of
the model’s topography such as the river bed and flood plains). Examples of other identified
uncertainties are roughness of the river bed and/or its floodplains (represented by friction
coefficients) and uncertainties in the formulation of the effects of hydraulic structures.
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In case also flooding is included in the modelling, other uncertainties become relevant. These
refer to model parameters such as thresholds or dike heights at which flooding will occur,
parameters determining when and where dikes may break, breach lengths, overflow/outflow
velocities, area and/or volumes of storage areas, etc. In preceding studies the SOBEK
models for the Rhine and the Meuse have been extensively calibrated (see e.g. Meijer, 2009).

The modelling of flooding involves additional parameters which are also uncertain. For the
Rhine systematic variations of a set of such ‘flooding parameters’ have been made. Through
GRADE frequency curves, the sensitivity of extreme Rhine discharges for the flooding
mechanisms is established. This should be regarded as a sensitivity analysis to demonstrate
the sensitivity to variations in the flooding parameters rather than a quantitative uncertainty
analysis.

For the Meuse little is known about flooding and no model that includes flooding is (yet)
available. Therefore neither an uncertainty nor a sensitivity analysis was carried out.
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3 Method of the GRADE uncertainty analysis

In Chapter 2 the representation of the uncertainties in the main GRADE components has
been outlined. In this chapter it is described how the uncertainties within the components are
combined to obtain the ‘total’ uncertainty of the GRADE simulations of some ‘target’ variable.
Here the focus is on extreme discharges associated to given return periods, or more
generally a frequency-discharge curve which relates (extreme) discharges to corresponding
return periods.

The main steps in the GRADE uncertainty analysis are listed below. In Appendix A these
steps are described in much more detail together with the algorithms and mathematical
formulas that are used to obtain the uncertainty estimates.

For the Rhine, the results of this uncertainty analysis will be presented in threefold: for the
discharges at Lobith computed with the hydrological HBV model, secondly for the
corresponding discharges based on the SOBEK model without flooding (via regression) and,
thirdly, for the SOBEK model with flooding (also via regression).

A similar approach is followed for the Meuse, but now the uncertainty analysis is ‘merely’
presented in twofold since for the Meuse flooding is presently not taken into account.

3.1 The uncertainty matrix
As outlined in Chapter 2 the uncertainty in the climate is represented by a set of (11 or
24) different Weather Generator (WG) simulations and the uncertainty in the hydrological
modeling by the set of five different HBV parameter combinations. Both sets represent the
empirical probability distributions. The ‘overall’ uncertainty in the GRADE simulations is
then governed by the set of mutual combinations of the elements of both sets. These
combinations form an Uncertainty Matrix, which is illustrated in Table 3.1. The entries of
the matrix represent a ‘target’ variable Q(i,j). The target is computed with GRADE and
represents the discharge that corresponds to a given return period. The entry Q(i,j) is then
the value of Q obtained when GRADE is run for the i-th weather generator member, and
the j-th member of the HBV-parameter combinations.

Table 3.1 Illustration of the GRADE uncertainty matrix
HBV ►
WG ▼

Par. Comb
5%

Par. Comb
25%

Par. Comb
50%

Par. Comb
75%

Par. Comb
95%

WG    1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5)
WG    2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5)
WG    3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5)
WG    4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5)
WG    5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5)
WG    6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5)
WG    7 Q(7,1) Q(7,2) Q(7,3) Q(7,4) Q(7,5)
WG    8 Q(8,1) Q(8,2) Q(8,3) Q(8,4) Q(8,5)
WG    9 Q(9,1) Q(9,2) Q(9,3) Q(9,4) Q(9,5)
WG   10 Q(10,1) Q(10,2) Q(10,3) Q(10,4) Q(10,5)
WG   11 Q(11,1) Q(11,2) Q(11,3) Q(11,4) Q(11,5)
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3.2 Computation of the uncertainty matrix
Every entry Q(i,j) in the uncertainty matrix involves a 20,000 year GRADE simulation. The
Q(i,j) typically represents the maximum discharge of the Rhine at Lobith (or at Borgharen for
the Meuse) that corresponds to a given return period.

3.3 Variance reduction using Weissman’s method
In addition, Weissman’s procedure (Weissman, 1978) is applied to improve the estimates of
discharges corresponding to return periods larger than 250 year (see Appendix A, Section
A.3 for details).

3.4 Quantifying the uncertainties in the climate
For each HBV-parameter combination the corresponding column in the Uncertainty Matrix
represents the uncertainty in the target variable Q due to the uncertainty in the climate
represented by the set of Weather Generator simulations (See Table 3.2). From the Q(i,j)-
entries in each column a (marginal or conditional) estimate of the Q and its uncertainty can be
derived. This provides a quantitative measure for solely the weather generator (i.e. climate)
uncertainty. Comparing the results column wise (i.e. for each HBV parameter combination)
gives an impression of the sensitivity for the parameter setting in the hydrological models.

Table 3.2 Column (marked in red) in the Uncertainty Matrix for computation of a marginal,
climate induced, estimate and uncertainty of the target variable Q

HBV ►
WG ▼

Par. Comb
5%

Par. Comb
25%

Par. Comb
50%

Par. Comb
75%

Par. Comb
95%

WG    1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5)
WG    2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5)
WG    3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5)
WG    4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5)
WG    5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5)
WG    6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5)
WG    7 Q(7,1) Q(7,2) Q(7,3) Q(7,4) Q(7,5)
WG    8 Q(8,1) Q(8,2) Q(8,3) Q(8,4) Q(8,5)
WG    9 Q(9,1) Q(9,2) Q(9,3) Q(9,4) Q(9,5)
WG   10 Q(10,1) Q(10,2) Q(10,3) Q(10,4) Q(10,5)
WG   11 Q(11,1) Q(11,2) Q(11,3) Q(11,4) Q(11,5)

3.5 Quantifying the uncertainties in the hydrological models
Similar to the description in Section 3.4 the Uncertainty Matrix can be evaluated along the
rows. In this case, the estimate and uncertainty of the target variable Q are derived for a
given state of the climate (represented by a WG member), see Table 3.3. These marginal
estimates (separately computed for each WG-row) quantify the uncertainty in Q due to (the
uncertainties in) the hydrological models. Here the dependency or sensitivity for the various
WG-members can be evaluated by comparing the different rows. In summary, from the row
wise and column wise (as described in Section 3.4) evaluations, the contributions to the
uncertainties in Q, from the climate on one hand, and the hydrological modeling on the other,
can be compared and ranked.
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Table 3.3 Row (marked in red) in the Uncertainty Matrix for computation of a marginal, hydrological model
induced, estimate and uncertainty of the target variable Q

HBV ►
WG ▼

Par. Comb
5%

Par. Comb
25%

Par. Comb
50%

Par. Comb
75%

Par. Comb
95%

WG    1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5)
WG    2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5)
WG    3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5)
WG    4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5)
WG    5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5)
WG    6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5)
WG    7 Q(7,1) Q(7,2) Q(7,3) Q(7,4) Q(7,5)
WG    8 Q(8,1) Q(8,2) Q(8,3) Q(8,4) Q(8,5)
WG    9 Q(9,1) Q(9,2) Q(9,3) Q(9,4) Q(9,5)
WG   10 Q(10,1) Q(10,2) Q(10,3) Q(10,4) Q(10,5)
WG   11 Q(11,1) Q(11,2) Q(11,3) Q(11,4) Q(11,5)

3.6 Combination of the uncertainties in the climate and the hydrological models
The differences in Q along the columns and rows of the Uncertainty Matrix as described
above in Sections 3.4 and 3.5 are combined to obtain an overall uncertainty estimate for the
target variable Q.
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4 GRADE uncertainty analysis for discharge extremes for the
Rhine at Lobith

The uncertainty analysis described in Chapter 3 has been applied to the GRADE system
developed for the Rhine and the results are presented in this chapter. This uncertainty
analysis fully concentrates on the extreme discharges at Lobith, at the downstream boundary
of the GRADE model for the Rhine. From the GRADE simulations annual maximum values of
the Lobith discharges were selected. These were then used in an analysis to construct the
Lobith discharge frequency curves. In these curves annual maximum values are plotted
versus the associated return period. Of major importance is the uncertainty in the GRADE
discharge estimates at Lobith for return periods up to 10,000 years or longer

As mentioned in the previous chapter, the uncertainty analysis for discharge frequency curves
at Lobith is carried out in threefold. In Section 4.1 the results are presented for the case that
no hydrodynamic SOBEK modeling is used (i.e. the discharges according to the HBV
hydrological model). In Section 4.2 the uncertainties in, these discharge frequency curves are
again presented but now with SOBEK as the hydrodynamic model for an improved simulation
of the flood propagation along the main river. With this SOBEK model possible effects of
overflows are not yet taken into account, however. In Section 4.3 the results of the uncertainty
analysis are presented for the SOBEK version where the effects of flooding are also modeled.

In these uncertainty analyses no uncertainties in the SOBEK models have been taken into
account. Some effects of variations of uncertain parameters in the modeling of flooding have
been established by Udo and Termes (2013). The results of their sensitivity analysis (rather
than uncertainty analysis) are summarized in Section 4.4 and provide important evidence for
the significance of flooding induced effects on the Lobith discharge frequency curve.

4.1 HBV estimates and uncertainties of extreme discharges at Lobith
In this section the results are presented of the GRADE uncertainty analysis for extreme
discharges at Lobith as computed with the hydrological HBV-models in the GRADE system
for the Rhine. The GRADE simulations covered a time period of 20,000 years. From the
generated/simulated time series the annual maxima at Lobith were selected, and from this
selection the annual extreme Q(RP) associated to various return periods RP was determined
empirically for return periods less or equal to 250 year, and with Weissman’s procedure for
longer return periods.
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Below, the results of the uncertainty analysis are displayed by means of the following tables
and figures:

• Table 4.1.1 presents the Uncertainty Matrix (UM) for the annual maximum discharges
at Lobith with return period (RP) of 1250 years. These are thus the GRADE results for
every combination of the climate and a HBV-parameter set.

• Similarly Table 4.1.2 shows this Uncertainty Matrix for RP = 4000 years.

• In Table 4.1.3 estimates of the annual maximum discharge at Lobith are listed for a
set of representative RPs in the range of 5 to 10.000 years. The uncertainty in these
estimates is presented as a spread (i.e. the standard deviation) and as a 95%
confidence interval.

• In graphical form the dependency of Q(RP) on the return period is shown in Figure
4.1.1. In this probability plot (or frequency curve) the bounds of the 95% confidence
interval for the Q(RP) are also plotted. Two confidence intervals are: (i) for the overall
uncertainty in the Q(RP), i.e. the combined uncertainties of both Weather Generator
(i.e. climate) and the hydrological HBV-models, and (ii) for the uncertainty due to
‘solely’ the uncertainty in the hydrological models.

Table 4.1.1 GRADE (without SOBEK) Uncertainty Matrix for the yearly maximum discharge at Lobith (Rhine) for
return period RP=1250 years, according to the Weather Generator plus the HBV models.

      HBV ►
WG▼

5% Par.
Comb.

25% Par.
Comb.

50% Par.
Comb.

75% Par.
Comb.

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 16673 16218 16702 16999 16354 16629 295
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

16789
17033
17363
16898
17076
16648
16954
16151
16148
16873
16885

16278
16612
16808
16348
16602
16177
16433
15709
15780
16418
16388

16886
17122
17359
16956
17131
16685
17002
16207
16210
17006
16965

17119
17342
17639
17127
17396
16905
17213
16467
16517
17215
17179

16402
16707
16949
16462
16721
16272
16551
15850
15887
16530
16503

16745
17009
17260
16799
17028
16576
16871
16117
16153
16861
16829

330
286
318
313
306
285
307
288
279
315
311

Mean WG
(mWG)

16802 16323 16866 17102 16440

Spread WG
(sWG)

1113 1008 1100 1065 1008

Overall Mean (m): 16750 [m3/s] Overall Standard Deviation (s): 1102 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 1250 years: (14590, 18910)   [m3/s]
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Table 4.1.2 GRADE (without SOBEK) Uncertainty Matrix for the yearly maximum discharge at Lobith (Rhine) for
return period RP=4000 years, according to the Weather Generator plus the HBV models.

      HBV ►
WG▼

5% Par.
Comb

25% Par.
Comb

50% Par.
Comb

75% Par.
Comb

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 18033 17473 18089 18382 17676 17975 343
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

18262
18371
18935
18412
18630
17947
18498
17352
17331
18222
18364

17689
17962
18223
17694
18062
17445
17832
16834
16924
17734
17780

18481
18522
18837
18476
18635
17970
18631
17409
17459
18506
18478

18644
18697
19133
18515
18955
18154
18703
17657
17762
18589
18627

17860
18030
18409
17801
18166
17507
17971
17044
17084
17813
17901

18253
18370
18732
18219
18534
17841
18377
17298
17366
18246
18279

386
298
349
362
347
287
371
309
316
369
346

Mean WG
(mWG)

18211 17653 18309 18494 17780

Spread WG
(sWG)

1494 1310 1448 1384 1267

Overall Mean (m): 18138 [m3/s] Overall Standard deviation (s): 1421 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 4000 years: (15350, 20920)   [m3/s]

Table 4.1.3 GRADE (without SOBEK) estimates for the discharge at Lobith (Rhine) and its uncertainty for return
periods between 5 and 10,000 years. The listed discharges and uncertainty measures have been
rounded off to the nearest multiple of 10.

Return
Period
[years]

Estimate of
( )Max

LobithQ RP
[m3/s]

Spread in
( )Max

LobithQ RP
[m3/s]

Symmetric 95% confidence interval
for ( )Max

LobithQ RP [m3/s]

Lower Bound Upper Bound
5 8430 480 7490 9370

10 9800 550 8730 10880
20 11020 630 9790 12260
50 12480 760 10990 13870

100 13510 830 11890 13510
250 14830 760 13340 16310
500 15660 880 13920 17390

1250 16750 1100 14590 18910
4000 18140 1420 15350 20920

10000 19230 1690 15920 22540
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Figure 4.1.1 Frequency curves for extreme discharges of the Rhine at Lobith, according to GRADE (without
SOBEK). The solid curve in blue represents the estimate of Q(RP) for the various return periods RP.
The lower and upper bounds of the 95% confidence interval are denoted by the red coloured dashed
curves. In the computation of these curves the uncertainty in both the climate and in the HBV-models
are taken into account. The curves in black give the Q(RP) and the confidence intervals for “merely”
the uncertainty in the HBV-models.

Main conclusions from the tables and figures:

For every return period the total uncertainty in the corresponding GRADE estimate of the
extreme discharge ( )Q RP  of the Rhine at Lobith is dominated by the climate uncertainty, i.e.
the uncertainty in the rainfall and temperature. Moreover, the larger the RP the larger the
relative contribution of the uncertainty in the climate to the total uncertainty in ( )Q RP .  As a
result the uncertainty in ( )Q RP  is for high return periods also hardly sensitive for weights
assigned to the five HBV-model parameter combinations.

Below, a more detailed analysis and discussion of the tables, figures and methods used is
given.

As described in Section 3.3 a Weissman ‘smoothing’ was applied as variance reduction
technique for improving the estimates of (the mean and spread of) discharges for long return
periods. The Weissman recipe was applied to the subset of extremes with RP>250 years. In
this way the values for RP>250 in the tables are Weissman estimates rather than ‘empirical’
values derived directly from the GRADE simulations.
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In the last two columns of the UM the results of the evaluation of the uncertainty in the HBV
models (i.e. evaluated over the rows of the UM) can be found in the form of a mean (mHBV)
and a spread (sHBV). These are computed according to:

5

1
( ) ( , )HBV jj

m i w Q i j
=

= ×å (4.1.1a)

( )5 2

1
( ) ( , ) ( )HBV j HBVj

s i w Q i j m i
=

= × -å (4.1.1b)

The wj in these equations is the weight assigned to the j-th HBV parameter set.

Similarly, the mean (mWG) and spread (sWG) that are obtained from the uncertainty in the
climate (i.e. evaluated over the columns) are listed in the second and third last rows of the
tables respectively. These are computed according to the formulas:

1
1

( ) ( , )N
WG N i

m j Q i j
=

= å (4.1.2a)

( )
2

1
1

( ) ( , ) ( )NN
WG WGN i

s j Q i j m j-
=

= × -å (4.1.2b)

N is the number of synthetically generated weather series using a Jackknife resampling
procedure. In the present case N=11. For the theoretical background of these equations one
is referred to Appendix A.

In the last row but one of the tables the mean (m) and spread (s) after the combination of the
uncertainties in the climate and in the hydrological modelling are presented (in bold). This
overall mean and standard deviation are calculated from the mean and standard deviation for
each HBV parameter set, taking into account the weights wj (see Appendix A):

( )5
WG1 jj

m w m j
=

= ×å (4.1.3a)

( ) ( )25 5 2
WG WG1 1j jj j

s w m j m w s j
= =

= × - + ×é ùë ûå å (4.1.3b)

The spread of Equation 4.1.3b gives the overall uncertainty estimate for a specific ( )Q RP .
The symmetric 95% confidence interval that can be derived for ( )Q RP  from the mean and
spread (assuming a normal distribution) is listed in the last row of the tables.
Table 4.1.1, shows that the contribution of the uncertainty in the climate to the spread in
Q(1250) is considerably larger than the contribution of the uncertainty in the hydrological
models. In fact, the weighted average of the spreads listed in the last row (representing the
average climate induced uncertainty) is 1059 m3/s and is almost 3.5 times as large as the
weighted average of 303 m3/s of the spreads sHBV(i) listed in the last columns (representing
the averaged HBV-parameter induced uncertainty). The spread in the overall estimate of

( )Q RP  amounts 1102 m3/s and is thus only slightly larger than the average of the climate
induced spreads.

The overall spread of 1102 m3/s in Q(1250) of 16,750 m3/s corresponds to a relative spread
of 6.6%.
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The dominance of the uncertainty in the climate has also the consequence that the overall
estimate for ( )Q RP  and its spread is not very sensitive for the weights assigned to the five
HBV parameter combinations. For example (and again for RP=1250 years), if uniform weights
would have been used a value of 16,707 m3/s would be found for ( )Q RP  (instead of 16,750
m3/s) and 1098 m3/s for the overall spread in this estimate.

The Uncertainty Matrix (UM) shows that ( )Q RP  does not monotonically increase along the
rows of the UM. Such a monotonic increase would, however, be expected from the selection
criterion used in the GLUE analysis to select the present five representatives out of all
behavioural HBV-parameter combinations. In this criterion the representatives were
associated to quantiles in a set of extreme discharges, corresponding to a 10 year return
period, and computed with observed weather data as input for each of the major sub-basins
of the Rhine. For the return period of 1250 years, and synthetic rather than observed weather
data, the monotonic dependency of the HBV-parameter sets and the extreme discharge does
not persist. One reason may be that in the selection procedure extremes of a much longer
return period should have been adopted. Further, the selection of the representatives was
done for each major sub-basin of the Rhine separately. In second instance “quantile wise”
combinations were made to reduce the number of parameter sets to five for the whole river
basin as well (see Section 2.2). It may be possible that for individual sub-basins the ordering
is preserved for higher return periods, but is lost in the quantile-wise combination.
This remains a hypothesis since no Uncertainty Matrices were made (neither for RP=1250
years nor for other return periods significantly higher than 10 years) for extreme discharges in
the separate major sub-basins of the Rhine to verify when and where monotony is lost.

The aforementioned findings also tend to hold for the Uncertainty Matrix for RP=4000 years
that is listed in Table 4.1.2. Q(4000) is estimated as 18,138 m3/s. The spread in this estimate
amounts 1421 m3/s. The relative spread of 7.8% is somewhat larger than the one for
RP=1250 years (6.6%). The total uncertainty in ( )Q RP  is again dominated by the uncertainty
in the Weather Generator (i.e. climate). The contributions from HBV and the Weather
Generator are respectively 337 and 1380 m3/s. The uncertainty induced by the climate is then
4 times as large as the uncertainty arising from the hydrological models.

The increase of the relative uncertainty with increasing RP can also be recognised from the
spreads and confidence intervals for other return periods in Table 4.1.3. For a return period of
10,000 years the relative spread increases to 8.8%.

In graphical form the dependency of ( )Q RP  on RP  is shown in Figure 4.1.1 through a return
period plot. This plot highly confirms the findings so far extracted from the tables.
The blue solid curve in this figure shows the estimate of ( )Q RP  after combining results for
the climate and the HBV-parameter combinations within the UM. The overall 95% (symmetric)
confidence band is marked by the two dashed red curves.

In the same way the black curves in Figure 4.1.1 represent ( )Q RP  and its 95% confidence
band when only the uncertainty in the HBV-models is taken into account. In this case the
20,000-year reference Weather Generator (WG) data was used in combination with the five
HBV-variations. The results of the uncertainty analysis are then as listed in the upper row in
the UM (marked in green in the UM of the Table 4.1.1 and Table 4.1.2). The frequency curve
derived from the reference WG data (black solid curve in Figure 4.1.1) hardly deviates from
the one averaged over the various WG-variations (blue solid curve).
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The width of the confidence band marked by the two black dashed lines is substantially
smaller than the overall confidence band. At the same time Figure 4.1.1 also clearly indicates
that for increasing RP the width of the overall confidence band grows more than the width of
the confidence band representing the uncertainty in the HBV models. This means that the
larger the RP the larger the relative contribution of the uncertainty in the climate to the total
uncertainty.

4.2 SOBEK estimates and uncertainties of extreme Lobith discharges (without flooding)
The uncertainty analysis described in Section 4.1 was repeated but now using the Lobith
peak discharges according to SOBEK. In this case a SOBEK-version is used in which effects
of flooding in the German part of the river are not included.

The starting point of the analysis is again the Uncertainty Matrix with in the entries the
SOBEK computed annual discharge extremes for some return period of interest. Note that
because of the large computation time of SOBEK these SOBEK extremes have not been
generated by re-computing all discharge events that correspond with the annual maxima
computed by HBV. In fact, SOBEK discharge extremes were only generated for the 50,000-
year reference GRADE simulation (i.e. the reference WG simulation combined with the
reference (i.e. 50%)HBV parameter set). This provided 50,000 (HBV, SOBEK)-pairs of annual
extremes.
A regression was applied to obtain an analytical formula that, for a given HBV discharge
extreme, provides an estimate for the corresponding value that would be computed with
SOBEK. This regression is described and illustrated in Appendix B.

The regression relation is thus derived from the 50,000-year reference GRADE simulation
(which provides both the HBV and SOBEK annual maxima). It is assumed, however, that this
regression also provides an accurate description for the relation of the HBV and SOBEK
discharges for all other combinations of the Weather Generator and HBV-parameters. The
regression is thus applied to every entry in the HBV uncertainty matrix (as listed in Section
4.1) to obtain the SOBEK uncertainty matrix (presented in Table 4.4).

The results are presented in the Tables 4.4 to 4.6 and Figure 4.2 in a similar way as in the
preceding section. The same conclusions can be derived as in the previous section because
of the almost linear relationship between the HBV and corresponding SOBEK discharges.
This can be observed from the (red) regression curve shown in Figure B.1.1 in Appendix B.
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Table 4.2.1 Uncertainty Matrix for the discharge of the Rhine at Lobith for return period RP=1250 years, according
to GRADE (SOBEK without flooding)

      HBV ►
WG▼

5% Par.
Comb

25% Par.
Comb

50% Par.
Comb

75% Par.
Comb

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 16085 15612 16115 16426 15752 16039 308
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

16205
16460
16813
16323
16510
16059
16376
15538
15536
16299
16306

15673
16018
16231
15752
16012
15568
15833
15082
15157
15821
15787

16304
16554
16811
16384
16568
16098
16425
15595
15602
16436
16390

16551
16787
17107
16566
16847
16327
16649
15866
15920
16657
16615

15800
16118
16378
15870
16137
15666
15956
15226
15267
15939
15907

16158
16435
16707
16222
16460
15984
16290
15503
15542
16285
16248

344
301
336
326
322
298
320
298
289
330
326

Mean WG
(mWG)

16220 15721 16288 16536 15842

Spread WG
(sWG)

1168 1050 1156 1125 1054

Overall Mean (m): 16167 [m3/s] Overall Standard Deviation (s): 1156 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 1250 years: (13900, 18430)   [m3/s]

Table 4.2.2 Uncertainty Matrix for the discharge of the Rhine at Lobith for return period RP=4000 years, according
to GRADE (SOBEK without flooding)

       HBV ►
WG▼

5% Par.
Comb

25% Par.
Comb

50% Par.
Comb

75% Par.
Comb

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 17485 16895 17542 17858 17106 17424 364
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

17721
17847
18450
17886
18120
17397
17968
16762
16743
17697
17831

17112
17404
17693
17133
17511
16862
17264
16219
16317
17171
17209

17945
18006
18353
17955
18130
17422
18103
16821
16876
17988
17952

18129
18199
18674
18010
18472
17622
18195
17087
17198
18090
18118

17288
17480
17889
17247
17626
16930
17412
16433
16480
17260
17340

17708
17845
18240
17689
18019
17286
17841
16706
16779
17718
17743

410
322
376
383
372
307
393
326
333
393
371

WG Mean 17675 17081 17777 17981 17217
WG Spread 1586 1382 1538 1480 1345

Overall Mean: 17598 [m3/s] Overall Standard deviation: 1510 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 4000 years: (14640, 20560)   [m3/s]
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Table 4.2.3 GRADE (SOBEK without flooding) estimates for the discharge at Lobith (Rhine) and its uncertainty for
return periods between 5 and 10,000 years. The listed discharges and uncertainty measures have been
rounded off to the nearest multiple of 10

Return
Period
[years]

Estimate of
( )Max

LobithQ RP
[m3/s]

Spread in
( )Max

LobithQ RP
[m3/s]

Symmetric 95% confidence interval
for ( )Max

LobithQ RP [m3/s]

Lower Bound Upper Bound
5 8080 440 7210 8950

10 9350 510 8350 10350
20 10490 590 9330 11660
50 11880 730 10450 13310

100 12880 810 11290 14460
250 14180 760 12690 15680
500 15040 910 12250 16820

1250 16170 1160 13900 18430
4000 17600 1510 14640 20560

10000 18720 1810 15190 22260

Figure 4.2.1 Frequency curve for extreme discharges of the Rhine at Lobith, according to GRADE (SOBEK
without flooding). The solid curve in blue represents the estimate of Q(RP) for the various return
periods RP. The lower and upper bounds of the 95% confidence interval are denoted by the red
coloured dashed curves. In the computation of these curves the uncertainty in both the climate and
in the HBV-models are taken into account. The curves in black give the Q(RP) and the confidence
intervals for “merely” the uncertainty in the HBV-models
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4.3 SOBEK estimates and uncertainties of extreme Lobith discharges (with flooding)
In this section the results of the GRADE uncertainty analysis are presented for the case that
the Lobith peak discharges are again computed with SOBEK but now with the version in
which effects of flooding are also taken into account.

Just as in Section 4.2, a regression formula was applied to convert the HBV computed values
of the Lobith discharge extremes to a corresponding SOBEK(+flooding) value. This
regression is described and illustrated in Appendix B, see Figure B.2.1. This figure shows that
effects of flooding become notable for discharges greater than about 12,000 m3/s. According
to GRADE/SOBEK this corresponds to a return period of about 50 year.

The results of the subsequent uncertainty analysis can be found below, and are summarised
by means of similar tables and figures as were presented in the preceding sections. From
these results similar conclusions can be derived:
For discharges less than (about) 12,000 m3/s (and correspondingly return periods less than
about 50 year) the present extreme Lobith discharges will virtually be the same as those for
the SOBEK model without flooding (and as presented in Section 4.2).
For long(er) return periods the estimates of the ( )Q RP  are now substantially smaller,
however. At the same time the uncertainties in these estimates are less as well.

From a “mathematical” viewpoint the reason of this reduction can be explained from the
relation between the SOBEK with and without flooding computed discharges. This relation is
highly linear as can be seen from Figure B.3.2 in Appendix B. The slope of the curve is less
than one which explains the smaller ( )Q RP  that are now found. This slope also determines
the ratio of the uncertainties in these estimates, and for this reason also a much smaller
spread and width of the confidence intervals are now found.

From a physical viewpoint it can be argued that the reduction of ( )Q RP  and its uncertainty
will be present as soon as a certain discharge threshold for flooding is exceeded. The volume
available for storage of the flooded water will be that large that it highly limits the variability of
the discharge and the maxima occurring at Lobith. At the same time flooded volumes that
reflow into the river will have effects at the Lobith discharge only long after the time epoch of
the maxima.
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Table 4.3.1 Uncertainty Matrix for the discharge of the Rhine at Lobith for return period RP=1250 years, according
to GRADE (SOBEK with flooding)

      HBV ►
WG▼

5% Par.
Comb.

25% Par.
Comb.

50% Par.
Comb.

75% Par.
Comb.

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 14196 14022 14209 14309 14080 14177 108
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

14237
14316
14420
14273
14322
14181
14303
14004
14003
14243
14269

14049
14178
14227
14056
14158
14006
14110
13820
13845
14088
14094

14282
14347
14409
14290
14336
14193
14327
14028
14025
14303
14297

14350
14413
14498
14338
14426
14268
14383
14124
14142
14363
14365

14102
14208
14280
14101
14196
14041
14154
13890
13898
14126
14134

14222
14307
14377
14225
14302
14151
14269
13989
13999
14245
14247

119
93
103
116
103
103
110
115
112
111
107

Mean WG
(mWG)

14234 14057 14258 14334 14103

Spread WG
(sWG)

389 384 379 345 365

Overall Mean (m): 14212 [m3/s] Overall Standard deviation (s): 385 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 1250 years: (13460, 14970)   [m3/s]

Table 4.3.2  Uncertainty Matrix for the discharge of the Rhine at Lobith for return period RP=4000 years, according
to GRADE (SOBEK with flooding)

      HBV ►
WG▼

5% Par.
Comb.

25% Par.
Comb.

50% Par.
Comb.

75% Par.
Comb.

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 14788 14621 14814 14868 14701 14769 94
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11

14875
14845
15022
14915
14952
14738
14962
14586
14575
14784
14895

14737
14777
14818
14676
14811
14620
14764
14425
14447
14684
14754

14983
14898
14958
14926
14928
14736
15032
14603
14625
14918
14931

14967
14912
15024
14873
15013
14764
14971
14653
14694
14879
14932

14802
14774
14878
14701
14817
14618
14802
14522
14521
14683
14775

14892
14855
14939
14825
14912
14702
14920
14566
14588
14815
14869

102
 61
 79
106
81
 63
109
85
93
102
80

Mean WG
(mWG)

14832 14683 14867 14880 14717

Spread WG
(sWG)

446 409 436 378 362

Overall Mean (m): 14807 [m3/s] Overall Standard Deviation (s): 414 [m3/s]

95% symmetric confidence interval Max

LobithQ  for return period 4000 years: (14000, 15620)   [m3/s]



GRADE Uncertainty Analysis

1209424-004-ZWS-0003, 7 July 2014, final

28 of 65

Table 4.3.3 GRADE (SOBEK with flooding) estimates for the discharge at Lobith (Rhine) and its uncertainty for
return periods between 5 and 10,000 years. The listed discharges and uncertainty measures have
been rounded off to the nearest multiple of 10

Return
Period
[years]

Estimate of
( )Max

LobithQ RP
[m3/s]

Spread in
( )Max

LobithQ RP
[m3/s]

Symmetric 95% confidence interval
for ( )Max

LobithQ RP [m3/s]

Lower Bound Upper Bound
5 8070 440 7210 8930

10 9320 500 8340 10300
20 10420 570 9310 11530
50 11700 640 10440 12960

100 12520 630 11290 13750
250 13390 420 12560 14210
500 13740 400 12970 14520
1250 14210 390 13460 14970
4000 14810 410 14000 15620

10000 15280 470 14360 16190

Figure 4.3.1 Frequency curve for extreme discharges of the Rhine at Lobith, according to GRADE (SOBEK with
flooding). The solid curve in blue represents the estimate of Q(RP) for the various return periods RP.
The lower and upper bounds of the 95% confidence interval are denoted by the red coloured dashed
curves. In the computation of these curves the uncertainty in both the climate and in the HBV-models
are taken into account. The curves in black give the Q(RP) and the confidence intervals for “merely”
the uncertainty in the HBV-models
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4.4 Sensitivity analysis of flooding parameters in the SOBEK model
Effects of flooding and/or overflows depend on several parameters as for example heights of
thresholds or dikes, width of inflow apertures, storage capacity of inflow areas, bottom heights
of the inflow areas, dike strength/break parameters, etc. For the modelling of these effects, as
presently done within SOBEK, proper estimates for such flooding parameters can usually be
obtained from bed elevation maps. Uncertainties may remain, however.

For the present SOBEK model for the Lower Rhine (with flooding included) a model
calibration was carried out to further improve the ‘prior’ estimates for the flooding parameters.
For extreme discharge conditions that lead to flooding no real measurements are available.
Therefore water level and discharge predictions of a corresponding detailed 2D WAQUA
model were used as ‘pseudo’ measurements in the calibration of the flooding parameters in
the SOBEK model (Vieira da Silva et al., 2013). As a matter of its sound physical/conceptual
basis, and high resolution in the 2D-spatial and temporal schematisation, the WAQUA model
is expected to provide reasonably accurate predictions of flooding effects (at least for
Andernach discharges up to 17.000 m3/s).

For detailed description of the set up and results of the SOBEK model with flooding and
overflows in the German part of the Rhine one is referred to Udo and Termes (2013).

The SOBEK-model with the in the past through a calibration derived estimates for the flooding
parameters was used in the GRADE simulation described in the previous Section 4.3.
Compared to the corresponding results obtained with a SOBEK model without flooding
(Section 4.2) large effects were found in the estimates of extreme discharges at Lobith.
Additionally to the tables and figures presented in Sections 4.2 and 4.3 this effect of taking
flooding into account is in an alternative way depicted in Figure 4.4.1. This figure shows for
Lobith the difference ( )MaxQ RPD  of extreme discharges as function of the return period RP.

This difference ( )MaxQ RPD  is defined by:

( ) : ( ) ( )Max Max MaxSOBEK Flooding SOBEK Flooding
Q RP Q RP Q RP

+ -
D = - .

In the remainder of this section the effect of variations in the various flooding parameters will
be examined. In this variational analysis the setting of the flooding parameters as used in
Section 4.3 is considered as reference. The effects of variations in this reference setting on
the ( )MaxQ RP  at Lobith are compared to the ( )MaxQ RP  for the reference setting (in contrast to

Figure 4.4.1 where the ( )MaxQ RP  of the model with flooding was compared to the SOBEK
model without flooding).

In this way the sensitivity of the Lobith extreme discharges to variations in the flooding
parameters is established. This may give important insight into the extent that uncertainties in
these parameters may contribute to (and/or increase) the total uncertainty in extreme Lobith
discharges (i.e.: the relevance of taking uncertainties in flooding mechanisms into account).

For all uncertain flooding parameters a “physical realistic” range of potential variation around
their reference value was determined. In the present sensitivity analysis, GRADE runs were
only carried out for a minimum and a maximum variation of each parameter within this range.
In the end this resulted in eight GRADE simulations (Rhine, SOBEK+Flooding) concerning
the following four types of flooding parameters (Udo and Termes, 2013):
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1 Heights of the dikes along the Oberrhein trajectory (from Maxau to Andernach) and
Niederrhein (Andernach to Lobith).
The (‘guard’) heights were varied in twofold: first, an increase of these heights with +0.5
m, and secondly an ‘increase’ with -0.5 m. Note that such an increase or decrease with
0.5 m was applied uniformly, i.e. simultaneously to all river sections with potential
flooding.

2 The width of inflow opening(s) in case of overflows of dikes.
These inflow openings were also varied in twofold and again in a uniform way. In one
variation they were all increased with 25% (of the reference setting), and in the other
‘increased’ with -50%.

3 The available storage capacity in the form of the area covered by retention areas and/or
flood areas behind dikes.
Also the storage capacity parameters were varied in twofold, and again in a uniform
way: first an increase with 50% and secondly an ‘increase’ of -50%.

4 Bottom height of the retention areas and/or flood areas.
In a first variation all these bottom heights were increased with +1 m, and in a second
variation ‘increased’ with -1 m.

No GRADE computations with joint variations of the various types of flooding parameters
were carried out.

The effect of these eight variations of the flooding parameters on extreme Lobith discharges
is graphically illustrated in Figure 4.4.1. The figure shows the increase or decrease

( )MaxQ RPD  relative to the ( )MaxQ RP  that was found for the reference setting of the flooding

parameters. In a formula this ( )MaxQ RPD  reads:

, ,
( ) : ( ) ( )Max Max MaxSOBEK FloodingVariation SOBEK FloodingReference

Q RP Q RP Q RPD = - .

From the red curves in Figure 4.4.1 it is readily recognised that within the presently adopted
range of variations the largest effects are found for the guard heights of the dikes.
Also a high sensitivity is found for the storage capacity of the inflow areas (blue curves).
For the bottom height of the inflow areas (green curves) effects are also notable. When the
bottom height is increased with +1 m a significant increase of the ( )MaxQ RP  (compared to the
reference setting) at Lobith is found for extremely high return periods only. Remarkably, an
“increase” of the bottom height with -1 m yields about the same results as the increase with 1
m.
Effects of the inflow width variations (black curves) tend to be limited, particular when
compared to the effects of the dike height and storage capacity variations.
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It must be emphasized that so far no probabilities were assigned to the (variations in the)
flooding parameters. Therefore the variability covered by the various curves in Figure 4.4.1
does not yet represent a solid quantitative measure for the uncertainty in the ( )MaxQ RP  of
Lobith that was found for the reference setting of the flooding parameters (as represented by
the blue curve in Figure 4.3.1). The various curves merely provide a potential range of

( )MaxQ RP  variations due to uncertainties in the flooding mechanisms. It must be mentioned,
however, that this “potential range” is expected to over-estimate the true range. One reason
for this presumption is that the present range in the ( )MaxQ RP  is found for maximal (physically
realistic) variations of the flooding parameters. Secondly, the variations consisted of a
simultaneous (uniform for all river sections) increase or decrease of all the guard heights and
other flooding parameters. In practice such a highly spatially correlated variation is neither
very realistic.

To “upgrade” the present sensitivity analysis to a more sound uncertainty analysis (all or not
in combination with the uncertainties in the synthetic weather series, and the HBV-parameters
in the hydrological models) probability distributions must be derived for the several flooding
parameters. For a (Monte Carlo based or other representatively constructed) sample from
these distributions GRADE simulations can be carried out to obtain a corresponding sample
for the discharges ( )Q RP  at Lobith. From this sample the spread, a confidence interval, or
other measures for the uncertainty in the ( )Q RP  can then be derived. The estimate for the
uncertainty will be more realistic than the ‘uncertainty range’ depicted in Figure 4.4.1. At this
moment we do not speculate about the magnitude of this flooding induced uncertainty.
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Figure 4.4.1 Effect of variations of flooding parameters on the frequency curve of annual extreme discharges for

the Rhine at Lobith. The effect MaxQD  of a variation of a flooding parameter is shown here with

respect to the MaxQ  that is found with the reference setting of the flooding parameters. A positive

MaxQD  means that the variation of the flooding parameter induces an increase of the MaxQ  at

Lobith
.
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5 GRADE uncertainty analysis for discharge extremes for the
Meuse at Borgharen

The uncertainty analysis of Grade for the Meuse is similar in nature to that of GRADE for the
Rhine. The main differences are:

1 For the Meuse flooding is not included. Uncertainty estimates for extreme discharges at
Borgharen are therefore derived in twofold: (i) with the discharges at Borgharen
according to the hydrological HBV-models, and (ii) according to SOBEK without flooding
for the Meuse.

2 For the Meuse a set of 24 synthetic weather series (that represents the uncertainty in
the climate) are used in the uncertainty analysis (instead of a set of 11 for the Rhine).

The regression between the HBV and SOBEK annual maxima at Borgharen based on the
50,000-year reference GRADE simulation for the Meuse is presented in Appendix C. It is
found that the regression based SOBEK estimates of these discharge maxima are virtually
identical to the HBV computed values. For this reason it makes no sense to discriminate
between these two, and in the remainder of this chapter merely the SOBEK-based results of
the uncertainty analysis are shown.

Table 5.1 presents the GRADE uncertainty matrix for the discharges ( )Max

BorgharenQ RP  for the
Meuse at Borgharen with a return period of 1250 years. Table 5.2 shows similar results for
the return period of 4000 years.
For a set of return periods in the range of 5 to 10,000 years the GRADE estimates for the
discharge at Borgharen and the corresponding uncertainties are presented in Table 5.3.
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Table 5.1 GRADE Uncertainty Matrix for the yearly maximum discharge ( )Max

BorgharenQ RP at Borgharen (Meuse) for

return period RP=1250 years, according to SOBEK.
     HBV ►
WG▼

5% Par.
Comb.

25% Par.
Comb.

50% Par.
Comb.

75% Par.
Comb.

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 3654 3759 3933 3949 4050 3896 112
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11
WG 12
WG 13
WG 14
WG 15
WG 16
WG 17
WG 18
WG 19
WG 20
WG 21
WG 22
WG 23
WG 24

3582
3619
3574
3433
3529
3640
3636
3602
3626
3600
3670
3737
3619
3650
3583
3652
3595
3610
3628
3593
3634
3710
3643
3707

3649
3713
3640
3506
3590
3714
3709
3670
3682
3683
3735
3808
3686
3710
3656
3731
3699
3705
3681
3685
3705
3792
3720
3786

3880
3941
3858
3634
3814
3962
3927
3890
3909
3889
3913
4035
3905
3893
3853
3930
3892
3921
3902
3908
3942
4036
3924
4017

3854
3925
3864
3682
3810
3961
3927
3896
3926
3883
3943
4019
3909
3922
3870
3952
3886
3907
3895
3895
3926
4031
3930
4012

3979
4042
3968
3747
3922
4078
4024
4017
4024
3978
4004
4123
4022
4007
3964
4046
4003
4026
4006
4020
4028
4135
4037
4128

3815
3878
3807
3621
3759
3901
3872
3841
3860
3834
3878
3972
3854
3860
3811
3889
3842
3862
3847
3849
3876
3972
3877
3959

123
126
123
 92
123
137
120
126
128
114
105
120
124
111
116
119
116
122
120
126
125
133
119
128

Mean WG
(mWG)

3620 3694 3907 3909 4014

Spread WG
(sWG)

287 294 369 331 358

Overall Mean (m): 3856 [m3/s] Overall Standard Deviation (s): 357 [m3/s]
95% symmetric confidence interval Max

BorgharenQ  for return period 1250 years: (3160, 4560)   [m3/s]
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Table 5.2 GRADE/SOBEK Uncertainty Matrix for the yearly maximum discharge ( )Max

BorgharenQ RP  at Borgharen

(Meuse) for return period RP=4000 years
     HBV ►
WG▼

5% Par.
Comb.

25% Par.
Comb.

50% Par.
Comb.

75% Par.
Comb.

95% Par.
Comb.

Mean HBV
(mHBV)

Spread
HBV (sHBV)

WG Ref. 3909 4044 4218 4240 4336 4181 117
WG 1
WG 2
WG 3
WG 4
WG 5
WG 6
WG 7
WG 8
WG 9
WG 10
WG 11
WG 12
WG 13
WG 14
WG 15
WG 16
WG 17
WG 18
WG 19
WG 20
WG 21
WG 22
WG 23
WG 24

3830
3845
3798
3665
3733
3898
3876
3845
3868
3815
3959
4056
3849
3900
3824
3929
3825
3863
3914
3901
3901
4002
3859
3984

3890
3959
3858
3743
3774
3967
3969
3921
3903
3908
4027
4119
3907
3941
3890
4007
3963
3972
3937
4007
3968
4097
3934
4081

4173
4225
4114
3881
4033
4283
4217
4175
4159
4132
4221
4391
4158
4142
4115
4228
4151
4245
4210
4235
4282
4388
4147
4334

4096
4204
4113
3937
4009
4269
4206
4159
4194
4102
4250
4338
4160
4188
4133
4255
4130
4191
4183
4223
4225
4364
4152
4298

4262
4325
4218
4010
4133
4375
4302
4304
4282
4188
4294
4455
4284
4282
4227
4337
4256
4338
4315
4342
4336
4473
4256
4438

4078
4148
4050
3869
3962
4196
4148
4109
4109
4060
4178
4302
4099
4113
4066
4181
4096
4157
4136
4173
4179
4302
4097
4259

139
145
136
102
132
160
133
140
142
116
110
132
138
123
127
128
116
143
136
129
149
150
121
136

Mean WG
(mWG)

3872 3948 4193 4183 4293

Spread WG
(sWG)

390 413 509 447 467

Overall Mean (m): 4128 [m3/s] Overall Standard Deviation (s): 477 [m3/s]
95% symmetric confidence interval Max

BorgharenQ  for return period 4000 years: (3190, 5060)   [m3/s]
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Table 5.3 GRADE/SOBEK estimates for the annual maximum discharge ( )Max

BorgharenQ RP  at Borgharen (Meuse) and

its uncertainty for a set of return periods in the range of 5 to 10,000 years. The listed discharges and
uncertainty measures have been rounded off to the nearest multiple of 10.

Return
Period
[years]

Estimate of
( )Max

Borgharen
Q RP

[m3/s]

Spread in
( )Max

Borgharen
Q RP

[m3/s]

Symmetric 95% confidence interval
for ( )Max

Borgharen
Q RP [m3/s]

Lower Bound Upper Bound
5 1960 120 1730 2190

10 2290 150 2010 2580
20 2600 210 2190 3020
50 2970 280 2430 3510

100 3210 290 2640 3790
250 3480 290 2910 4050
500 3640 300 3060 4230
1250 3860 360 3160 4560
4000 4130 480 3190 5060

10000 4340 590 3190 5500

Figure 5.1 Frequency curve for extreme discharges of the Meuse at Borgharen, according to GRADE/SOBEK. The
solid curve in blue represents the estimate of Q(RP) for the various return periods RP. The lower and
upper bounds of the 95% confidence in this estimate are denoted by the red coloured dashed curves. In
the computation of these Q(RP) and confidence intervals the uncertainty in the climate and in the HBV-
models are both taken into account. The curves in black represent the Q(RP) and its confidence
intervals for the uncertainty in the HBV-models only
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As for the Rhine, the tables with the uncertainty matrices and Figure 5.1 show that also for
the Meuse the uncertainties in the estimates for the Max

BorgharenQ  are highly dominated by the
uncertainty in the climate. For example, for RP=1250 year the average of the spreads listed in
the last row of the uncertainty matrix (forming an averaged weather climate induced
uncertainty) is about 330 m3/s and is about 2.7 times as large as the average 120 m3/s of the
spreads listed in the last column (forming an averaged HBV induced uncertainty). For
RP=4000 year this ratio of the spreads increases to 3.4.

The tables and Figure 5.1 also indicate that for the longer return periods the total uncertainty
in the ( )Max

BorgharenQ RP increases more than proportionally with the return period RP than

( )Max
BorgharenQ RP  does. In fact, for RP=1250 year the spread is 9.3% of ( )Max

BorgharenQ RP  while for
RP=4000 and RP=10,000 year this ratio is 11.6% and 13.6%.

For the Rhine these ratios of the spread and ( )Max
LobithQ RP  were 6.6%, 7.8% and 8.8%

respectively. This suggests a relatively larger amount of uncertainty in the (GRADE estimates
of) extreme discharges for the Meuse than for the Rhine.

From the entries in the uncertainty matrices listed above it can also be recognised that for the
Meuse the computed discharges tend to increase much more monotonically along the rows
(i.e. for the five HBV-parameter combinations) than was found for the Rhine (see Section
4.1). The reason of ‘better’ monotonic dependency on the HBV-parameter sets is probably
that within the GLUE calibration procedure for the Meuse the selection of the HBV-parameter
combinations was based on extreme discharges for just the one Meuse sub-basin. Moreover
the extreme discharges within this selection were for a substantially longer return period (100
year) than for the Rhine (10 year).
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6 Final GRADE discharge frequency curves and uncertainties
for Lobith and Borgharen

Within the present scope (with GRADE brought into the WTI 2  project) estimates and
uncertainties for extreme discharges at Lobith and Borgharen are desired for return periods
up to (at least) 50,000 year. In the uncertainty analyses of Chapter 4 and 5 for the Rhine and
Meuse GRADE simulations were carried out of length 20,000 year, however. The main
reason for using this shorter length within in the uncertainty analysis is the much longer
computation time that would be required when for all the 11×5 (Rhine) and 24×5 (Meuse)
combinations of synthetic weather series and HBV-parameter sets GRADE simulations of
length 50,000 years had to be carried out.

In the present work computations of length 50,000 years were limited to a GRADE ‘reference
simulation only. In this simulation the reference synthetic weather series is combined with the
50% HBV parameter set. The SOBEK based results of the reference simulation are then used
to derive the ‘final’ estimates of extreme discharges and discharge frequency curves at Lobith
and Borgharen for return periods up to 50,000 year or even longer using Weissman’s method
for extrapolation (see Section A.3 in Appendix A).
For the Rhine this is done in twofold: for the SOBEK model without flooding, and for a SOBEK
model in which flooding is also included.

The simulations within the uncertainty analyses of Chapter 4 and 5 are used to obtain the
uncertainties in these ‘final’ estimates. For return periods up to about 20,000 years the
uncertainties are ‘merely’ copied. For higher return periods the uncertainties are derived by
means of extrapolation, using again Weissman’s method.

The frequency curve for the extreme discharges (together with the uncertainty in the form of
the lower and upper bound of a 95% confidence interval) of the Rhine at Lobith are shown
below in the Figures 6.1a (SOBEK without flooding) and 6.1b (SOBEK with flooding).
For the Meuse at Borgharen the ‘final’ frequency curve (without flooding) is presented in
Figure 6.2.
These figures are to a large extent similar to the frequency plots already presented in
Chapters 4 and 5. The main difference is that now the estimate of a frequency curve is based
on the reference GRADE simulations of length 50,000 years, rather than a (weighted) mean
over an ensemble of 11×5 (Rhine) or 24×5 (Meuse) joint variations of the weather climate and
HBV-parameter sets. The uncertainty bands derived in the uncertainty analysis have been
placed symmetrically around the frequency curve derived from the 50,000 years reference
simulations.

In the Tables 6.1ab en 6.2 these ‘final’ GRADE estimates and uncertainties of the annual
maximum discharge are also listed in a more quantitative form for a set of representative
return periods within the range of 2 to 100.000 year.

2 WTI stands for “Wettelijk Toets Instrumentarium”. WTI is the Dutch method for analyzing dikes along the Dutch primary
and secondary flood defense structures. Within WTI discharge frequency curves are desired for the Rhine at Lobith
and the Meuse at Borgharen for return periods up to at least 50,000 years or even 100,000 years. For these
discharges the uncertainty in the form of a 95% confidence interval are also required.
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Figure 6.1a Frequency curve and uncertainties for extreme discharges of the Rhine at Lobith according to GRADE.
The solid curve in blue represents the frequency curve derived from the GRADE reference simulation
of length 50,000 years, using a SOBEK model where effects of flooding are not included. The red
curves denote the lower and upper bound of the 95% confidence interval as derived in the uncertainty
analysis

Figure 6.1b Frequency curve and uncertainties for extreme discharges of the Rhine at Lobith according to
GRADE. The solid curve in blue represents the frequency curve derived from the GRADE reference
simulation of length 50,000 years, using a SOBEK model where effects of flooding are also included.
The red curves denote the lower and upper bound of the 95% confidence interval as derived in the
uncertainty analysis
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Figure 6.2 Frequency curve and uncertainties for extreme discharges of the Meuse at Borgharen according to
GRADE. The solid curve in blue represents the frequency curve derived from the GRADE reference
simulation of length 50,000 years, using a SOBEK model (without flooding). The red curves denote the
lower and upper bound of the 95% confidence interval as derived in the uncertainty analysis

Table 6.1a GRADE estimates for the annual maximum discharge ( )Max

LobithQ RP  at Lobith (Rhine) and its uncertainty

for a set of representative return periods in the range of 2 to 100,000 years, based on the SOBEK-
model without flooding. The listed discharges and uncertainty measures have been rounded off to the
nearest multiple of 10

Return
Period
[years]

Estimate of
( )Max

LobithQ RP
[m3/s]

Spread in
( )Max

LobithQ RP
[m3/s]

Symmetric 95% confidence interval
for ( )Max

LobithQ RP [m3/s]

Lower Bound Upper Bound
2 5940 340 5280 6610
5 7970 440 7100 8840

10 9140 510 8140 10140
20 10340 590 9180 11510
50 11890 730 10460 13320

100 12940 810 11350 14530
250 14380 760 12890 15880
500 15270 910 13490 17060

1,250 16560 1160 14300 18830
2,000 17220 1300 14680 19760
4,000 18190 1510 15230 21150

10,000 19480 1810 15940 23020
20,000 20450 2030 16460 24440
50,000 21740 2340 17140 26330

100,000 22710 2580 17660 27760
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Table 6.1b GRADE estimates for the annual maximum discharge ( )Max

LobithQ RP  at Lobith (Rhine) and its uncertainty

for a set of representative return periods in the range of 2 to 100,000 years, based on the SOBEK-
model with flooding. The listed discharges and uncertainty measures have been rounded off to the
nearest multiple of 10

Return
Period
[years]

Estimate of
( )Max

LobithQ RP
[m3/s]

Spread in
( )Max

LobithQ RP
[m3/s]

Symmetric 95% confidence interval
for ( )Max

LobithQ RP [m3/s]

Lower Bound Upper Bound
2 5940 340 5280 6600
5 7970 440 7110 8830

10 9130 500 8150 10110
20 10250 570 9140 11360
50 11710 640 10440 12970

100 12580 630 11350 13810
250 13390 420 12570 14220
500 13890 400 13110 14670

1,250 14350 390 13600 15110
2,000 14590 390 13820 15360
4,000 14940 410 14130 15750
10,000 15400 470 14490 16310
20,000 15750 520 14740 16760
50,000 16210 590 15050 17380

100,000 16560 660 15270 17850

Table 6.2 GRADE estimates for the annual maximum discharge ( )Max

BorgharenQ RP  at Borgharen (Meuse) and its

uncertainty for a set of representative return periods in the range of 2 to 100,000 years, based on a
SOBEK-model without flooding. The listed discharges and uncertainty measures have been rounded off
to the nearest multiple of 10

Return
Period
[years]

Estimate of
( )Max

BorgharenQ RP

[m3/s]

Spread in
( )Max

BorgharenQ RP

[m3/s]

Symmetric 95% confidence interval
for ( )Max

BorgharenQ RP [m3/s]

Lower Bound Upper Bound
2 1440 90 1270 1610
3 1690 100 1490 1880
4 1850 110 1640 2070
5 1970 120 1740 2200

10 2300 150 2010 2590
20 2600 210 2190 3020
50 2970 280 2430 3510

100 3220 290 2650 3800
250 3520 290 2950 4090
500 3700 300 3110 4290

1,250 3910 360 3210 4610
2,000 4020 400 3240 4810
4,000 4180 480 3250 5120
10,000 4400 590 3240 5550
20,000 4560 680 3230 5890
50,000 4770 800 3200 6350

100,000 4930 900 3180 6690
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7 Summary and conclusions

7.1 Summary
The main issue in this report is an uncertainty estimation of the extreme discharges computed
by GRADE. In the present report these events refer to annual discharge maxima at Lobith (at
the downstream reach of the Rhine) and Borgharen (downstream location of the Meuse). The
focus is on the estimation of the uncertainties in discharge frequency curves for these two
locations.

The uncertainties in the frequency curves are derived from uncertainties that have been
assigned to GRADE’s model components.
One source of uncertainty in GRADE is the uncertainty in the climate, expressed by a set of
different 20,000-year Weather Generator (WG) simulations. For the Rhine this set consists of
11 WG simulations and for the Meuse of 24 WG simulations. The ensemble serves as an
empirical distribution of the uncertainty in the current climate (rainfall and temperature series),
and in this way provides a quantitative representation of the uncertainty in the input of the
hydrological models in GRADE.

The hydrological models in GRADE are another source of uncertainty. This uncertainty is
limited to HBV model parameters. The uncertainties in these HBV-parameters have been
identified within the calibration using a GLUE analysis. To keep computation times in the
uncertainty analysis to a practically manageable amount the set of all behavioural parameter
combinations had to be reduced. For both the Meuse basin and the major sub-basins of the
Rhine five representative HBV parameter sets were selected from the 5%, 25%, 50%, 75%
and 95% quantiles of the computed 10-year (Rhine) or 100-year (Meuse) discharges for a
large number of behavioural HBV-parameter combinations. These five HBV-parameter sets
then finally represent an empirical distribution for the uncertainty in the hydrological models.
As a matter of their construction these five sets are not equally likely. Therefore a weight or
probability was derived for each of these sets.

Uncertainties will also be present in the hydrodynamic SOBEK models within GRADE (as a
third component in a GRADE system). This holds for the SOBEK models without flooding, but
particularly for the SOBEK version in which additionally the effects of flooding are also
modelled. On entry to the present work no analysis or quantitative estimates for these
uncertainties were available. For this reason uncertainties in the hydrodynamic models within
GRADE have not been considered. This will not be a serious omission since the uncertainty
in the hydrodynamic models is expected to be substantially smaller than those in the
hydrological models. If flooding and dike breaks are included in the SOBEK models this
remains to be verified, however.

As a result the (total) uncertainty in GRADE is represented by a combination of two empirical
distributions. Schematically this is depicted with an “Uncertainty Matrix”. For the estimation of
uncertainties in GRADE estimates, 20,000-year GRADE simulations are performed for every
entry of the uncertainty matrix. Appendix A describes how from this uncertainty matrix the
uncertainty estimates of GRADE results can be derived.
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This uncertainty analysis has been applied to derive the uncertainties in the GRADE
estimates of discharge frequency curves for Lobith (Rhine) and Borgharen (Meuse). In this
analysis several alternatives have been discriminated. For example:

1. The frequency curves and their uncertainties according to solely the hydrological
model.

2. Comparison of the amount that the uncertainties in the individual GRADE-
components (the model input, and the hydrological HBV models) contribute to the
overall uncertainty in the discharge frequency curves.

3. Comparison of frequency curves and uncertainties according to HBV and those
according to SOBEK using the model where effects of upstream flooding and/or
overflows are ignored.

4. The frequency curves and their uncertainties using a version of SOBEK in which also
flooding is taken into account.

The main conclusions are summarized below.

Within the uncertainty analysis a number of assumptions, simplifications, approximations,
“short cuts”, etc. have been made. These, and other limitations that leave space for further
improvements, are discussed in Chapter 8

7.2 Conclusions

The uncertainty in the discharge frequency curves for both the Rhine and Meuse is highly
dominated by the uncertainty in the climate (as represented by the set of different WG
simulations). No uncertainties of the SOBEK-models have been taken into account. It is
therefore uncertain whether uncertainties in the SOBEK model will ‘significantly’ affect the
total uncertainty. Particularly parameters that relate to flooding might substantially contribute
to the uncertainties.

The results for the Rhine at Lobith reveal a strong effect of flooding on the discharge
frequency curves (for the most extreme discharges). For GRADE this emphasizes the
importance of including and improving flooding mechanisms in the hydrodynamic SOBEK
models.
For the uncertainty bands a large effect of flooding is observed as well. This effect is in the
form of a much smaller width compared to the situation that flooding is not modelled.
Uncertainties in the flooding parameters may again increase the width of the confidence
intervals, however. No uncertainty analysis was carried out to quantify this effect. A sensitivity
analysis, however, revealed considerable effects for some flooding parameters (as for
example dike heights).

In relative sense the uncertainty in the GRADE estimates of extreme discharges tend to be
larger for the Meuse (Borgharen) than for the Rhine (Lobith). Here this was established
through the ratio [ ]( ) ( )/Q RP Q RPs  of the spread in – and the estimate of an extreme
discharge ( )Q RP  for a given return period RP.
At the same time for both cases the ratio [ ]( ) ( )/Q RP Q RPs  tends to increase with the return
period RP, suggesting that the uncertainty increases more with RP than ( )Q RP  does.
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8 Remarks, discussion and further developments

Number of WG simulations representing the climate uncertainty
To represent the uncertainties in the climate a jackknife ensemble was constructed. The size
of this ensemble is relatively small: 11 members for the Rhine and 24 members for the
Meuse. Because of this relatively small size the estimates, in particular for the Rhine, the
uncertainty estimates for extreme discharges have a relatively large standard error. This
standard error can be reduced by using a smaller block size in the jackknife procedure (for
the Meuse the block size used is three years and for the Rhine it is five years). Reducing the
block size leads to a larger sample size, and consequently to a substantial increase of
computation time.

Alternative combinations of the HBV-parameter sets
The uncertainty in the HBV models of the Rhine basin was represented by 5 parameter
combinations. These consisted of “quantile wise combinations” (5, 25, 50, 75, 95%) of the
parameter sets for each of the 15 major sub-basins. This form of combination assumes full
mutual dependency of the parameter sets of the major sub-basins. To obtain an impression of
the effect of this assumption, the “opposite” situation of fully mutually independent parameter
sets can be considered. A proper recipe must then be found to select a practically treatable
number of representatives (again 5, for example) out of all 515 feasible combinations and the
uncertainty analysis should be repeated. It is expected that the outcome of this second
uncertainty analysis will differ only slightly from the present results.
For the Meuse the five representative HBV parameter-combinations were based on simulated
once in hundred year discharges at Borgharen while for the Rhine a return period of ten years
was used. This shorter period may be a reason that for the Rhine the discharges depend less
monotonically on the HBV-parameter sets than for the Meuse.

Skew confidence intervals
Uncertainties in the discharge frequency curves have been derived by means of a standard
error. Assuming a Gaussian distribution for the estimates of extreme discharges, this
standard error is used for the computation of the lower and upper bound of a (95%)
confidence interval. This yields a symmetric confidence interval, and skewness in the
distribution of quantiles is ignored. Skewness may be present, however, for the high(er)
discharges (or equivalently: the higher return periods) and may particularly become large
when effects of flooding and overflows become notable. In that case the discharge will be
bound from above. This induces a skew distribution, and the necessity of generating skew
confidence intervals. In the present case we could not do much better than producing
symmetric confidence intervals because of the rather small amount of variations in the
representation of the uncertainties in the weather climate and the HBV models.

SOBEK evaluations of the uncertainty matrix
In the present case SOBEK computations of extreme discharges were only carried out for the
reference situation. The SOBEK estimates for annual discharge extremes (at Lobith and
Borgharen) correlate reasonably well with the ones computed by HBV. A high correlation was
particularly found for the largest extremes (and thus highest return periods). This SOBEK-
HBV correlation was used to derive a regression formula for translating HBV computed
discharge extremes to corresponding SOBEK estimates. To save computation time these
regressions were then used for the uncertainty analysis. No uncertainty in the regression
formulae was taken into account.
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This uncertainty is not fully negligible as can be recognised from SOBEK versus HBV scatter
plots. Therefore the presently derived uncertainties in the SOBEK-based frequency curves
may be under estimated. It is expected that the uncertainty induced by the regression is
limited.

Underestimates of the uncertainties in the HBV models
The uncertainty in the hydrological models has been represented by means of a set of model
parameters. Apart from these parameters no other model uncertainties (e.g. conceptual or
structural uncertainties) have been taken into account. These uncertainties are likely to be
larger for discharge extremes. See e.g. the results of a validation of the HBV models for the
Meuse presented by Kramer and Schroevers (2008). This suggests taking structural
uncertainties into account as well. Quantitative estimates for this type of uncertainty may be
obtained through (stochastic) output correction models. The idea is, for example, to identify a
suitable parameterised, and relatively simple regression model to relate HBV computed
discharge extremes to correspondingly observed extremes (similarly as done here in
Appendix B to convert HBV computed discharges to corresponding SOBEK values). The
formula can then be applied to the HBV discharges computed within the GRADE uncertainty
analysis (provided the formula makes also sense for higher discharges than the observed).
By means of this regression model any systematic errors in the HBV computed discharge
extremes can be reduced and also a quantitative measure for their uncertainty derived. As a
result the total uncertainty in GRADE predictions of extreme discharges may increase, and at
the same time be more representative. Apart from the expected increase, the total uncertainty
will to a higher extent be determined by the HBV models instead of being fully dominated by
the uncertainty in the climate.

Uncertainties in the hydrodynamic models
In the present study uncertainties in the hydrodynamic SOBEK models of the Rhine and
Meuse have been ignored. For flow conditions without flooding and overflows this is
presumably not a serious omission since for such conditions the uncertainty in the SOBEK
model tends to be negligible compared to the uncertainties in the other GRADE components.
In a sensitivity analysis of the SOBEK-model for the Rhine relatively large effects of
parameters in the flooding mechanisms were found3 . As a result uncertainties in these
parameters may also increase the uncertainty in GRADE estimates. The amount of this
increase, and how it compares to the contributions of the other GRADE components, is still
unknown and should be further investigated.

3 Note that in the sensitivity analysis the parameter changes were applied for all flooding locations in the model at once.
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A Description of the GRADE uncertainty analysis method

In Chapter 2 the representation of the uncertainties in the main GRADE components has
been outlined. In this appendix the procedure is described how the uncertainties within the
components are combined to obtain the ‘total’ uncertainty in GRADE based estimates of
extreme discharges.

A.1 The uncertainty matrix

As described in Section 2.1 the uncertainty in the current weather climate is represented by
an ensemble of rainfall and temperature time series. For the Rhine this has led to an
ensemble of 11 synthetic rainfall and temperature time series, each of length 20,000 years.
These 11 feasible realizations provide an empirical distribution for the variability and within
GRADE thus the uncertainty in the weather climate. The same holds for the Meuse, but here
the ensemble size of synthetic weather series is 24.

As a matter of the procedure sketched in Section 2.2 the uncertainty in the hydrological (rain-
fall) modeling is represented by an empirical distribution as well. For both the Rhine and the
Meuse this ensemble consists of 5 sets of combinations of uncertain parameters in the HBV-
models of the several sub-basins.

The ‘overall’ uncertainty in GRADE is then represented by the mutual combinations of the
elements of these two (rainfall and HBV-parameter) ensembles. For the Rhine this is
illustrated by the matrix depicted below in Table A.1.1 (NB: This table is identical to Table
3.1.1). The 5 variations of the HBV parameters are arranged along the columns, while the
variations for the weather climate are arranged along the rows. In the (i-th row, j-th column)
entries of the matrix a ‘target’ variable Q(i,j) is listed. This target Q is the value of some
quantity derived from GRADE’s output when the system is run with the weather series of the
i-th row and at the same time with the HBV-model parameters that belong to the j-th column.
In the present approach, the target variables Q(i,j) are the estimate for the yearly maximum
discharge at Lobith that belongs to a given return period (e.g. 1250 or 4000 year).
To obtain the entries Q(i,j) in the matrix of Table A.1.1 the GRADE system must be run 11×5
times. In this way an ensemble of 55 estimates for the target Q is obtained and from this
ensemble an ‘overall’ estimate for Q has to be produced and also a measure for the
uncertainty in this estimate. In the next sections the procedure to get these estimates will be
described.

For the Meuse a similar reasoning holds, of course, as given above for the Rhine. For the
Meuse the number of columns is also 5 but the number of rows in the matrix is then 24.

In the remainder a matrix as depicted in Table A.1.1 will be referred to as an “Uncertainty
Matrix” or briefly “UM”.

Finally it is mentioned that apart from the (11 or 24) Jackknife variations the GRADE system
has also been run for the additional case where all observed weather data were used as
basis set in the weather generator to generate synthetic rainfall/temperature series of length
20,000 year. These series, and more generally the corresponding GRADE predictions of the
target variables (again for the 5 HBV-parameter combinations), will be called the “reference”
situation.
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Formally this reference (“WG 0”, where WG stands for “Weather Generator”) is with respect
to the system’s external forcing. In a similar way the 50% HBV-parameter combination (and
the GRADE’s response to the external forcing variations) can be considered as reference for
the HBV-model uncertainty.

Table A.1.1 Illustration of a GRADE uncertainty matrix
     HBV ►
External
Forcing ▼

Par. Comb
5%

Par. Comb
25%

Par. Comb
50%

Par. Comb
75%

Par. Comb
95%

WG    1 Q(1,1) Q(1,2) Q(1,3) Q(1,4) Q(1,5)
WG    2 Q(2,1) Q(2,2) Q(2,3) Q(2,4) Q(2,5)
WG    3 Q(3,1) Q(3,2) Q(3,3) Q(3,4) Q(3,5)
WG    4 Q(4,1) Q(4,2) Q(4,3) Q(4,4) Q(4,5)
WG    5 Q(5,1) Q(5,2) Q(5,3) Q(5,4) Q(5,5)
WG    6 Q(6,1) Q(6,2) Q(6,3) Q(6,4) Q(6,5)
WG    7 Q(7,1) Q(7,2) Q(7,3) Q(7,4) Q(7,5)
WG    8 Q(8,1) Q(8,2) Q(8,3) Q(8,4) Q(8,5)
WG    9 Q(9,1) Q(9,2) Q(9,3) Q(9,4) Q(9,5)
WG   10 Q(10,1) Q(10,2) Q(10,3) Q(10,4) Q(10,5)
WG   11 Q(11,1) Q(11,2) Q(11,3) Q(11,4) Q(11,5)

A.2 Computation of the uncertainty matrix

For every entry (i,j) in the uncertainty matrix a GRADE model evaluation is required. In the
present case this involves a GRADE simulation over a time period of 20,000 years. The Q(i,j)
will be the maximum discharge of the Rhine at Lobith (or at Borgharen for the Meuse) that
corresponds to a given return period RP. For discharge frequency curves the maximum
yearly discharge (and its uncertainty) must be derived for all ‘feasible’ return periods (but less
than 20,000 years as a matter of the simulation time period). In this way the uncertainty
matrix must be produced in multiple rather than merely once. Computation of the Uncertainty
Matrix for more than one RP does not demand additional GRADE computations, however.

Due to practical limitations it was not possible to run SOBEK for all entries of the uncertainty
matrix and a short cut was constructed to obtain convenient substitutes for these entries. In
fact, first HBV and next SOBEK simulations were carried out for a “reference” combination of
the model forcing on one hand and the HBV-parameters on the other. In these reference runs
the model forcing consists of the synthetic rainfall and temperature that is produced by the
weather generator when all available historic weather data is used as basis set in the
resampling algorithm. For the HBV model parameters the 50% combination serves as
reference. From the results of the HBV and SOBEK reference simulations for a period of
50,000 years the set of corresponding annual extreme discharges

( ){ }50000, , SOBEK

1
,Max HBV Max

k k k
Q Q

=
 was selected. By means of standard scatterplots the relation

between these two extreme discharges was visually inspected. Despite some scatter these
plots revealed a clear and monotonic relation of the ,Max HBVQ  and ,Max SOBEKQ . This suggests

that the ,Max SOBEKQ  can reasonably well be derived from the ,Max HBVQ . For this purpose a

parameterised formula ( | )f × Q  was identified to “predict” the ,Max SOBEKQ  from the ,Max HBVQ .
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The Q  denotes a set of parameters in ( | )f × Q  for which an estimate Q̂  must be obtained

such that , ˆ( | )Max HBVf Q Q  match the ,Max HBVQ  as good as possible.

For the Rhine such a formula ( | )f × Q  was derived in twofold: first for the case that the
,Max SOBEKQ  of Lobith were computed with SOBEK without facilities for flooding, and secondly

for the ,Max SOBEKQ  according to the SOBEK model in which effects of flooding were included.
For the Meuse flooding was not taken into account and as a result only one such formula

( | )f × Q  was identified.

The calibrated functions ˆ( | )f × Q  were then applied to all entries of the HBV based
uncertainty matrix to obtain an approximation of the uncertainty matrix according to SOBEK.

The functions ˆ( | )f × Q  that were presently identified for the HBV to SOBEK conversion of
Lobith and Borgharen extreme discharges are described in Appendix B.

A.3 Variance reduction using Weissman’s method

In the present uncertainty analysis the entries in the Uncertainty Matrix will be yearly
maximum discharges that correspond to a given return period RP. These yearly maxima are
selected from discharge time series produced by GRADE. The length of these time series is
20,000 years and with temporal resolution Δt =  1 day. Such a time series is produced for
every combination of the i-th synthetic rainfall sequence and the j-th set  of  the  HBV-
parameters. From these separate time series the yearly maxima are extracted and sorted in
ascending order. This yields a series ( )

Max
kQ  for 1, 2, 3, , 20000k = × × × . The notation (k) means

the k-th value after sorting. For a return period RP the yearly maximum discharge is then
estimated as ( )

Max
kQ  where 20001 20000 /k RP= - . In summary this means that for each RP

an appropriate quantile of the empirical distribution of the MaxQ×  must be obtained.
In this way the discharge for the maximal retrievable return period RP=20000 is given by

(20000)
MaxQ , for RP=10000 by (19999)

MaxQ , for RP=5000 by (19998)
MaxQ , etc. For such high return periods

(corresponding to high quantiles of the empirical distribution) a high sensitivity will be found
for the (tail of the) sample MaxQ× . A way to reduce this sensitivity is to use a large(r) part of the
sample’s tail in the estimation of the quantile instead of merely a single data point. In this way
the accuracy of the estimate of the ( )MaxQ RP  can be improved for high return periods RP
(i.e. reduction of the estimate's variance).
In the present case the Weissman procedure (Weissman, 1978) was followed for improved
estimates of high quantiles. The essence of Weissman’s estimator of high quantiles is a fitting
of an exponential distribution to the k-largest values ( )

Max
kQ  of the sample. This is only

meaningful if the tail of the distribution is not heavier than exponential (see Boos, 1984). After
the fitting the ‘observed’ ( )

Max
kQ  are replaced by the corresponding fitted values. This

‘smoothing’ of the sample { }20000

( ) 1
MaxQ

=l
l

 is done for the high quantiles only, i.e. the ( )
MaxQ
l

 with

k³l . The ‘low’ quantiles are not affected and remain as derived straightforwardly from the
empirical distribution.
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Above it was mentioned that within the Weissman procedure the highest k observed quantiles
can be replaced by the corresponding fitted values. More generally, and at the same time, the
procedure can conveniently be used for extrapolation, and thus to find estimates of the
extremes associated to return periods much longer than the maximum return period
determined by the size of the observed sample.

The Weissman procedure has been applied to the annual extremes { }20000

( )
Max

k
Q

=l
l

 of every (i,j)

variation in the uncertainty matrix. The ‘threshold’ k was set to the value that corresponds to a
return period of 250 year. With a 20,000 years length of the simulated time series this leads to
k=20001 - 80 = 19921. On the other hand, in GRADE simulations with a reference weather
series of length 50,000 years, the ‘threshold’ k was set to the value that corresponds to a
return period of 500 year.

Below, in Figure A.3.1, the effect of a Weissman procedure is shown by a probability plot. In
this figure annual maxima are plotted versus their probability on non-exceedence (actually a
non-linear transformation of the quantiles). The loose blue symbols * represent the probability
plot of the HBV discharge extremes at Borgharen derived from the GRADE reference
simulation of the Meuse. In this reference simulation of length 20,000 year the reference
synthetic rainfall series was used as model forcing (i.e. synthetic rainfall and temperature
where in weather generator all observed weather data served as basis set), and the 50%
HBV parameter combinations in the hydrological models. For the same simulation the red
solid curve in Figure A.3.1 shows this probability plot after application of the Weissman
procedure. The smoothing effect for the highest quantiles is clearly recognised. The dashed
part of the red curve shows how at the same time the Weissman method was also used for
extrapolation.

In the uncertainty analysis such a Weissman smoothing of the highest quantiles was
(separately) performed for every combined of the variation of the model forcing and the HBV-
parameters sets.
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Figure A.3.1 Effect in probability plot of Weissman smoothing of high quantiles. Here applied to GRADE
computed discharge extremes of the Meuse at Borgharen, with the reference synthetic rainfall and
temperature series, and with the 50% quantile set of the HBV-parameters

A.4 Quantifying the uncertainties in the climate

For a given return period RP, and the j-th HBV-parameter combination (1 5j£ £ ), the j-th

column in the Uncertainty Matrix of Table A.1.1 provides a set of N estimates { } 1
( , )

N

RP i
Q i j

=

for the associated annual maximum discharge ( )Q RP . For the Rhine the sample size N=11
and for the Meuse N=24.

For ease of notation the subscript RP is omitted in the expression { }
1

( , )
N

RP i
Q i j

=
 and also in

other formulas in the remainder of this section the dependency on the return period is not
always explicitly indicated.

From the { } 1( , ) N

iQ i j
=  an estimate for the mean value ( )WGm j  of ( )Q RP  is derived, together

with a measure for the uncertainty. This uncertainty in ( )Q RP  is then due to the uncertainty
in the weather climate, i.e. the synthetic temperature and rainfall time series. The procedure
to obtain this column wise combined estimate of ( )Q RP  and its uncertainty is described
below.
As a matter of the construction of the synthetic rainfall series each of the N constructed
synthetic rainfall series are equally likely. As a result a uniform distribution can be assumed

for the { } 1( , ) N

iQ i j
=

. Therefore the standard arithmetic mean provides a best estimate for (the

expected value of) the discharge maximum ( )Q RP :
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1
1

( ) ( , )N
WG N i

m j Q i j
=

= å (A4.1)

For a quantitative measure of the uncertainty in ( )Q RP  the spread (or standard error) can be
used. In this case the standard formula for the spread cannot be applied, however. The

reason is that the N data points { } 1( , ) N

iQ i j
=

 are not mutually independent. This is a
consequence from the Jackknife recipe that was followed in the selection of the N basis sets
from the total sample of historic weather data. The N resamples of the historic data set that
serve as basis sets for the weather generator have a large overlap in time. These
dependencies must appropriately be taken into account when computing statistics. In
particular this holds for the computation of the standard error in the mean given by Equation
A4.1. In fact, for the presently used Jackknife delete block resampling it can be shown that
this standard error is given by:

( )
2

1
1

( ) ( , ) ( )NN
WG WGN i

s j Q i j m j-
=

= × -å (A4.2)

Note that in this way the standard error is about N  times as large as the value that would

be found with the standard formula for mutually independent data points { } 1( , ) N

iQ i j
=

.

For the derivation of Equation A4.2, and/or more generally the theoretical background,
algorithms, and statistical inference in Jackknife (delete block) resampling one is referred to
Efron and Tibshirani (1993) and Davison and Hinkley (1992).

More generally the uncertainty in the discharge ( )Q RP  due to the weather climate can be
represented by means of a probability distribution ( )j × . The mean of this distribution is
already obtained through Equation A4.1. Moreover, the standard error in the mean, as
prescribed by Equation A4.2, provides the spread of the distribution. For a statistically
complete representation of ( )j ×  also higher order characteristics (such as moments or
cumulants) of the distribution should be derived. In contrast to the mean and spread, no
expression is known for the computation of these higher order characteristics from a

Jackknife resample { } 1( , ) N

iQ i j
=

. At the same time the present sample size N is rather small
which also hampers a solid estimation of higher order moments. Therefore we can do not
much better than to assume that for a given HBV-set the estimate for the discharge is
normally distributed with the mean and spread provided by the Equations A4.1 and A4.2.

An “aggregation” as described above can be carried out for each of the M=5 columns of the
Uncertainty Matrix, i.e. for each separate variation of the HBV-parameters. In the end this

gives a set 5 normal distributions { } 1
( | , )

M

j j j j
j m s

=
×  with mean jm := ( )WGm j  and spread

: ( )j WGs js =  These distributions represent the weather climate induced uncertainty in the
annual maximum discharges for the given HBV parameter sets.
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It must be noted that at this moment these ( | , )j j jj m s×  are ‘merely’ conditional distributions.

In fact, ( | , )j j jj m s×  gives the distribution of the discharge under the condition of the j-th
HBV parameter set.

In next sections it will be described how together with the present combination over the
columns of the Uncertainty Matrix also a combination must be carried out over the rows
(HBV-parameter combinations) to get the ‘total’ estimate of, and overall uncertainty in, the
discharge ( )Q RP  for a given return period RP.

A.5 Quantifying the uncertainties in the hydrological models

The uncertainty induced by the hydrological models has been represented by M=5 sets of
HBV model parameter combinations. These combinations were selected from all behavioral
parameter combinations that were found in a GLUE based calibration of the HBV-models of
the various sub-basins. The five selected parameter combinations correspond to the 5, 25,
50, 75, and 95% quantiles of the set of extreme discharges that was computed for all (or a
representative subset) behavioral HBV-model parameter combinations.

For a given return period RP, and also given i-th synthetically generated weather series, the
estimate and uncertainty for the associated annual maximum discharge ( )Q RP  must then be

derived from M=5 GRADE predictions { } 1
( , ) M

RP j
Q i j

=
. These { } 1

( , ) M
RP j

Q i j
=

 correspond to the

five sets of HBV-parameter combinations, and form a row in the Uncertainty Matrix.
For ease of notation the subscript RP is omitted in the expression { } 1

( , ) M
RP j

Q i j
=

 and also in

other formulas in the remainder of this section the dependency on the return period is not
always explicitly indicated.

As a matter of their construction the five HBV parameter sets are not equally likely and a
proper probability or weight must be assigned to them. These weights are required in the
combination of the uncertainties along the rows in the Uncertainty Matrix. For assigning

weights { } 1

M

j j
w

=
 to the five sets of HBV-parameter combinations several procedures may be

feasible. In the present approach the weights were derived from the distribution of the
extreme discharges that within the calibration phase were computed for all behavioral
parameter combinations. This set is the same set as the one from which through a quantile
selection criterion the five HBV parameter combinations were derived. To obtain a proper
quantitative representation of this distribution, a large number of analytical and parameterised
probability density functions ( | )f × Q  (uniform, Gaussian, exponential, Gumbel, Weibull,
Reversed Weibull, Log-Normal, Beta, etc.) was fitted to the set of extreme discharges. The
distribution ˆ( | )f × Q  providing the best fit to the ‘empirical’ distribution was selected.

For each of the five non-exceedence probabilities jP , with jP  one of

{ }0.05, 0.25, 0.5, 0.75, 0.95 , the jx  was computed such that ˆ( | )j jxF PQ =  (or equivalently:

ˆ( | )Inv
j jF Px Q= ). This ˆ( | )F × Q  is the cumulative distribution function of the ˆ( | )f × Q

introduced and described in the preceding paragraph. The weight that is then assigned to the
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j-th set of HBV parameter combinations is the conditional probability

1 2 3 4 5Prob |j jw x x x x or x x or x x or x x or x xé ù= = = = = = =ë û . This then readily

yields ( ) ( )1
ˆ ˆ| / |M

j j jj
w f x f x

=
= Q Qå . As a matter of the construction the normalization

1jj
w =å  holds.

For the Rhine 5 representative parameter combinations were derived for every of the 15
major sub-basins separately. Formally the above described procedure for finding appropriate
weights for these representatives must then be carried out for every sub-basin as well. In the
present work the weight estimation was restricted to two major sub-basins: the Moselle and
the Neckar basin. For both of these sub-basins a Reversed Weibull probability distribution
provided a best fit for the set of extreme discharges. The Reversed Weibull distribution is
defined by the following cumulative distribution function:

( )0( | ) exp x xF x
a

s
-é ùQ = - -ê úë û

 for 0x x£ , and

( | ) 1F x Q = for 0x x>

For an impression of the quality of the fits of this distribution to the set of extreme Moselle and
Neckar discharges one is referred to the Figures A5.1 and A5.2. In these figures the empirical
distribution and the identified analytical distribution are compared by means of a Quantile-
Quantile plot. The position of the 5, 25, 50, 75, and 95% quantiles are indicated by the red
dashed horizontal and vertical lines.

Figure A.5.1 Quantile-Quantile plot of the empirical and fitted reversed Weibull distribution of extreme discharges
of the Moselle basin.
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Figure A.5.2 Quantile-Quantile plot of the empirical and fitted reversed Weibull distribution of extreme discharges
of the Neckar basin.

For the Moselle and the Neckar the estimates of the shape parameter a  in

( )0( | ) exp x xF x
a

s
-é ùQ = - -ê úë û

 turned out to be virtually the same and amounted ˆ 2.25a = .

This same â  then yields also equal weights for the five HBV parameter combinations of the
two sub-basins. NB: it is readily verified that after normalization the weights are independent
of the location parameter 0x  and scale parameter s , and only depend on the shape
parameter a .
In the end this gives the following weights 0.0678, 0.221, 0.300, 0.277 and 0.134 for the 5
HBV-parameter combinations.

The so identified equal weights for the Moselle and the Neckar were assumed to hold for all
the other sub-basins as well, and more generally also for the quantile based combination of
the HBV-parameters over the sub-basins (see Section 2.2). The weights obtained are thus
particularly applied for the discharge of the whole Rhine basin at Lobith.

On the basis of the weights { }5

1j j
w

=
 the following expressions are readily obtained for an

estimate of the discharge ( )Q RP  and its spread:

5

1
( ) ( , )HBV jj

m i w Q i j
=

= ×å (A5.1)

( )5 2

1
( ) ( , ) ( )HBV j HBVj

s i w Q i j m i
=

= × -å (A5.2)
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The HBVs  then represents the uncertainty in ( )Q RP  due to the uncertainty in the hydrological
models.
Since the weights provide a ‘complete’ (discrete) probability distribution any other statistical
measure can be derived from these weights as well. In contrast to the situation in Section A4

(where we had to deal with mutual dependencies in the sample { } 1( , ) N

iQ i j
=

) no further
assumptions and/or approximations have now to be applied.

It must yet be recapitulated that mean and spread presented in Equations A5.1 and A5.2 are
conditional with respect to the i-th synthetic weather series.

A.6 Combination of the uncertainties in the climate and hydrological models

The combinations along the columns and rows of the Uncertainty Matrix as described in the
two preceding sections must now be combined to obtain an overall estimate of, and overall
uncertainty in a discharge extreme ( )Q RP .

The final result in Section A.4 for the uncertainty in ( )Q RP  induced by the (uncertainties in

the) weather climate consists of five Gaussian distribution functions ( | , )j j jj m s× . Next, in

Section A.5, probabilities (actually normalised weights { }5

1j j
w

=
) have been derived for the five

sets of HBV model parameter combinations that reflect the uncertainty in the hydrological
models.

Strictly speaking there may be a correlation between the uncertainties in the weather
variables on one hand and the HBV-parameters on the other. The reason is that the
estimates and uncertainties of the HBV parameters are based on the data (and particularly
the historic weather data) used within the calibration of the HBV-models. In this calibration
uncertainties in the data have hardly or not been considered and neither an assessment of
how variations in the weather data affect the estimates of, and uncertainties in, the HBV-
parameters. This is not further investigated and presently it is assumed that the uncertainties
in the model forcing and in the HBV models are fully independent.

Under this assumption of independent weather variables and HBV-parameters, and using
standard formulas for conditional probabilities, it can easily be verified that a combination over
the rows and next the columns of the Uncertainty Matrix yields the following expression for
the probability density function ( )f ×  for a discharge extreme ( )Q RP :

1
(Q) (Q | , )M

j j j jj
f w j m s

=
= ×å (A6.1)

From this distribution ( )f ×  the mean (m) can be computed as the ‘overall’ combined estimate
for ( )Q RP . With jm := ( )WGm j  and : ( )j WGs js =  (see Equations A4.1 and A4.2) this gives
the following result:

( )5
WG1 jj

m w m j
=

= ×å (A6.2)
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The ‘final’ estimate for ( )Q RP  is thus a weighted average of the column wise means that
were found in the combination of the weather climate variations. Since the weights are non-
negative and sum up to 1, we particularly have that:

{ }( ) { }( )1 1
Min Max( ) ( )M M

j jWG WGm m mj j
= =

£ £ (A6.3)

The overall mean m is thus bounded by the minimum and maximum of the marginal means
within the combination of the uncertainties in the climate variables.

From Equation A6.1 also the spread of the distribution ( )f ×  can be computed as a measure
for the uncertainty in the estimate for the discharge. In fact, the variance is given by

( ) ( ) ( )22
2 2 2

1 1
( ) ( ) M M

j j j j jj j
Q f Q dQ Q f Q dQ w wm s m

= =
× × - × × = × + - ×å åò ò  =

( )2
2 2

1 1 1

M M M
j j j j j jj j j

w w wm m s
= = =

æ ö× - × + ×ç ÷
è ø
å å å  =

( )2
2

' '1 ' 1 1

M M M
j j j j j jj j j

w w wm m s
= = =

× - × + ×å å å

In the end this then provides the following expression for the standard deviation s:

( ) ( )25 5 2
WG WG1 1j jj j

s w m j m w s j
= =

= × - + ×é ùë ûå å                           (A6.4)

In this way the overall variance s2 in ( )Q RP  is a superposition of a variance in the ‘marginal’

means { }5

1
( )

jWGm j
=

 on one hand, and a weighted mean of the marginal variances

{ }5

1

2 ( )
jWGs j
=

 on the other.

In the uncertainty matrices that are presented in Chapter 4 (Rhine) and Chapter 5 (Meuse)
the means ( WGm  and HBVm ) and spreads ( WGs  and HBVs ) found for the two marginal
distributions are also listed. Similarly the final estimate or ( )Q RP  (m as computed with
Equation A6.2) and its spread (s as computed with Equation A6.4) are shown in the tables.

From the mean and the spread of ( )Q RP  a symmetric confidence interval of the form

m z sg± ×  can be computed. For a g =95% confidence level zg  will be approximately 1.96. In

theory this (approximation for a 95%) symmetric confidence interval is only valid if ( )Q RP  is
normally distributed. For the most extreme floods this may not be true and even the
assumption of a symmetric distribution is doubtful. This will particularly be the case when the
river’s peak discharges are affected by flooding of floodplains and dike overflows. For such
flow conditions the distribution of ( )Q RP  may be highly skew and become bounded from
above. Skew confidence intervals then provide a much better representation of the
uncertainty. To obtain reasonably accurate estimates for the lower and upper bound of a
skew 95% (or 99%, or even higher) confidence levels the sample size must be sufficiently
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large, however. In the present case the sample size of empirical distribution of the ( )Q RP
(i.e. the dimension of the Uncertainty Matrix, and thus the number of available GRADE
estimates { }( , )RPQ i j  tends to be too small to satisfy this demand. For this reason we

presently restrict to symmetric confidence intervals only. More ‘dense’ evaluations of the
uncertainty matrix (GRADE computations for a much larger number of variations of the model
forcing and/or the HBV-parameter combination), and/or additional theoretical assessments
how to take skewness more thoroughly into account must be mentioned as important future
topics for improvement of the present uncertainty analysis.
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B Regression of HBV and SOBEK estimates of extreme Rhine
discharges at Lobith

In Section 4.2 and Section A.2 of Appendix A it has been argued that to save computation
time SOBEK runs were ‘merely’ carried out for the reference synthetic weather series
combined with the 50% HBV parameter set. These GRADE reference simulations were of
length 50,000 years. From the results of the HBV and SOBEK simulations the set of

corresponding annual extreme discharges ( ){ }50000, , SOBEK

1
,Max HBV Max

k k k
Q Q

=
 was selected. From

this set a parameterized formula ( | )f × Q  is identified to “predict” the ,Max SOBEKQ  from the
,Max HBVQ . The calibrated function ˆ( | )f × Q  can then be applied to all entries of an HBV

uncertainty matrix to obtain a suitable approximation of this matrix for the case it would have
been generated with SOBEK.

Such a formula ( | )f × Q  was derived in twofold: first for the case that the ,Max SOBEKQ  were

computed with SOBEK without facilities for flooding, and secondly for the ,Max SOBEKQ
according to the SOBEK model in which effects of flooding are included. In this section the so
identified functions ( | )f × Q  are presented below.

B.1 SOBEK without flooding
Figure B.1.1 shows a scatterplot (blue symbols *) of the mutually corresponding Lobith annual

discharge extremes ( ){ }50000, , SOBEK

1
,Max HBV Max

k k k
Q Q

=
 that were found with the HBV models and

the SOBEK model without flooding. As mentioned above the data points are for the GRADE
simulation with the reference model forcing combined with the reference HBV parameters.

Despite significant scatter, this figure reveals a reasonably unique and monotonous relation
between the HBV and SOBEK extremes. Through regression a formula has been identified to
‘translate’ HBV extremes to a corresponding SOBEK value. The adopted regression formula
for , , SOBEK: Max HBV Maxf Q Q× ×®  is of the form:

( ) ( )( )( )1 2 3 4 5 3( | ) 1 expf Q Q n Qa a a a a a a= + × - + × + × -l
r (B.1.1)

For the parameters a
r  in this formula the following estimates were found: 1̂a = 14342 m3/s,

2â = 0.915, 3â = 15203 m3/s, 4â = 466 m3/s, and 5â = 4.37·10-4 s/m3. The quality of this
regression can be verified from the red curve in Figure B.1.1. This quality is by all means
reasonable for the whole domain spanned by the data.
Note that shape of the regression curve is slightly curved but remains close to linear (and also
close to identity) over the whole domain of extreme discharges. For the highest discharges
(higher than 16,000 m3/s, say) the slope of the regression curve tends to increase and
become slightly larger than one.
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Figure B.1.1 Scatterplot of SOBEK based annual discharge extremes at Lobith versus the ones according to
HBV. In this case for the SOBEK model without flooding

B.2 SOBEK with flooding
Figure B.2.1 shows a scatterplot (blue symbols *) of the mutually corresponding Lobith annual

discharge extremes ( ){ }50000, , SOBEK

1
,Max HBV Max

k k k
Q Q

=
 that were found with the HBV model and

the SOBEK model with flooding. The data points are again for a GRADE simulation of length
50,000 years with the reference model forcing combined with the reference HBV parameters.

The same regression formula was applied as before for the modelling of the relation of the
HBV and SOBEK extremes: see Equation B.1. In this case the following estimates were
found for the parameters a

r
 in the formula: 1â = 13754 m3/s, 2â =0.2611, 3â = 14634 m3/s,

4â = -675.1 m3/s, and 5â = -9.71·10-4 s/m3.

The quality of this regression can be verified from the red curve in Figure B.2.1. This quality
compares well to the one where flooding was ignored. Effects of flooding become notable as
soon as the Lobith discharge is greater than about 12,000 m3/s. For larger values (actually
higher return periods than about 50 year) the Lobith discharge still increases, and in a linear
way, but with a slope that is significantly less than on the left hand side. The slope in the
SOBEK-HBV curve is approximately 0.27 for discharges greater than 16,000 m3/s.
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Figure B.2.1 Scatterplot of SOBEK based annual discharge extremes at Lobith versus the ones according to
HBV. In this case for a SOBEK model with modelling of flooding included

B.3 Comparison of HBV and SOBEK ± Flooding
The regression curves shown in Figures B.1.1 and B.2.1 provide a convenient comparison of
the SOBEK and HBV based extreme discharges. This is illustrated by the Figures B.3.1 and
B.3.2. In Figure B.3.1 the two regression curves for the conversion of HBV to SOBEK (with
and without flooding, and as already shown in Figures B.1.1 and B.2.1) are displayed again,
but now in one figure. In Figure B.3.2 the discharges according to SOBEK with flooding is
plotted versus the discharges of the corresponding SOBEK-model without flooding. From
these figures it can be readily verified for which discharges effects of flooding and overflows
become notable. Figure B.3.2 particularly clarifies the amount of flooding induced reduction of
the Lobith discharges.
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Figure B.3.1 Relation of the Lobith discharges according to HBV and SOBEK. In blue for the SOBEK model without
flooding, and in red for the SOBEK model where flooding is taken into account

Figure B.3.2 Relation of the Lobith discharges according to SOBEK, with and without modelling the effects of
flooding
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C Regression of HBV and SOBEK estimates of extreme
discharges of the Meuse at Borgharen

Figure C.1 shows a scatterplot (blue symbols *) of the mutually corresponding Borgharen

annual discharge extremes ( ){ }50000, , SOBEK

1
,Max HBV Max

k k k
Q Q

=
 that were found with the HBV model

and the SOBEK model (no flooding). The data points are for a GRADE simulation of the
Meuse for a time period of 50,000 years with the reference model forcing combined with the
reference HBV parameters.
The same regression formula was used as for the Rhine (see Equation B.1.1) to “predict” the

,Max SOBEKQ  from the ,Max HBVQ . In the uncertainty analysis of Chapter 5 the so calibrated

function ˆ( | )f × Q  was used to translate all entries of the HBV uncertainty matrix into a suitable
approximation of this matrix that would have been found with SOBEK.

For the parameters in the regression model the following estimates were identified: 1â =

792.4 m3/s, 2â =1.285, 3â = -806.6 m3/s, 4â = -2409 m3/s, and 5â = 1.81·10-4 s/m3.
With these parameters the ‘hindcast’ of the regression formula is shown by the red curve in
Figure C.1. It is readily verified that this curve hardly deviates from the diagonal plotted by the
dashed black line. In fact, in a separate analysis it was found that without notable loss of
quality the identity relation , SOBEK ,Max Max HBV

k kQ Q=  could have been used as well.

Figure C.1 Scatterplot of SOBEK based annual discharge extremes for the Meuse at Borgharen versus the ones
according to HBV. In this SOBEK model flooding is not included


