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Linearity aspects of the ensemble of data assimilations technique

L. Megner,a* D. G. H. Tan,b H. Körnich,c L. Isaksen,b A. Horányi,b A. Stoffelend and G.-J. Marseilled
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We examine the linearity of the Ensemble of Data Assimilations (EDA) technique with
respect to the amplitude of the applied observation perturbations. We provide explicit
examples to assess the linear relationship between such modifications of the observing
system and the resulting changes in the EDA ensemble spread. The results demonstrate
that, for a state-of-the-art numerical weather prediction (NWP) system, such linearity
between the applied observation perturbations and the EDA ensemble spread holds well
for temporal and spatial regimes relevant to global medium-range weather prediction:
specifically, for forecast lead-times of up to approximately 5 days, in the vertical throughout
the troposphere up to the lower and middle stratosphere and for broad horizontal scales.
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1. Introduction

Realizing further advances in global numerical weather prediction
depends on making progress across a range of scientific and
technical issues. Two prominent issues are (i) evolution of
the Global Observing System and (ii) use of ensemble-based
techniques, not only for providing uncertainty estimates of
‘deterministic forecasts’ but also as a component of hybrid data
assimilation (Buehner et al., 2010; Barker et al., 2012; Bonavita
et al., 2012). Tan et al. (2007) estimated the expected impact of
the European Space Agency’s planned Atmospheric Dynamics
Mission (ADM)–Aeolus Doppler Wind Lidar observing system
using an ensemble-based approach, specifically an early version
of ECMWF’s Ensemble of Data Assimilations (hereafter EDA),
but did not have the resources to test all of the underlying
assumptions. The approach is increasingly being adopted
for assessing other potential observing-system modifications
(Harnisch et al., 2013), so it is timely to complement the previous
work by addressing some of the assumptions not examined to
date. By reporting such work in this article, we seek to strengthen
the scientific foundations underpinning the use of EDA-related
techniques for assessing future observing systems.

This article arose from interest in the suitability of EDA-related
approaches for assessing future observing-system modifications.
Such assessments, whether EDA-related or not, invariably involve
simulating the quality of the future observational data and most
require the defining of reference atmospheric states for evaluating
the expected impact of the future observations. In this context,
the traditional approach has been to conduct Observing System
Simulation Experiments (OSSEs), where a ‘nature run’ serves as
both the reference atmospheric state (for verification purposes)

and also input to the simulations of the entire observing system
(baseline and modified: Stoffelen et al., 2006; Masutani et al.,
2010). Use of the EDA approach as an alternative to OSSEs (Tan
et al., 2007) was in part motivated by the need for methods that do
not incur the computational cost of generating the nature run and
associated simulations of the entire baseline set of observations.

A key underlying assumption when applying the EDA
technique to assess future observing systems concerns its linearity
with respect to the magnitude of the observation perturbations.
This assumption has not been tested extensively to date and is
thus the focus of the current article. At first glance, it might
seem rather straightforward to devise suitable experiments to
examine such linearity properties. However, in developing the
experimental protocols we encountered a number of subtleties,
which we explain in some detail below for the benefit of readers
who may wish to use EDA-related approaches in future. At the
same time, we retain in our protocols some valuable aspects of
the widely accepted approach for validating OSSEs, for example
by examining the applicability of the assumption for a well-
understood but reduced observing system (here chosen to be the
Global Observing System with radiosondes and wind-profilers
excluded). Use of a reduced observing system also facilitates
examination of calibration issues in that it permits the generation
of a quasi-independent reference dataset (here chosen to be the
analyses from a separate data assimilation experiment for the full
Global Observing System) for the purposes of defining forecast
error.

In section 2, we present background aspects of EDA theory
needed to understand our experimental set-up and results, which
are presented in sections 3 and 4 respectively. Conclusions are
given in section 5.
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2. Background

2.1. Error, uncertainty characterization and EDA spread

We stress the importance of keeping separate the concepts
of analysis/forecast error, uncertainty characterization and
ensemble spread. We use the term analysis/forecast error to
refer to a specific realization of the difference between an
analysis/forecast and the (typically unknown) truth, expressed
quantitatively for relevant geophysical parameters. From large
samples of analyses/forecasts, together with limited information
about the truth (i.e. from actual but imperfect observations),
the concept of error statistics naturally arises (including
quantification of correlated and uncorrelated components).
Uncertainty characterization encompasses attempts to describe
error statistics, in terms of quantitative statistical entities such
as moments of statistical distributions (e.g. means, variances,
skewness, kurtosis, covariances) but also in terms of qualitative
elements such as recognition of the difficulty in faithfully
representing geophysical forcings and processes (two examples
being specification of sea-surface temperature and subgrid
parametrization). Finally, we take the unscaled ensemble spread to
have its usual statistical meaning, namely the standard deviation
with respect to the ensemble mean.

At present, ECMWF’s primary use of the EDA technique is
to provide flow-dependent initial-state uncertainty estimation
for the Ensemble Prediction System (Buizza et al., 2008) and to
provide a scaled ensemble spread as a proxy for background-
error statistics within the high-resolution deterministic data
assimilation system (Isaksen et al., 2010; Bonavita et al., 2012).
The scaled ensemble spread is a calibrated transformation of
the unscaled ensemble spread as described by Isaksen et al.
(2010). The unscaled ensemble spread is generated through three
distinct processes: (i) perturbations to the boundary forcings and
assimilated observations, (ii) propagation of initial-condition
spread by the forecast model and (iii) a stochastic physics
representation of ‘model error’. The initial-condition spread
arises from the ensemble analyses and includes the effects of all
these processes from previous analysis cycles. In practice, the
ensemble typically includes one additional ‘control’ member in
which the perturbations from these processes are not applied. For
a detailed mathematical description of EDA, see e.g. Žagar et al.
(2005) and Tan et al. (2007).

Improving the correspondence between EDA unscaled
ensemble spread and actual background-error statistics of a high-
resolution ‘deterministic’ data assimilation system remains an
active area of research (Bonavita et al., 2012). Aspects currently
under investigation include better representations of (i) stochastic
physics, (ii) correlated observation error, (iii) correlated model
error (iv) sampling error due to small ensemble sizes and (v)
increased spatial resolution of the ensemble background fields. A
measure of the need for improvements in these representations
is provided by the calibration transformation from unscaled
to scaled ensemble spread. The ECMWF implementation of
this transformation consists of a specification of calibration
factors (multiplicative scaling coefficients) based on obtaining
a statistically consistent spread–skill relationship. For a perfect
ensemble, the transformation would be the identity operation, i.e.
all calibration factors would be unity. The calibration currently
results in different factors for the Tropics, Northern Hemisphere
and Southern Hemisphere Extratropics, respectively. It also
incorporates altitude-dependence, reflecting spatial variations in
observation coverage and formulation of the stochastic physics (as
will be discussed in connection with Figure 1 in section 3.2) and
dependence on the geophysical parameter under consideration.
Factors of order 1.3 are currently applied; these are a substantial
improvement over those applied in earlier implementations
(Isaksen et al., 2007) (which were of order 2), reflecting the
research progress made in recent years (Bonavita et al., 2011,
2012). Moreover, we anticipate that current developments in

EDA will soon reduce the need for any statistical calibration. It
is worth noting that a similar type of inflation that treats both
sampling and model errors is required for current Ensemble
Kalman Filter implementations (Whitaker and Hamill, 2012).

2.2. EDA for assessing future observing systems

Notwithstanding the need for further improvements in the
EDA technique, it has been recognized that assessment of
future observing systems is a valuable secondary application
(Tan et al., 2007; Harnisch et al., 2013). In this context, the
addition/withholding of a sizeable component of the observing
system translates into a change in the unscaled ensemble spread
and, through the associations described in section 2.1, provides
some expectations of analysis/forecast error reduction.

The correspondence between changes in unscaled ensemble
spread and traditional measures of observing-system impact
is not always straightforward or intuitive. It is important to
remember that an EDA ensemble is typically constructed to
represent uncertainty in the unperturbed control member. In
the standard practice for assessing observing-system components
with the EDA technique, each observation is perturbed (degraded)
by a random noise contribution commensurate with the size of the
observation error (as specified by the underlying data assimilation
system). Observations from a future observing system, which
must be simulated (as is the case in OSSEs), are perturbed in the
same way. The standard diagnostic in the EDA approach is the
change in the ensemble spread arising from the introduction of
the additional observing system (smaller spread being associated
with reduced uncertainty and thus beneficial impact).

In such practice, each ensemble member is constructed to
be ‘sub-optimal’ in two senses: (i) with respect to the control
member, in the sense that the observations are degraded, and
(ii) with respect to the ‘optimal’ analyses/forecasts that could
be achieved with the degraded observations by re-adjusting the
assumed observation errors. We ask the reader to keep in mind
that these aspects are actually important ingredients for making
the EDA approach suitable for observation impact assessment.

The situation is further complicated when changes in scaled
ensemble spread are used as a proxy for observing-system impact,
because of the additional role of the calibration transformations.
Fortunately, the promising research developments mentioned in
section 2.1 give us confidence that scaling of unscaled ensemble
spread will soon become unnecessary. This places us in a
position to examine the properties of unscaled ensemble spread
for assessing the linearity properties of EDA with respect to
observation perturbation magnitude. However, we remind the
reader that, in an EDA system involving a substantial calibration
transformation, the magnitude of unscaled ensemble spread will
not be comparable to actual forecast errors.

It remains to define the experimental set-up and diagnostics
that will permit us to examine the linearity properties of EDA
with respect to observation perturbation magnitude.

3. Experimental set-up

3.1. EDA configuration

The EDA configuration used in this study was an instance of
the ECMWF Ensemble of 4D-Var Data Assimilations (Isaksen
et al., 2010), i.e. using explicit perturbations of the assimilated
observations, the sea-surface temperature field and the model
physics. (In all other respects, the underlying data assimilation
system was kept fixed.) All assimilated observations were
randomly perturbed by sampling a Gaussian distribution with
zero mean and standard deviation equal to the expected
observation error multiplied by an observation perturbation
scaling factor P. Observation-error correlations were taken into
account for atmospheric motion vectors (Bormann et al., 2003).
Boundary-condition fields for sea-surface temperature were also
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Figure 1. Unscaled ensemble spread σ (P = 1.0) (solid curves) and estimated forecast error σOSE (dashed curves) for the 12 h zonal-wind forecasts. Panel (a) shows
the Northern Hemisphere extratropics (90◦N–30◦N), (b) the Tropics (30◦N–30◦S) and (c) the Southern Hemisphere extratropics (30◦S–90◦S).

perturbed with correlated errors using the methodology currently
applied in the ECMWF seasonal ensemble forecasting system
(Vialard et al., 2005). The forecast model uncertainties were
represented by the Stochastic Perturbation of Physics Tendencies
(SPPT) scheme (Palmer et al., 2009; Shutts et al., 2011), which
perturbs parametrization tendencies at every time step of the
model integration. The magnitude of the perturbation of the
stochastic physics was reduced above 100 hPa and reached
zero at 50 hPa, so that the only explicit perturbations above
50 hPa were those of the observations. The variational bias
correction scheme (primarily used for satellite data) was only
cycled for the control assimilation and was then used by all
perturbed ensemble members. The data assimilation system
component of the configuration was Cycle Cy35r2 of the
ECMWF Integrated Forecast System (IFS), with analyses and
innovation computations performed at TL399 spectral truncation
(approximate model grid of 50 km spacing). The inner loops,
which generate the analysis increments of the multi-incremental
4D-Var (Courtier et al., 1994), had spectral truncations at TL95
and TL159, respectively. The forecast model component had
91 vertical levels that extended from the surface up to 0.1 hPa
(around 65 km). Within the EDA framework, the perturbations to
the observations, boundary conditions and forecast model in one
data assimilation cycle give rise to an ensemble of analyses for that
cycle and their influence propagates further to the ensemble of
background fields for subsequent assimilation cycles (see Žagar et
al., 2005; Isaksen et al., 2010). The spread of the EDA background-
state fields typically reaches a steady-state level after a 3–7 day
spin-up period, starting from identical background fields.

In our configuration, a single EDA ensemble consisted of a
control (non-perturbed) assimilation and ten perturbed members
and was conducted with a fixed value of the observation
perturbation scaling factor P. Three distinct EDA ensembles were
generated, corresponding to observation perturbation scaling
factors of P = 1.0, 0.75 and 0.5, respectively. The assimilations
were performed for 15 days (January 2007), of which the first
6 days are considered a spin-up period and thus excluded from

the diagnostics. While the overall duration is sufficient for the
current investigation of the broadest spatial scales, a longer
duration would assist in examining smaller spatial scales.

3.2. Linearity diagnostics and ensemble calibration

The diagnostics examined are the (unscaled) ensemble spread
from the three ensembles (P = 1.0, 0.75, 0.5), defined for a fixed
forecast lead time as

σ (P) =
[

1

K

K∑
k=1

1

N − 1

N∑
n=1

(xf
n(P) − 〈xf (P)〉)2

k

]1/2

, (1)

where n ranges over all N ensemble members and k over all K
analysis cycles and 〈xf 〉 denotes the ensemble mean.

Under assumptions of linearity, the corresponding ensemble
variances (squared spread) are expressible in the form (see
Appendix, Eq. (A20) for details)

σ 2(1.0) = K2
1σ

2
η + K2

2σ
2
ξ + higher order terms, (2)

σ 2(0.75) = 0.752K2
1σ

2
η + K2

2σ
2
ξ + higher order terms (3)

and

σ 2(0.5) = 0.52K2
1σ

2
η + K2

2σ
2
ξ + higher order terms, (4)

where P2K2
1σ

2
η corresponds to the variance induced by the

observation perturbations and K2
2σ

2
ξ to the variance induced

by stochastic physics and boundary perturbations.
Motivated by Eqs (2) and (4), we define an estimate of σ 2(0.75),

here denoted by σ̂ 2, in terms of a linear combination of σ 2(1.0)
and σ 2(0.5):

σ̂ 2 = ασ 2(0.5) + (1 − α)σ 2(1.0), (5)
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where α is (1 − 0.752)/(1 − 0.52). Hence, subject to negligibility
of the higher order terms, the validity of the linearity assumption
then hinges on whether σ̂ is a good approximation to σ (0.75).
Note that the EDA configuration may also be investigated for
linearity with respect to the stochastic physics and boundary
perturbation inputs, but this is not within the scope of this
manuscript, which focuses on observation inputs.

As mentioned in the Introduction, the observing system input
examined in our linearity investigations consists of the Global
Observing System with radiosondes and wind-profilers excluded.
This choice was made to facilitate examination of calibration
of ensemble spread for our experimental set-up. To do so,
it is necessary to compare unscaled ensemble spread with a
corresponding estimate of forecast error. Accordingly, we also
conducted one further data assimilation experiment with the full
Global Observing System, thereby generating a quasi-independent
reference dataset of ‘baseline analyses’ xba. This allows us to
estimate the forecast error of the control member of the P = 1.0
ensemble and compare it with the usual metric for an observing-
system experiment involving denial of particular observations:

σOSE =
[

1

K

K∑
k=1

[(xf − xba)k − (xf − xba)]2

]1/2

. (6)

The use of a maximally independent baseline experiment as
verification reference dataset was recently recommended by a
WMO expert team in preference to the alternative technique of
self-verification (using the analysis of each experiment: Andersson
and Sato, 2012). We do our best to adopt this recommendation
by verifying the forecasts xf of the P = 1.0 ‘radiosonde-denial’
system against the analyses xba from the baseline ‘full-observing’
system.

Before proceeding to the next section, where we examine
the validity regime of the EDA technique’s linearity assumption
with respect to observation perturbation magnitude, we therefore
assess the significance of the calibration transformation that
would make unscaled ensemble spread comparable to forecast
error and compare these two quantities.

The solid and dashed curves in Figure 1 show, respectively,
the unscaled ensemble spread σ (1.0) and the control-member
forecast-error estimate σOSE (both for a forecast lead time of
12 h and for the zonal-wind component). It is apparent that
the calibration factors required to transform unscaled ensemble
spread to forecast-error estimate are fairly constant for the
Northern Hemisphere, apart from an increase above 100 hPa.
There is a more pronounced dependence on altitude in the
Tropics and Southern Hemisphere. Overall, the calibration factor
is of order 1.5, a value that is in keeping with the trend from
higher values in the past (of order 2 in 2006, see section 2.1) and
those currently applied operationally (of order 1.3).

In Figure 2 we compare the geographical distribution of the
unscaled ensemble spread σ (1.0) (first column) and the control-
member forecast-error estimate σOSE (second column). In order
to simplify the visual comparison of the right- and left-hand
panels, varying colour scales have been used. In general, the
two approaches agree rather well on the spatial distribution of
the forecast quality, at least in the troposphere and up to the
lower stratosphere. However, at 10 hPa there are clearly spatial
differences between σ (1.0) and σOSE, with σOSE being much larger
at northern latitudes. At the same time, Figure 1 showed that the
calibration factor increases at these altitudes, meaning that the
magnitudes of the two quantities differ. There could be many
reasons for these differences, including the following.

(1) The stochastic physics based perturbations used in the EDA
ensemble are reduced at higher altitudes, as described in
section 3.

(2) The observation errors for radiosondes in the stratosphere
might be underestimated.

(3) The spatially uncorrelated perturbations give insufficient
increments at larger scales. This would mean that the large-
scale Rossby waves that propagate to the stratosphere are
less perturbed than they should be, which would lead to
insufficient spread in the stratosphere. Since the easterlies
in the summer hemisphere do not allow planetary waves
to propagate into the stratosphere, this would explain the
observed asymmetry between the Northern/winter and
Southern/summer Hemispheres.

(4) The large-scale planetary wave perturbations may need a
longer forecast time to spin up, as they are not baroclinically
unstable and not as quickly triggered by the observation
perturbation as the shorter baroclinic waves.

These differences show that, for a current state-of-the-art
NWP system, calibration factors that vary with both altitude and
geographical location are needed to interpret the EDA spread as
a forecast-error estimate. However, as discussed above, ensemble
spread is intimately connected to the stochastic representation of
forecast uncertainty, a research area that is fast progressing. Thus
we can expect these differences to decrease as spatial resolution
and general skills in perturbation modelling progress.

We have already noted that, in an EDA system involving a
substantial calibration transformation, the magnitude of unscaled
ensemble spread will not be comparable to actual forecast errors.
Nevertheless, the linearity properties of interest in this article are
independent of the precise values of the calibration factors, and so
we present the linearity diagnostics in terms of unscaled ensemble
spread.

4. Linearity results

The goal of this section is to help the reader to assess the validity
regime of the EDA technique’s linearity assumption with respect
to observation perturbation magnitude. Figures 2–4 show a range
of characteristics of unscaled EDA spread. Taken together, the
figures show in condensed form the linearity properties of EDA
spread in the time dimension (as measured by forecast ‘length’ or
‘lead time’) and also the spatial dimensions (vertical profiles and
horizontal maps at a range of pressure levels).

The solid curves in Figure 3 show the 500 hPa global average of
the EDA spread as a function of forecast length (lead time) for the
three different values of P. Linearity can be assessed by comparing
the curve for P = 0.75 with the approximation σ̂ (dashed curve).
The linear relationship gradually degrades as the forecast length
is increased, but holds reasonably well up to forecast lengths of
approximately 5 days. For 10 day forecasts, the two ensembles with
larger perturbations (1 × η and 0.75 × η) both show the same
spread. This degradation of the linear relationship when reaching
longer forecasts is to be expected, since the impact of observations
on the spread of the system is approaching saturation. One could
consider it surprising that linearity holds for forecast lengths as
large as 5 days.

For insight into the vertical dependence, Figure 4 shows how
the global average of the EDA spread varies with altitude (pressure)
at a forecast length of 12 h. As expected, the EDA spread is reduced
with decreasing perturbations at all altitudes. The dashed black
line represents the approximation σ̂ . As seen, this is very close to
σ (P = 0.75) throughout the domain. In terms of global average,
the linearity relationship thus appears to hold reasonably well in
both the troposphere and the stratosphere.

For the horizontal dependence, Figure 2 shows the spatial
distribution of EDA spread for the experiment with full
perturbations (P = 1.0, second column). The third column shows
the linear approximation σ̂ , which is visually indistinguishable
from σ (P = 0.75) and so the latter is not shown. Instead, the
spatial correlations between σ̂ and σ (P = 0.75) are given as the
value C in the figure and are consistently high (above 0.99) at all
altitudes. Further, we show in the fourth column that the relative
difference between σ̂ and σ (P = 0.75) shows agreement to within
10% (note the different colour scale for relative difference in the
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Figure 2. The 12 h EDA spread in zonal wind. From left to right, the columns show estimated control-member forecast error σOSE, unscaled ensemble spread
σ (P = 1.0), linearity approximation σ̂ and the relative difference measure [σ̂ − σ (P = 0.75)]/σ (P = 0.75). From top to bottom, the rows show 10, 100, 500 and
850 hPa. It is clear that this difference is small and mostly consists of random noise (note the different colour scale used for the rightmost column).
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observation perturbation amplitude and the resulting EDA spread.

fourth column) and a regional dependence, comprising essentially
random fluctuations. Thus the linear relationship between the
observation perturbation magnitude and the EDA spread appears
to hold not only in the global average, as shown in Figure 4, but
also in every part of the globe.
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5. Conclusions

We have studied the ability of the EDA approach to estimate
forecast errors and examined the linear relationship between the
magnitude of the observation perturbations and the resulting
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ensemble spread. In order to check the assumed linearity between
the observation perturbation magnitude and the resulting EDA
spread, we compared three experiments: one following standard
practice for determining the observation perturbations, selected
to represent observation and model errors realistically, one where
the perturbations were reduced to three-quarters of the standard
perturbations and one where the perturbations were reduced to
half of the standard perturbations. We find an almost perfect
linear relationship between the perturbation magnitude and the
resulting EDA spread. This relationship remains valid not only
for the global average but also for broad spatial scales and in
the time domain up to day 5. The linear relationship gradually
degrades as the forecast length is increased beyond 5 days and is
fully broken down in 10 day forecasts. A degradation of the linear
relationship for longer forecasts is indeed to be expected, as the
spread of the system approaches saturation.

It is emphasized that the underlying data assimilation system
and forecast model used in this study behave as a linear system
for input observation perturbations, without necessarily implying
that the system is linear with respect to other changes, or optimal.
For example, we consider it an open question whether EDA
spread is linear for other system changes such as modifying
assumed observation errors.

By demonstrating the fidelity of the linear approximation
on 3–5 day time-scales, our results support the use of EDA
for the assessment of observing-system changes in the context
of medium-range weather forecasts. Such support will be
strengthened further by improvements in EDA implementations,
particularly those that reduce the need to invoke non-unity
calibration factors in the transformation from unscaled to scaled
ensemble spread.
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Appendix

This Appendix provides a short summary of the mathematical
motivation behind EDA adapted from Žagar et al. (2005) and
explains the theoretical reasoning behind Eqs (2)–(4).

The assimilation system, denoted by f , uses the background
state xb and observations y to produce an analysis

xa = f (xb, y), (A1)

which is used as initial state for a forecast model M that produces
the forecast xf for time T:

xf (T) = MT(xa). (A2)

Denoting the true state xt and the true values of the observed
quantities yt, we can define the observation, background and
analysis errors as

εo = y − yt, (A3)
εb = xb − xt, (A4)
εa = xa − xt. (A5)

We now Taylor-expand Eq. (A1) to obtain the error of the
analysis:

εa = ∂ f (xt, yt)

∂xb
εb + ∂ f (xt, yt)

∂y
εo + O(ε2). (A6)

Similarly we write the error of the forecast as

εf (T) = ∂MT(xt)

∂x
εa + εm(T) + O(ε2), (A7)

where εm(T) is the model error. Let us now consider an analysis
with random perturbations ζ and η to the background and
observations, respectively:

x̂a = f (xb + ζ , y + η). (A8)

The error of this analysis is

ε̂a = ∂ f (xt, yt)

∂xb
(εb + ζ ) + ∂ f (xt, yt)

∂y
(εo + η) + O(ε2). (A9)

The difference ˆδxa between two analyses made with perturbations
(ζ1, η1) and (ζ2, η2) is

ˆδxa = ∂ f (xt, yt)

∂xb
δζ + ∂ f (xt, yt)

∂y
δη + O(ε2), (A10)

where δζ = ζ2 − ζ1 and δη = η2 − η1.
The forecast obtained with initial conditions given by the

analysis x̂a and with an additional perturbation ξ to the physics
in the model is

x̂f = MT(x̂a) + ξ. (A11)

The error of this forecast is

ε̂f (T) = ∂MT(xt)

∂x
ε̂a + ξ + εm(T) + O(ε2). (A12)

The difference between two forecasts, from independently
perturbed analyses, is thus

δx̂f (T) = ∂MT(xt)

∂x
δx̂a + δξ + O(ε2). (A13)

By inserting Eq. (A10) into Eq. (A13), we obtain

δx̂f (T) =∂MT(xt)

∂x

∂ f (xt, yt)

∂xb
δζ

+ ∂MT(xt)

∂x

∂ f (xt, yt)

∂y
δη + δξ + O(ε2).

(A14)

The background field is not perturbed explicitly (see section
3), but becomes perturbed as perturbations in the model and
observations propagate to the background. Thus, the perturbation
of the background, δζ , is a function (g) of δξ and δη:

δx̂f (T) =∂MT(xt)

∂x

∂ f (xt, yt)

∂xb
g(δη, δξ )

+ ∂MT(xt)

∂x

∂ f (xt, yt)

∂y
δη + δξ + O(ε2).

(A15)

If there is a linear relationship between the perturbations δη and
δξ and the EDA spread, the functions f , MT and g must behave
sufficiently linearly. If this assumption is true, we can simplify Eq.
(A15) to

δx̂f (T) = κ1δη + κ2δξ , (A16)

where κ1 and κ2 are linear operators and terms O(ε2) have been
omitted.

If the perturbations represent the observation and model errors
fully, the vector (δx̂a, δξ )T has a covariance matrix equal to twice
that of (εa, εm(T))T (Žagar et al., 2005). Comparison between
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Eqs (A7) and (A13) shows that the covariance matrix of δx̂f (T) is
twice that of εf (T). In other words, the variance of the differences
between differently perturbed forecasts initialized with differently
perturbed analyses can be written as

σ 2

δx̂f
= 2 × σ 2

εf , (A17)

where σ 2
εf is the variance of the unperturbed forecast initialized

with an unperturbed analysis. Given that the variance of the
difference between random variables is twice the variance of the
random variables in question, the variance of the EDA ensemble
(for clarity reasons we use the notation σ 2

EDA here in the Appendix,
although the EDA ensemble variance is denoted simply by σ 2 in
the main part of the work) becomes

σ 2
EDA = σ 2

εf . (A18)

This means that the ensemble spread of the perturbed forecasts
gives an estimate of the forecast error of the unperturbed
assimilation system. From Eqs (A17) and (A18), the variance

of δx̂f (T) is 2 × σ 2
EDA. Thus,

2σ 2
EDA = σ 2

δx̂f
= κ2

1 σ 2
η + κ2

2 σ 2
ξ . (A19)

In order to simplify the calculations, we set κ2
1 = 2K2

1 and
κ2

2 = 2K2
2 , where K1 and K2 are also linear operators, yielding

σ 2
EDA = K2

1σ
2
η + K2

2σ
2
ξ , (A20)

which can be compared with Eqs (2)–(4).
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Žagar N, Andersson E, Fisher M. 2005. Balanced tropical data assimilation
based on a study of equatorial waves in ECMWF short-range forecast
errors. Q. J. R. Meteorol. Soc. 131: 987–1011, doi: 10.1256/qj.04.54.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)




