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1 Introduction

The assessment of temporal changes in global mean sea 
level (GMSL) is an area of intense study (e.g. Church and 
White 2006, 2011; Cazenave et al. 2014; Slangen et al. 
2014; Haigh et al. 2014). Tide gauge observations indicate 
that GMSL rose in the order of 1.7 ± 0.2 mm/year dur-
ing the twentieth century (Church et al. 2013) however the 
rate of local sea level rise may differ substantially from the 
global rate due to, for example, surface winds, ocean cur-
rents, spatially varying ocean heat uptake, spatial variations 
in salinity and variations in the Earth’s gravity field (Cham-
bers et al. 2002; Katsman et al. 2008; Church et al. 2013).

In addition to these spatial variations, sea level change is 
also subject to significant fluctuations in time. The sea sur-
face height (SSH) is in dynamic equilibrium with a number 
of forcing mechanisms each operating on differing spatial 
scales and within differing time scales. The variation of 
SSH in time (sea surface height variability; SSV) is there-
fore a superimposition of a many SSH variation signals 
arising from a number of forcing factors. Indeed, there is 
evidence that SSV operates on a huge range of time scales 
ranging from the sub-day scale to decades and even longer 
(e.g. Sturges and Douglas 2011; Calafat et al. 2012; Dan-
gendorf et al. 2014a). Understanding SSV and its forcing 
mechanisms is a prerequisite to eventually remove its con-
tribution from the SSH time series when conducting SSH 
trend analyses or validating future projections of sea level 
change.

This paper aims to examine/quantify the SSV in the 
North East Atlantic (NEA) with a particular focus on the 
South East North Sea and to identify its underlying drivers.

Studies in this region have identified a number of forcing 
mechanisms of SSV for the NEA with some of them being 
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linked to the NAO, especially during winter (Tsimplis and 
Shaw 2008). Atmospheric forcing, in terms of barotropic 
wind and pressure effects, has been shown to be a dominant 
forcing factor (Wakelin et al. 2003; Woolf et al. 2003; Yan 
et al. 2004). However, these barotropic influences seem to 
diminish after a few years (Dangendorf et al. 2013). On 
longer timescales baroclinic adjustment processes become 
more important (Chen et al. 2014). Recent studies, for 
instance, suggest that on longer timescales there is a large-
scale coherent response of the coastal waters to longshore 
winds in the form of propagating boundary waves in the 
NEA (Sturges and Douglas 2011; Calafat et al. 2012, 2013; 
Dangendorf et al. 2014a). Changes in ocean heat content 
also influence regional SSV (Bilbao et al. 2015) as it leads 
to expansion or contraction of the water column, affects 
ocean circulation and density patterns as well as the melt-
ing of (land) ice (Gornitz et al. 1982).

Much work investigating the mean sea level and SSV in 
the North Sea has used tide gauge data as data records span 
several decades and in some cases centuries (e.g. Yan et al. 
2004; Woodworth et al. 2010; Calafat et al. 2012, 2013; 
Richter et al. 2012; Calafat and Chambers 2013; Dan-
gendorf et al. 2014a). Tide gauge studies have provided a 
wealth of detailed information relating to SSV at specific 
stations which are usually situated coastally and inher-
ently limited in spatial coverage. A further limitation of tide 
gauge data however is that they are not a priori representa-
tive of open ocean processes or mechanisms that affect SSH 
from a remote location. Supplementary data sets such as 
altimetry, steric heights from models or assumptions from 
consistency between tide gauge locations have been used 
to augment tide gauge data in order to connect them to the 
spatial scale and make assumptions relating to processes 
that operate over a spatial domain (Chambers et al. 2002; 
Dangendorf et al. 2014a). Indeed, spatial signals have been 
numerically modelled and removed from tide gauge data 
from which there is otherwise no spatial information (Mar-
cos and Tsimplis 2007). In this last study the atmospheric 
component of SSV was quantified and removed from 
tide gauge data through the use of a 2D barotropic ocean 
model. Both barotropic and baroclinic models have been 
used extensively to assess linkages between climate indi-
ces or physical processes and their effect on the North Sea 
(e.g. Wakelin et al. 2003; Calafat et al. 2012; Chen et al. 
2014) or to provide information on the sea level itself (e.g. 
Dangendorf et al. 2014a; Chen et al. 2014). In these cases, 
model input conditions can be tuned to make these models 
into powerful tools to test the response of the ocean to any 
number of parameters.

To identify and isolate the primary natural modes 
of SSV in the NEA we use satellite altimetry data. This 
allows a spatial view of the SSV in the region, and an 
examination into identifying drivers that may operate over 

the area, both locally and those which act remotely. In this 
way we cover the response of SSH to forcing mechanisms 
that operate on different spatial scales. Here we define 
SSV as the standard deviation of the monthly anoma-
lies of observed SSH with respect to the deseasoned and 
linearly untrended SSH time series over the 21 years of 
observation.

Using altimetry for SSV studies is not without its draw-
backs; where it offers spatial information, the length of 
time series is limited to that of the satellite altimetry era 
at best. SSV studies using altimetry are therefore limited 
to short term variability (<21 years) and SLA response to 
mechanisms which act in these time scales because it is 
difficult to separate long-term signals from decadal-scale 
variability.

Another motivation for the use of altimetry is that it can 
help us understand how and to which extent oceanic signals 
are transmitted through the shelf to the coast. Exploring 
open ocean variability is important, but linking such vari-
ability to coastal sea level changes is crucial as the coastal 
zone is where the effects of climate change are really felt. 
However, we are cautious with altimeter data in coastal 
regions due to a degradation of data, for example, due to 
the corruption of the altimeter instrument wave forms by 
land and inaccurate geophysical corrections.

Our approach is to model observed SSV with a linear 
regression model (LRM) to test potential forcing mecha-
nisms as regressors which have been identified from a cor-
relation analysis that looks at covariance of those drivers 
with the SSH and with each other. A similar technique 
using LRMs has also been used by Calafat and Chambers 
(2013) and Dangendorf et al. (2013, 2014a) to address 
internal climate variability using data from tide gauges in 
the North Sea.

One of the difficulties is that there is interdependence 
between some of the proposed (atmospheric) forcing mech-
anisms. Additionally there are substantial decorrelation 
time and spatial scales so there is a real possibility of over-
fitting if too many regressors are included in the model. 
This issue can be partially avoided with the use of climate 
indices that bring together many parameters and represent 
them in a single index. Alternative approaches are to use 
stepwise models with a significance level based on red 
noise models, or to identify and (where possible) isolate a 
number of primary or key forcing mechanisms at the top of 
the forcing process chain and limit the number of regres-
sors used in the LRM.

The paper is subdivided as follows. Section 2 describes 
the methodology in determining the primary SSV drivers, 
with data sources given in Sect. 3. Observed SSV is dis-
cussed in Sect. 4; results and an insight into understanding 
the processes driving the SSV is discussed in Sects. 5 and 
6. Finally, conclusions are drawn in Sect. 7.
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2  Methodology

2.1  Areas of interest

The primary area of interest for this study is a region off 
the coast of Denmark bounded by 5°E–7°E, 54°N–56°N. 
This region of the North Sea, which we refer to as the 
DaNS (Danish North Sea) area, is characterised by par-
ticularly high SSV as shown in Fig. 1 and detailed in Sect. 
4. In order to put the DaNS area into perspective the SSV 
structure for the larger domain of the NEA will also be 
discussed.

2.2  Parameters affecting SSV

SSV is forced by driving mechanisms that act in different 
time and spatial scales. Regionally the number, role and rel-
ative importance of these factors can vary as it will depend 
on local considerations such as basin shape, bathymetry 
and the vicinity of the coastal boundary. Note that at this 
stage we assume no a priori knowledge of which factors 

may play an important role in affecting SLA at a particular 
location, and we effectively build a list of potential descrip-
tive parameters from which relationships may be found at a 
later stage.

In this paper we categorise the parameters into two 
groups depending on their spatial scale: local and remote:

•	 Local As local factors we consider zonal and meridional 
wind at 10 m height (u10, v10) and sea surface tempera-
ture (SST). Wind speed (WS) and surface wind stress 
(zonal and meridional; UST and VST respectively) are 
also tested for completeness. Detailed studies targeted 
at a specific coastline have been shown to benefit from 
using rotated perpendicular components of wind speed 
to maximise the cross-shore component (de Ronde et al. 
2014). However, since our aim is to examine SSV more 
generally and not only near the coast, rotation of the 
wind field is not used and we simply use both zonal and 
meridional wind.

•	 Remote The North Atlantic oscillation (NAO) is 
included as a far field parameter potentially relevant to 

Fig. 1  a Observed SSV (m) in the North East Atlantic. The black 
contours show the 300 and 500 m bathymetry isolines. b Monthly 
SLA for the DaNS area. c Annual cycle of SSV for the DaNS area in 

the North Sea and a location near the continental shelf edge, off the 
west coast of Ireland (see legend and Panel a). d Correlation between 
box-average SLA (DaNS area) and the local SLA elsewhere
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the DaNS area. We also test with atmospheric pressure 
at sea level (SLP) as an indication of a pressure gradient 
which acts remotely.

Additional components that can (of course) be added 
to this list of potential SSV drivers. Generally this will 
be dependent upon the specific region and for areas other 
than the North Sea we would probably need to consider 
drivers that are more specifically related to those regions. 
For example, in our analysis of the SSV in the Indonesian 
archipelago region (not presented), the NINO 3.4 index and 
the Pacific Decadal Oscillation index were found to be sig-
nificant in describing the SSV.

A first order estimate of the potential relevance of a can-
didate SSV driver is provided by its correlation with SLA 
in the desired target area, though it is noted that a high cor-
relation does not necessarily imply a physical or dynamical 
relation between the driver and the SLA.

2.3  Linear regression model (LRM)

A multiple LRM is constructed using (a subset of) the driv-
ers above to test how well they can describe local SSV. The 
most general LRM formula is:

where αi(x, y) indicates the regression coefficients 
(determined locally), Fi(x, y, t) the driving mecha-
nisms (not necessarily local), and ǫloc(x, y, t) a local 
residual error. The inclusion of auto-regressive terms 
(sshloc(x, y, t − j), j = 1, 2, . . .) in the right hand side of the 
above equation is not considered at this stage, although it is 
known that memory is generally important for SSV (Dan-
gendorf et al. 2014b).

The inclusion or exclusion of the forcing mechanisms 
identified above will lead to a reconstructed SLA with vari-
ous degrees of fit to the observed sea levels. It is assumed 
that higher correlation between reconstructed and observed 
sea level indicates a better representation of the variability 
described by the selected combination of forcing mecha-
nisms. Following Calafat et al. (2013) we also test for 
explained variance which takes both variability and the dif-
ferences in the amplitude between the observed and mod-
elled sea surface into account. Explained variance is com-
puted as:

where y denotes SLA and yi denotes the reconstructed 
SLA, or simply a particular component. Because of the 
relatively short time-span of the altimeter data (21 years) 
we use the entire period for both constructing and testing 

(1)sshloc(x, y, t) =
∑

i

αi(x, y)Fi(x, y, t)+ ǫloc(x, y, t)

(2)EVi =
var(y − yi)

var(y)

our linear statistical model. In addition we have tested the 
robustness of these results by using only the first third of 
the data to train the model and testing it on the full data set.

2.4  Cross‑correlations and multi‑collinearity

A fundamental problem encountered in any multiple linear 
regression approach is that the candidate driver compo-
nents (i.e. the possible regressors) may not be statistically 
independent from each other. This inter-relation between 
components not only obscures the interpretation of the 
results (especially the partitioning) but also inflates their 
confidence estimates. In statistical literature this problem is 
known as multi-collinearity.

Here we use a simple and objective method to assess the 
relevance of a particular regressor in a statistical model. 
This method is based on the variance inflation factor (VIF). 
The VIF of a particular regressor in a regression model 
measures to what extent this regressor can be understood 
from a linear combination of the other regressors. For a 
given regression model with Fj, j = 1, 2, . . . n regressors, 
the VIF of component Fi is given by:

where R2
i  is the squared correlation between Xi and Xfit,i 

with Xi = Xfit,i + ǫ and Xfit,i = c0 +
∑

j �=i βjXj. A compo-
nent is completely independent from the other components 
if its VIF is unity. There is however no upper-bound to the 
VIF.

Based on VIF analysis a straightforward stepwise 
regressor selection method is employed. Starting with all 
regressors, in the first round of selection we compute all 
VIF factors and remove the regressor with the highest VIF 
if it is larger than a predefined threshold of 2. From Eq. 3 
this corresponds to a correlation of 0.5, meaning that if at 
least 25 % of a regressor’s variance can be explained by the 
remaining regressors, it will be discarded. After this regres-
sor has been removed from the model the VIF factors are 
determined again, isolating a second possibly “redundant” 
regressor. This procedure continues until all remaining 
VIF factors are below the desired threshold. This stepwise 
approach means that ultimately we end up with a number 
of drivers that can describe other parameters but which can-
not themselves be described and are statistically distinct 
from each other (R is less than 0.5). This facilitates subse-
quent interpretation.

It is important to note that the independence of data does 
not mean that it is a relevant descriptor or forcing mecha-
nism for a change in sea level. Connection of a data set with 
an underlying physical process is therefore of paramount 
importance and ultimately data to be included or excluded 
in the LRM is subject to such a physical motivation.

(3)VIFi =
1

1− R2
i
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Ideally, the hierarchical selection is carried out locally 
because different local areas may experience very different 
driving mechanisms. This is true for the North Sea where 
Chen et al. (2014) and Dangendorf et al. (2014a) showed 
that the it can be divided into different regimes which are 
dominated by either wind or SLP. This consideration also 
holds for the area over which spatial averaging is carried 
out (SSV of the GMSL encounters different drivers than 
local sea level of the Bay of Bengal, for example). How-
ever, when representing results graphically on a map it may 
destroy their spatial coherence if different components are 
used in nearby locations. We therefore apply the VIF-based 
method to our target area (discussed below) and subse-
quently use those components for the entire domain.

3  Data and pre‑processing

Daily gridded mean sea level anomaly (SLA) data for the 
NEA area were downloaded from AVISO for the period 
1993–2013 at 0.25° spatial resolution. The “all-sat-merged” 
product is used, to which standard corrections, including 
the Dynamic Atmospheric Correction, have been applied as 
documented in the AVISO Handbook (AVISO 2014). Daily 
zonal and meridional wind speed at 10 m height (u10 and v10 
respectively), atmospheric pressure at sea level (SLP) and 
sea surface temperature (SST) were downloaded from the 
Global Reanalysis ERA-Interim dataset (Dee et al. 2011). In 
using SST we assume that the surface layer in shallow waters 
is well mixed. This assumption is validated through a com-
parison between the SST field and vertical mean temperature 
(VMT) data based on 3D ocean temperature from the ORAS4 
ocean reanalysis model (ECMWF 2015). VMT is not directly 
used here as the product assimilates altimetric SLA (ECMWF 
2015) so is excluded for reasons of consistency. ICOADS 2° 
enhanced surface wind stress was downloaded from NOAA/
OAR/ESRL PSD (2015) (meridional, UST; zonal, VST). 
Monthly values of the North Atlantic oscillation index (NAO) 
were downloaded from CRU/UEA (2014) through the KNMI 
Climate Explorer website (www.climexp.knmi.nl).

To remove the trend associated with the changing 
mass of the oceans we subtract the GMSL from the SLA 
field. Since this also removes the global mean, only pro-
cesses which act regionally in the time series remain. Only 
monthly mean fields are used to remove temporal high-fre-
quency variability in all fields. In addition we subtract the 
multi-year monthly means over the period 1993–2013 for 
all fields to remove the basic seasonal cycle.

Low frequency signals can alias as a long term trend in 
a relatively short altimetry record of 21 years. Since regres-
sion models are unable to separate these decadal fluctua-
tions from long term trends, stationarity of the underlying 
time series is required. To address this we linearly detrend 

all time series. However, Frankcombe et al. (2014) demon-
strated that removing linear trends based on short term data 
may lead to biases. We therefore test for the robustness of 
the regression coefficients used in the LRM. Thus our study 
is based on the SSV of detrended monthly anomaly fields.

4  Observed regional SSV

Figure 1a shows the mean SSV pattern by means of the 
standard deviation of the monthly SLA over 21 years for 
the NEA. The SSV pattern is rich in structure and charac-
terised by large regional differences. Strong SSV is seen 
in the North Sea with a maximum of around 14 cm off the 
west coast of Denmark (DaNS area). There are isolated ‘hot 
spots’ of high SSV in the English Channel, as well as a dif-
fuse region of high SSV in the Atlantic Ocean that coincides 
with the tail end of the Gulf Stream. Approximate bathym-
etry is also shown and seems to indicate areas of low varia-
bility near the edges of the continental shelves. The monthly 
time-series of SLA in the DaNS region is shown in Fig. 1b.

In the construction of the monthly SLA values we 
removed the mean seasonal cycle. However the SSV of the 
SLA contains a seasonal cycle; the mean standard deviation 
of all SLA values over the 21 year period for each month 
are shown in Fig. 1c for two subregions: the DaNS area and 
a region at the continental shelf edge off the west coast of 
Ireland. Both regions are indicated in Fig. 1a. For the DaNS 
area the variability peaks in the winter months; we will see 
in the next section that this is consistent with a variability 
forcing dominated by wind. Near the continental shelf edge 
the SSV remains rather low throughout the year.

Figure 1a, c show that SLA displays regional behaviour 
with marked differences. However, this does not imply that 
there is no spatial coherence within the SLA field. On the 
contrary, certain areas display a surprisingly high degree of 
spatial coherence, especially those over shallow continental 
shelf seas such as the North Sea. As the DaNS area in the 
North Sea is our area of interest (Fig. 1) it is instructive to 
reveal this coherence with respect to that particular region.

Figure 1d shows the correlation between SLA in the 
DaNS area and local SLA elsewhere. As expected this cor-
relation is near unity in the vicinity of the DaNS box but it 
remains surprisingly high in much of the entire North Sea 
basin before rapidly becoming insignificant off the conti-
nental shelf. This is an indication of strong spatial coherence 
over the entire North Sea shelf. This spatial coherence is a 
common feature of (shallow) shelf seas worldwide (Hughes 
and Meredith 2006). However, we note here that the coher-
ence that is clearly visible on the shelf does not extend into 
the English Channel which suggests that this region experi-
ences different processes in driving SSV than in the DaNS 
region. This may be due to differences in water depth, 

http://www.climexp.knmi.nl
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coastal geometry and local meteorology, and highlights the 
spatial variation in the predominant causes of SSV.

5  Understanding regional SSV

A picture emerges from the previous section of a locally 
substantially different SSV that might be explained from a 
combination of different driving mechanisms. In Sect. 2 we 
explained the methodology that will be used to determine 
what those driving mechanisms might be. Here we present 
and explain the results from this analysis with attention to 
the processes acting behind the drivers, where applicable.

5.1  Local field parameters

Local correlation maps for SLA with u10, v10, SLP and 
SST are shown in Fig. 2. The figure shows that there is a 
clear spatial structure in the correlation patterns in the 

North Sea for the wind components (and SLP which partly 
drives the wind). The wind components u10 and v10 are 
coupled and on monthly time-scales largely follow the 
atmospheric pressure distribution. However, which of the 
two components play the most significant role in driv-
ing SLA in a given location is strongly dependent on the 
coastal geometry.

Correlations of SLA with zonal wind speed (u10, east-
ward wind defined positive) are very high and positive 
(maximum values above 0.9) in most of the North Sea 
basin (and extending along the Norwegian coast line). The 
correlation between u10 and SLA decreases as we go fur-
ther north and off the continental shelf. This near-coastal 
zone influence of the wind on SLA is found throughout 
the world but is extremely clear in the North Sea. Negative 
correlations are found off the north coast of Scotland and 
along the west of Ireland.

The structure of the correlation map with meridional 
wind speed (v10, northward wind defined positive) is very 

Fig. 2  Correlation maps between local SLA and field parameters; 
u10 (upper left), v10 (upper right), SLP (lower left) and SST (lower 
right). Statistical significance of the correlations has been assessed on 

the basis of the Fisher z-transform. Crossed where non-significant at 
95 % confidence level
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different from that of u10. Positive correlations between 
SLA and v10 are found off the west coast of the UK and off 
the Norwegian coast, and a region of negative correlation 
is evident against the east coast of the UK. Respective cor-
relation maps with UST and VST (not shown) show simi-
lar spatial patterns as with wind speed, but exhibit a more 
gridded structure due to the lower resolution of the surface 
wind stress data than the SLA.

The overall picture of the SLA response to wind forcing 
is one of Ekman transport, and is in line with results found 
by Dangendorf et al. (2014a) who used tide gauge records 
to assess the barotropic response of the North Sea to atmos-
pheric forcing; longshore components of wind dominate 
the SLA everywhere along the coast in the North Sea basin. 
Specifically, Ekman transport in the open ocean is gener-
ated by the northward winds which results in a net move-
ment of water towards the east and against the UK coast. 
Similarly, Ekman transport within the North Sea basin is 
generated from eastward winds leading to a southward 
movement of water against the Dutch and German coast-
lines. In these cases the coastlines induce a convergence of 
water and a subsequent SLA response through mass con-
servation. This response of the SLA to wind appears to be 
largely confined to the shallow seas on the continental shelf 
and therefore suggests that wind is the primary forcing 
mechanism of SSV in the North Sea.

The correlation pattern of SLA with SLP shows high 
positive values off the east coast of the UK and to the 
north of Scotland and weakly negative values to the west 
of France and off the Danish coast. This pattern is broadly 
similar to the inferred correlation patterns seen in model 
simulations performed by Chen et al. (2014) who tested 
for the IB effect induced by local SLP. However, we note 
that the correlation seen in Fig. 2 exists even though the 
inverse barometer correction has been applied to the altim-
eter data. This implies that whilst the SLP does not repre-
sent an actual physical connection with SLA, the correla-
tions seen here may be due to the SLP acting though other 
(non local) forcing factors such as wind. This is explored in 
more detail in Sect. 6.3.

The final local driver we consider is SST which is used 
here as a measure of the heat content of the local well 
mixed waters. We therefore expect to find increasing sea 
levels with increasing values of SST due to thermal expan-
sion of the water column. The spatial pattern of the cor-
relation between SLA and SST seen in Fig. 2 is generally 
positive with high values folding around southern Iceland 

towards Scotland. This positive correlation with SST con-
firms our expectation that sea level is generally higher with 
warmer SSTs.

5.2  The DaNS area (1): local drivers and remote 
forcing

We now provide further detail for the DaNS area. Table 1 
lists the correlation coefficients between monthly SLA 
over the DaNS area and the tested field drivers. Wind speed 
(WS) and zonal and meridional wind stress (UST and VST 
respectively) are included for completeness. Of the tested 
local SSV drivers, zonal wind clearly stands out as being 
most important, consistent with Fig. 2.

Correlation between SLA and SLP in the DaNS is not 
significant (also see Fig. 3f). As the local SLA response to 
local SLP is the IB effect (Dangendorf et al. 2014a) this 
hints that the DAC correction (including IB) applied to the 
altimetry data is correct in the DaNS region as it removes 
the wind and pressure effects for periods below 20 days and 
the IB effect for periods larger than 30 days (AVISO 2014).

Up to now we have tested only the correlation between 
the SLA and a driver (for example, the wind) at the same 
location. However, especially in near coastal zones where 
bathymetry, coastline geometry and other effects may be 
important, it can be argued that one should relax this con-
dition of examining colocated SLA and driver fields. In 
this section we therefore expand the colocated correlation 
analysis to a local SLA (box average over the DaNS area) 
to a driver over a field with the aim of ascertaining whether 
there is a spatial pattern in forcing SSV by drivers from a 
remote location.

Figure 3 shows the correlation between the box average 
SLA over the DaNS area and fields of wind parameters, 
SLP and SST. It is clear that the influence of u10 on SLA in 
the DaNS area is a large-scale pattern. In fact, the highest 
correlations are found in an area to the North of the DaNS. 
Negative correlations up to −0.6 also exist between u10 
and SLA in the DaNS off the South of Spain. This nega-
tive correlation comes about because the wind field itself is 
forced by large-scale pressure differences. Indeed, a simi-
lar but displaced correlation structure is seen in the panel 
showing correlation with SLP (lower left). Note that the 
SLP correlation structure supports the predominance of 
eastward wind and its effect on SLA in the DaNS region, 
though in itself does not have a direct role in driving local 
SLA (Wakelin et al. 2003; Dangendorf et al. 2013).

Table 1  Correlation between 
SLA and possible field 
parameters for the DaNS area

NS not significant at the 95 % confidence level

Field driver u10 v10 UST VST WS SST SLP

SLA (DaNS) 0.84 −0.13 0.84 NS 0.37 0.36 NS
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The correlation map with the v10 field nowhere yields 
correlations above 0.4, and shows less spatial structure than 
the maps from u10 and SLP. The highest correlations are 
seen in the Atlantic Ocean off the west coast of Ireland and 
indicates that strong northward winds in the Atlantic lead 
to increasing levels of SLA in the DaNS. Meridional wind 
may be important because it’s inherently coupled with the 
more dominant zonal wind component in the DaNS region. 
Indeed, prevailing winds drive cyclonic circulation within 
the North Sea basin which can lead to increased sea lev-
els towards the DaNS area Dangendorf et al. (2014c). An 
alternative view is that an anticyclonic wind system with 
low pressure over the UK or a cyclonic system centred 
over Norway leads to wind set up in the DaNS. However, 
in light of the SLP correlation map and the DAC correc-
tion applied to the altimeter data which removes high fre-
quency (<20 days) atmospheric responses, this explanation 
is tenuous. It is more likely that the meridional winds are 

correlated with SLA in the DaNS due to Ekman transport 
into the North Sea, implying that there is a remote forcing 
off the west UK coast.

Correlations with SST are quite low and attain a maxi-
mum near the DaNS area itself. Interestingly the pattern 
is rather consistent along the coast which could be in part 
related to upwelling/downwelling.

It is interesting that the correlation results presented here 
are in line with those found by Dangendorf et al. (2013) 
who performed a similar analysis using observations of 
sea level taken from the Cuxhaven tide gauge (situated to 
the south west of the DaNS region). In that study correla-
tions were performed using data from 1871 to 2008. The 
consistency between the long term study at a fixed loca-
tion and the work presented here with a spatial analysis 
over a shorter time span is a strong indicator of the stability 
in time between the local wind and local sea level in this 
region.

Fig. 3  Correlation maps between box average SLA over the DaNS 
area and u10 (upper left), v10 (upper right), SST (lower left) and 
SLP (lower right). Statistical significance of the correlations has been 

assessed on the basis of the Fisher z-transform. Crossed where non-
significant at 95 % confidence level
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5.3  Remote drivers

We now look at remote drivers of SSV. The correlation pat-
tern for the NAO is shown in Fig. 4. Whereas several stud-
ies have shown that highest correlations between the NAO 
index and the sea level in the North Sea occur at decadal 
time scales and in the winter months (e.g. Yan et al. 2004; 
Tsimplis and Shaw 2008; Chen et al. 2014) correlations 
using monthly data through all seasons also show a clear 
spatial structure. Highest positive correlations (around 0.6) 
with SLA are seen in the eastern parts of the North Sea, 
extending northwards off the coast of Norway. Negative 
values of up to −0.4 are found to the east of Iceland and 
in the Mediterranean. The NAO correlation map is broadly 
similar to those of SLP and u10 (Fig. 2), consistent with the 
findings from Dangendorf et al. (2013). This is not surpris-
ing as the NAO is defined as a pressure difference and the 
large-scale wind on monthly time-scales is geostrophically 
balanced.

5.4  The DaNS area (2): identification of forcing 
mechanisms

The similarity of the correlation patterns found between 
parameters in the previous section make it very clear that 
significant cross-correlations occur between the drivers. 
Here we focus on the DaNS area to examine this more 
fully. Table 2 shows the full cross-correlation matrix of 
SLA and the tested drivers for the DaNS area. Apart from 
the local drivers that have already been discussed, high cor-
relations are found with NAO (0.48). However, the corre-
lation between NAO and u10 is also high (0.54) which is 
consistent with an index based on atmospheric pressure dif-
ferences and resulting wind patterns. 

In the previous sections we presented a number of poten-
tial drivers of SSV in the NEA. The correlation coefficients 
between those and the SLA help to paint a picture which 
identifies the primary forcing mechanisms. u10 and SST 
show significant correlation with SLA and low cross corre-
lations with other potential drivers. v10 is included for con-
sistency with the wind being a vector rather than a scalar 
quantity. Table 1 shows that SLP has an insignificant local 
correlation with SLA in the DaNS area as expected. At this 
stage it is excluded from the LRM model. Climate indices 
are inherently representative of a number of higher level 
forcing mechanisms which act behind them and which in the 
ideal case we are seeking to identify. For example, the NAO 
affects wind, pressure and SST which means that a change 
in the NAO subsequently brings about corresponding baro-
clinic and barotropic responses from the ocean (Chen et al. 
2014). We saw from Table 2 that there is a strong cross cor-
relation between the NAO and u10 which suggests that much 
of the NAO signal can be captured using wind. Note that we 
will test this assumption with the VIF analysis in Sect. 6.4. 
The NAO is therefore also excluded from the LRM at this 
stage. u10, v10 and SST are thus identified from the simple 
physically motivated correlation analysis.

Fig. 4  Correlation maps between local SLA and NAO. Statistical 
significance of the correlations has been assessed on the basis of the 
Fisher z-transform. Crossed where non-significant at 95 % confidence 
level

Table 2  (Cross-) correlation 
between tested local and remote 
forcing mechanisms for the 
DaNS area in the North Sea 
(5°–7°E 54°–56° N) and SLA

DaNS SLA u10 v10 UST VST WS SST SLP NAO
SLA X 0.84 -0.13 0.84 NS 0.37 0.36 NS 0.48
u10 X NS 0.95 NS 0.55 0.21 -0.2 0.54
v10 X NS 0.88 NS NS -0.26 0.4
UST X NS 0.53 0.26 -0.21 0.52
VST X 0.26 0.13 -0.33 0.43
WS X NS -0.45 0.35
SST X NS 0.17
SLP X NS
NAO X

Figures in blue and red indicate values above an arbitrary value of 0.35; blue for correlation against 
SLA, red for cross-correlation with another driver

NS denotes not significant at the 95% confidence level
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In Sect. 2 we described an alternative method to iden-
tify relevant drivers by using VIFs. In this method VIFs are 
used to detect possible regressors that are well explained by 
linear combinations of other regressors. If the VIF-method 
is applied to DaNS area, SLP is added to the above list of 
relevant regressors, but excludes the NAO based on statisti-
cal significance. For this we have used a VIF threshold of 
2. This means that a multiple LRM with SLP in addition to 
the other identified components, yields a strong increase in 
explained variance. In the next section we present results 
for both subsets of drivers, with and without SLP. We also 
explore the role of SLP as a descriptive parameter of SSV 
and seek to identify an underlying physical explanation for 
its apparent involvement in affecting SSV in the North Sea.

6  Statistical modelling of regional SSV

In this section we test the effect of the forcing mechanisms 
identified in Sect. 5.4 on driving SSV. A multiple LRM is 
used to test this hypothesis where we make the assump-
tion that a good correlation between observed SLA and 
modelled SLA signifies a good capture of the SSV driv-
ers. We also use explained variance which takes account of 
the amplitude of the variation between a parameter and the 
observed SLA.

We start with the inclusion of local wind (u10 and v10) 
and local SST in the LRM as these are the drivers identified 
by the simple correlation analysis with the highest corre-
lation coefficients. We then test with SLP as an additional 
driver as identified from the VIF-optimised regressor selec-
tion method. As already explained in Sect. 2 the VIF-opti-
misation was carried out for the DaNS area and the same 
regressors are then used for the entire NEA domain for 
consistency.

6.1  Reconstruction and explained variance

The top panels in Fig. 5 show the correlation between the 
observed and the reconstructed SLA using the two sets 
of forcing parameters as regressors. Explained variance 
is given below. The general pattern seen in each panel is 
similar; highest correlations and explained variance are 
seen in the North Sea, extending from Denmark towards 
the entrance to the North Sea in the north west. Correla-
tions greater than 0.5 appear to be confined to the rela-
tively shallow waters (less than 300 m) on the continental 
shelf. The suggestion that water depth plays a role in SSV 
is seen clearly near the Norwegian Trench where local 
water depths exceed 300 m and correlations are (strongly) 
reduced. Adding SLP as an additional regressor in the 
LRM, as motivated by the hierarchical VIF-selection, sub-
stantially increases the footprint size of high correlation 

and explained variance values in the North Sea, towards the 
east coast of the UK (right panel). The correlation between 
observed and modelled SLA in the DaNS area increases 
from 0.87 to 0.91.

Figure 6 provides further detail for the VIF-based model. 
Since the VIF-based model explains more than 80 % of 
the variance it comes as no surprise that the residual (left 
panel, vertical dashes) is much smaller than the observed 
SLA (red circles). The model captures the slow variations 
(5-year running averages) quite well. In fact, the VIF-based 
model provides a rather good estimate of the entire SLA 
distribution between the 5-th 95-quantile, as can be inferred 
from the quantile-quantile plot (right panel, red triangles) 
and only weakly underestimates the very low and high 
extremes.

It may seem obvious that the highest correlations are 
found for the DaNS area given that the parameters used 
in the LRM are selected based on our detailed analysis of 
the DaNS area; the LRM is effectively optimised for this 
region. Indeed the high SSV region in the open North 
Atlantic Ocean as identified in Fig. 1 (top-left) is not very 
well reconstructed with the parameters chosen here, imply-
ing that none of them can be classed as significant drivers 
of SSV in this region. The hot spots of high SSV in the 
English Channel have also not been reproduced as differ-
ent forcing factors for SSV come in to play in a differing 
region, despite its relative proximity to the DaNS. In this 
case, the dominant process behind SSV in the DaNS region 
(u10) is not responsible for the SSV that seen in the Eng-
lish Channel.

6.2  Regression patterns

We now take a closer look at the regression coefficients that 
appear in the LRM (using drivers identified from the VIF 
regression for the DaNS area). High regression coefficients 
indicate a high sensitivity of SLA to the predictor. We scale 
these regression coefficients by their standard deviation 
so that they can be compared against each other. Figure 7 
shows the regression coefficients and explained variance 
patterns (REVP).

The REVP of u10 shows a clear similarity to the spatial 
pattern visible in Fig. 5; a region of high explained vari-
ance exists off the west coast of Denmark. This indicates 
the high dominance that u10 has over the other regressors 
in explaining SSV in this region. The pattern for meridi-
onal wind is very different. High values are found north-
ward from Spain and along the west of the UK (confined to 
the continental shelf) and the west of Norway. These results 
appear to be consistent with the findings of Calafat et al. 
(2012), Calafat and Chambers (2013) and Dangendorf et al. 
(2014a) who identify remote boundary wave forcing as a 
driver for SSV in this region brought about by changes in 
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v10 along the continental slope. Dangendorf et al. (2014a) 
further note that this forcing is not purely local because the 
propagation of the coastally trapped waves will affect SLA 
at all points along its path.

The REVP for SLP is positive throughout the North Sea 
and not relevant offshore from the continental shelf. SLP 
explains the variance of the SLA most strongly in a region 
off the east coast of the UK. Patterns for local SST is spa-
tially rather uniform over the North Sea area with positive 
coefficients everywhere, implying higher SLA if the local 
SST is warmer, due to the thermal expansion of the mixed 
surface layer. Values for explained variance of are highest 
along the continental shelf, and to the north of Scotland.

6.3  The remote effect of sea level pressure (SLP) 
on SSV

As we noted earlier, Fig. 2 shows a significant correlation 
between SLP and SLA. Further, the VIF analysis identi-
fies SLP as a descriptive parameter for SSV (Fig. 7) which 
appears to be at odds with Fig. 3 which shows that SLP has 
no local role on the observed sea level in the DaNS region. 
Assuming that the IB correction holds in the North Sea, the 
implication is that SLP may exert an effect on SLA through 
a remote mechanism. We therefore test here the remote 
forcing effect that SLP exerts on the SLA within the North 
Sea basin.

Fig. 5  Top Correlation maps between observed and reconstructed sea 
surface height over the period 1993–2013. Only correlations larger 
than 0.5 are coloured. Left (Local) u10, v10, and SST are included. 
Right SLP is also included. Explained variance is given beneath. Con-

tours show the 300 and 500 m bathymetry isolines. Statistical signifi-
cance of the correlations has been assessed on the basis of the Fisher 
z-transform. Crossed where non-significant at 95 % confidence level
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Figure 8 shows correlation maps between SLP and the 
box average SLA for 3 additional locations in, and to the 
north of the North Sea basin (upper right, lower left and 
lower right respectively). In contrast to the DaNS region 
(upper left panel) we note significant correlation between 
SLP and SLA within these 3 regions. This points towards 
a physical process which is driven by SLP and exerts an 
effect which varies spatially.

In a meteorological setting, external surges can be gen-
erated by pressure systems passing the northern entrance 
region of the North Sea. However, this is not likely to be 
what we see here as this effect will have been removed from 
the SLA data through the DAC correction. Instead it is more 
likely that there is a remote influence of wind expressed in 
the SLP gradient. The spatial structure within the correla-
tion maps for the boxes within the North Sea basin suggests 
an eastward wind pattern at the North Sea entrance. This 
would lead to Ekman transport directed into the North Sea, 
propagating along the UK coastline and increasing the sea 
level along the UK east coast. For the region outside of the 
basin (lower right panel) we see an inverted correlation pat-
tern where this effect no longer holds.

The overall picture is that local eastward wind explains 
the variance of the SLA in the DaNS region, and to a lower 
degree, that remote eastward wind explains the variance 
towards the west of the North Sea basin. This regional 
dominance of a given parameter over another in the North 
Sea has previously been noted by Chen et al. (2014) and 
Dangendorf et al. (2014a). These results show that the VIF 
analysis is a useful tool in isolating descriptive parameters 
of SSV which can be used in LRMs if underlying physical 
processes can be identified.

6.4  VIF‑optimised versus ‘full’ model: Does it make a 
difference?

One question that comes to mind is whether, and if so how, 
can the LRM be extended? For example, does the cor-
relation pattern between observed and reconstructed SLA 
change much if we include all regressors regardless of their 
possibly high VIF values and regardless of their cross-cor-
relations. Figure 9 shows a representation of the monthly 
SLA time series for the DaNS area using (left) the VIF-
optimised regressor selection, and (right) the ‘full’ model 
with all regressors stated in Sect. 2. Each row indicates the 
contribution from a particular regressor and oblique dashes 
are used to indicate VIF-excluded components and com-
ponents that are found to be non-significant following a 
standard t-test. As one can see the full VIF model includes 
UST as well as u10. These parameters are known to covary 
and including both in a LRM model would not make sense. 
This provides confidence in the VIF optimisation process. 
(In fact the optimised VIF model selects VST in preference 
over v10; v10 is used in the LRM as it is coupled with u10 
which is more dominant than UST.) Otherwise the differ-
ences between the approaches are marginal for the DaNS 
area. Those components that are excluded in the VIF-meth-
odology are found to be non-significant in the ‘full’ model 
(right panel) which notably holds for the NAO.
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Fig. 6  Left Time series of the observed DaNS SLA (red circles) with 
vertical dashes indicating the residuals from the VIF-based model. 
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Fig. 7  Regression coefficients and explained variance for the VIF-
optimised LRM model for u10, v10, SLP and SST in the multiple 
regression model. Statistical significance of the correlations has been 
assessed on the basis of the Fisher z-transform. Crossed where non-
significant at 95 % confidence level
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Fig. 8  Correlation maps between box average SLA and SLP for a 
number of locations in the North Sea (solid box). Figure 3 is repeated 
here for ease of comparison in upper left. Dotted boxes show location 

of DaNS. Statistical significance of the correlations has been assessed 
on the basis of the Fisher z-transform. Crossed where non-significant 
at 95 % confidence level
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The findings here therefore suggest that there are no 
additional parameters from our initial start point which can 
be used to improve the LRM. That’s not to say that there 
are no further covarying parameters which can be used to 
describe the SSV in the DaNS region, and indeed we note 
that whilst the inclusion of more parameters may appear 
to increase the general performance of the LRM, it is done 
so at the risk of instability when using the model in a pre-
dictive capacity. We therefore assert that the LRM is valid 
only for the 21 year period in which the SLA and regressor 
data is present.

However, in order to test the robustness of the LRM we 
train it using the first third of the data and test it on the full 
data set. We find that there is no degradation of the result 
with correlation coefficients and explained variances are 
not significantly altered.

6.5  Memory in the ocean: introducing autoregressive 
terms in the LRM

Sea level anomalies are long-lived in the open ocean once 
they are excited (Hughes and Williams 2010). This means 
that a natural way in which the LRM can be extended is 
by including lagged SLA terms (“lag-1” and “lag-2”) as 
additional regressors. In these cases the SLA information 
of the previous or 2 months is used to predict the SLA 
at month 0. This provides information on how much of 
the signal can be understood from simple persistence in 
time. The inclusion of these auto-regressive terms has a 
huge impact on the correlation maps off the continental 
shelf. Figure 10 (upper panel) shows this correlation map 
where the VIF optimised model is used, but in addition 
the lag-1 and lag-2 month autocorrelations are included. 
The inclusion of these two terms does not change any-
thing on the continental shelf but dramatically improves 
its accuracy in the open ocean. The regression coefficients 
(shown in the lower two panels) confirm that they play an 
important role in the regression. Whereas the lag-1 regres-
sion field is predominantly positive over the open ocean, 
the lag-2 field is much smaller and mostly negative, thus 
revealing a typical time-scale of 1–3 months for the eddy-
ing phenomena.

7  Conclusions

To increase our understanding of sea surface height varia-
bility (SSV) in the North East Atlantic we analyse monthly 
altimeter data. Particular focus has been on a region of high 
SSV off the Danish coast, referred to as the DaNS area. 
Variability in that region is high, as it is in a large part of 
the North Sea. Since the GMSL has been removed from 
the data and we also use linear detrending, our attention is 

turned towards variability in sub decadal time scales and 
not trending analyses.

The approach undertaken in this work to test and apply 
potential SSV forcing mechanisms in both the local and 
remote context has provided a spatial awareness of the 
processes which act across the region. We have identified 
a number of key drivers and have constructed a statistical 
model that is able to explain more than 80 % of the vari-
ance in that region using information relating to local wind 
and SST conditions as well as atmospheric pressure which 
exerts a remote influence on the SLA through it’s gradi-
ent and subsequent wind forcing. It appears unnecessary 
at these monthly time-scales to include information from 
large-scale drivers like the NAO which has been shown 
to be important in decadal scale SSV in the North Sea 
(e.g. Tsimplis and Shaw 2008; Chen et al. 2014), though 
it is noted that using seasonal or derivative indices such as 
NAO+, NAO−, RDG and GS as defined by Cassou et al. 
(2004) may increase the explained variance, especially dur-
ing the winter months. Off the continental shelf, the statisti-
cal model performs rather poorly (correlations below 0.5), 
yet a powerful way to increase its performance is to include 
an auto-regressive term.

The LRM provides spatial information on the response 
of the North Sea to a number of parameters with underly-
ing physical processes which describe the observed SSV 
in the DaNS area well, and confirms findings from previ-
ous studies. The importance of long shore winds in the 
North Sea basin found by tide gauge studies (Calafat et al. 
2013; Dangendorf et al. 2013) is seen here with the areal 
data afforded by altimetry. The use of altimetry data here 
has also shown not only the linkage between a parameter 
and local SSV at a specific location, but also spatial pat-
terns from which further inferences can be made relating to 
SSV over the model domain, for example, the role of SLP 
in forcing a non isosteric ocean response through Ekman 
pumping.

In addition to providing a spatial awareness of the local 
and remote factors affecting the SSV in the North Sea over 
the 21 years of observational data, the regression coeffi-
cients in the LRM show a stability over time; those derived 
from the first 6 years of data and applied to the complete 
21 year data period lead to a modelled sea level which is 
not significantly different to the results presented here. This 
provides confidence in extending the model with either 
historical or forecast data. VIF analysis has been used to 
introduce a degree of objectivity in identifying parameters 
which can be used in the LRM, though these are subject 
to an insight and understanding of the underlying physical 
processes at work in them.

Although ’tuned’ for the DaNS regions, the methodol-
ogy used here is a general approach which can be extended 
and applied to other regions. The inclusion (or exclusion) of 
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additional parameters into the LRM will be location specific, 
and likewise provide an insight into the SSV in a spatial con-
text. In particular, the spatial advantage that satellite altim-
etry holds will assist in addressing the issue of how oceanic 
signals are transmitted through the shelf to the coast.

There are clear limitations in this work. An inherent weak-
ness in that whilst the LRM model appears to be stable in 

time and shows potential for extension for longer periods, the 
model is based on data which is limited in duration to that 
of the satellite altimetry era. This means that only high fre-
quency (i.e. sub decadal) forcing mechanisms can be identi-
fied. Further, the model is optimised for the DaNS region, with 
parameters identified as being most relevant here and applied 
throughout the model domain. The dominance of forcing 
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parameters has been shown to vary over the region (for exam-
ple, u10 is dominant in the east of the North Sea basin; SLP in 
the west) and this is manifest in magnitude of the local regres-
sion coefficients. For simplicity here, no account has been 
taken into regarding an entirely different selection of param-
eters to be used across the model and applied locally and we 
have focussed here on the DaNS region which exhibits the 
highest levels of SSV in the model domain.

Whilst local wind was shown to be a dominant driver of 
SSV in this region, no account is made that the response 
of the ocean to wind forcing is not purely local because 
information can be carried along the coast by boundary 
waves (Sturges and Douglas 2011; Calafat and Chambers 
2013; Dangendorf et al. 2014a). Additionally we have not 
considered any explicit terms to account for mass-loss 
changes from glaciers and ice-sheets. As the time-series 
we have considered here are relatively short, the mass loss 
contributions which are approximately linear have been put 
‘silently’ removed by linearly detrending the data. Neither 
have we explicitly included specific oceanic processes, 
such as ocean circulation, movement of transient features 
or Rossby wave propagation (Calafat and Chambers 2013).

We have carried out tests that augment the LRM with 
a 0–700 m heat content regressor, as could for example 
be obtained from the ECMWF ocean reanalysis ORAS4 
model. However that ocean reanalysis product assimi-
lates altimetric SLA (ECMWF 2015) so it was excluded 
for reasons of consistency. SST was found to be nearly as 
effective over the open ocean, and more effective over the 
continental shelf of the North Sea, which for most part is 
shallower than 70 m. Additionally, tests using ESA CCI 
altimetry data showed no significantly different results to 
those obtained and presented here using AVISO altimetry. 
Further, tests with the inclusion of regressors which relate 
to deep ocean processes such as meridional heat transport 
did not improve the correlations over the open ocean. It 
appears that the ocean eddies become independent once 
they are shed by the Gulf Stream, as clearly demonstrated 
by the large correlations found if auto-regressive terms are 
retained in the LRM.
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