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Abstract. Recent studies suggest that complex network based indicators may provide useful early

warning signals of critical transitions in complex dynamic systems. In this study, such indicators are

tested in a land-atmosphere coupled ecological model in which a scale-dependent infiltration feed-

back and a large-scale vegetation-precipitation feedback are represented. Multiple equilibria exist

in this model and abrupt transitions can occur when precipitation is decreased. Interaction network5

based indicators of these transitions are compared with classical indicators of critical slowing down,

such as the lag-1 autocorrelation, with particular focus on the transition associated with desertifica-

tion. Three criteria are used to evaluate the quality of these early warning indicators and several high

quality network based ones are identified.
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1 Introduction10

Ecosystems do not necessarily shift gradually with changes in the amount of resources (Scheffer

et al., 2001; Claussen et al., 2013; Dekker, 2013). Observed patterns strongly suggest that multiple

equilibria exist under similar climate regimes (Hirota et al., 2011; Staver et al., 2011b; Scheffer et al.,

2012), which implies that ecosystems may shift from one equilibrium to another (Rietkerk et al.,

2004; Hirota et al., 2011). Such abrupt transitions may lead to catastrophic changes of the landscape15

(Staver et al., 2011a) and in vegetation patterns (Rietkerk et al., 2004), which in turn strongly af-

fects local climate through biophysical and biochemical feedbacks (Bonan, 2008; Seneviratne et al.,

2010).

To anticipate potential catastrophic transition of ecosystems, numerous studies have tried to find

early warning indicators of the transition to desertification (Rietkerk et al., 2004; Kéfi et al., 2007;20

Scheffer et al., 2009; Dakos et al., 2008). The phenomenon of ‘critical slowing down’, expressing

that the recovery rate of the system to perturbations decreases near such a transition, has lead to use-

ful early warning indicators, such as the lag-1 autocorrelation (Scheffer et al., 2009). Also indicators

based on the changes in spatial correlation of vegetation patterns have been developed (Dakos et al.,

2010). In general, however, these ‘classical’ indicators show only irregular monotonic behavior and25

it is difficult to determine how close the system is to transition and when to give an alarm. Ideally,

one likes to have the availability of indicators which give a sharp peak just before the transition.

Indicators based on complex interaction networks were shown to have this desired ‘peaky’ prop-

erty when applied to a highly conceptual ecological model, the local positive feedback model (Tirabassi

et al., 2014). Although the network based indicators have a higher quality factor, for this model also30

the classical indicators perform well regarding the desertification transition. A more challenging test

of the capabilities of network based indicators is the scale-dependent feedback model suggested in

Rietkerk et al. (2002). For this model, two classical indicators (lag-1 autocorrelation and Moran’s

coefficient, see Sect. 2.2) show unexpected trends when approaching the critical transition (Dakos

et al., 2011).35

As was indicated in Dijkstra (2011), the structure of the multiple equilibria in a scale-dependent

feedback model is complicated because of the appearance of a multitude of saddle-node bifurcations.

Near the transition to a desert state, many other unstable steady states influence the spatio-temporal

behavior of the vegetation field. This suggests that the self-organization mechanisms in such a

model increases the complexity of the spatial and temporal correlations of the vegetation signal,40

which decreases the performance of the classical indicators. It is therefore interesting to investigate

how network based indicators will perform in such a scale-dependent feedback model.

In the present study, the land-atmosphere model as presented in Konings et al. (2011) is used to

test the performance of network based indicators regarding the desertification transition. This model

couples land surface processes (Rietkerk et al., 2002) and the dynamics of the atmosphere boundary45

layer (Konings and Katul, 2010). It captures two important positive feedback mechanisms, the small-
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scale biomass-infiltration positive feedback (Rietkerk et al., 2002) and the large-scale precipitation-

transpiration feedback (Entekhabi et al., 1992; Dekker et al., 2007). On small scales, increasing

biomass is able to promote the water infiltration rate, which will provide more soil water and in turn

maintain more biomass. At large scales, increased precipitation leads to more biomass, which can50

increase transpiration rate and recharge water vapor in the atmosphere. Consequently more rain-

fall events can occur and increase the amount of precipitation. In addition to these feedbacks, also

the seasonal variability of rainfall, which is shown to be important in arid and semi-arid regions

(Baudena and Provenzale, 2008; Good and Caylor, 2011; Siteur et al., 2014a), is represented in the

model.55

Output from a large number of simulations with this model are used to reconstruct interaction

networks from which early warning indicators of transitions are derived. The performance of these

indicators is compared with those of classical indicators with the aim to understand the behavior of

these indicators near the desertification transition. In Section 2 the essential features of the land-

atmosphere model and the complex network methodology are described. Results of the simulations60

of the land-atmosphere model are presented in Section 3.1 and the performance of the classical and

network based early warning indicators is presented in Section 3.2. A summary and discussion of

the results is given in Section 4.

2 Model and methodology

2.1 The land-atmosphere model65

The land-atmosphere model (Konings et al., 2011) couples a one-column atmospheric boundary

layer (ABL) model (Konings and Katul, 2010) with a scale dependent feedback vegetation model

(Rietkerk et al., 2002). The ABL model is seasonally forced to capture the African monsoon vari-

ability (Konings et al., 2011). The vegetation model considers the interactions among surface water,

biomass dynamics and soil moisture (Rietkerk et al., 2002). The surface energy balance contains70

the turbulent momentum and moisture exchange between the land and atmosphere (Konings et al.,

2011). In this study, state-dependent noise is included for biomass, surface water and soil moisture

to represent unresolved processes (Dakos et al., 2011; Tirabassi et al., 2014); the detailed equations

of the model are presented in the Appendix.

The fundamental characteristic of the land-atmosphere coupling is the water and energy exchange75

between the land surface and the ABL. The vegetation model simulates the biomass dynamics and

determines the sensible and latent heat fluxes. The sensible heat flux (H) changes the boundary layer

height (h) while the latent heat flux (LE) affects the specific humidity (q) of the atmosphere. Con-

vective rainfall occurs when h crosses the level of free convection (LFC) and the lifting condensation

level (LCL). The LFC is the altitude where the lifted parcels become buoyant, while the LCL is the80

height where the condensation starts. When rainfall happens, the amount of rainfall is determined
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by the total moisture content in the atmosphere and a rainfall efficiency (η). The parameter η will be

the main control parameter in the model and controls (together with other processes as transpiration,

etc.) the total amount of annual precipitation.

Simulations with the model used a time step of 150 seconds and were at least 20 years and aimed85

to determine a statistical equilibrium state. As a criterion for reaching the equilibrium, we required

that the maximum (over the whole grid) relative difference of the annual mean values of the biomass

field between two neighbouring years was less than 0.5%.

The land-atmosphere model accounts for the annual cycle of solar radiation. Moreover, the ob-

served climate forcing data (slope γ and intercept φ of the free atmosphere for specific humidity90

q and potential temperature θ, see Appendix) contains seasonal atmospheric variability. To remove

strong seasonal correlations due to forcing in the biomass time series B̂n
i , where i refers to a location

in space and n to the time index, the average over M years is removed for each day of the year. More

specifically, for daily data with n(j,k) = 365 ∗ (j− 1)+ k (leap years ignored), the detrended time

series Bn
i is determined from95

B
n(j,k)
i = B̂

n(j,k)
i − 1

M

M∑
j=1

B̂
n(j,k)
i . (1)

The zero-lag correlation coefficient between the Bn
i and B̂n

i is less than 0.2 in all randomly selected

values of i, implying that the annual cycle is successfully removed from each time series. Note that

the detrended biomass Bn
i can have negative values as it is an anomaly with respect to the seasonal

cycle. All biomass time series referred to below in this paper are seasonally detrended. Mention100

here the value of M used

2.2 Early warning indicators

One of the most commonly used indicators in the temporal approach is the lag-m autocorrelation

function Ri(m) at location i given by

Ri(m) =

∑N−m
n=1 (Bn

i −Bi)(B
n+m
i −Bi)∑N

n=1(B
n
i −Bi)2

, (2)105

where N = 365M is the total length of the time series and Bi is the mean of the time series. Critical

slowdown in associated with an increase in the lag-1 autocorrelation Ri(1).

To determine changes in spatial correlation of the biomass often Moran’s coefficient is used. As

shown in the Appendix, the total number of locations in the vegetation model K = 75×75; Moran’s

coefficient at time n is then given by110

In =
K∑
ij gij

∑
ij gij(B

n
i −B

n
)(Bn

j −B
n
)∑

i(B
n
i −B

n
)2

, (3)

where gij=1 if node i and j (i, j ∈[1,75×75]) are neighbours and gij=0 otherwise. Furthermore,
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B
n

is the spatial averaged biomass B at time index n and the sums Here we only use the spatial

distribution of the biomass at the last time step of the simulation (i.e., n=N ).

The new element in this paper is to consider early warning indicators based on complex networks115

Caldarelli (2007) which are composed of nodes and links (or edges). In this study, the nodes are the

K = 75×75 grid cells of the vegetation model. To determine the links between two nodes, i and j

we calculate the lag-0 Pearson cross correlation coefficients Cij of the biomass time series at these

nodes. Only the last 5-year daily biomass values are used for the calculation of the Cij . The nodes

i and j are considered to be linked if the correlation |Cij | is higher than a certain threshold value120

τ > 0. This threshold is determined by a significance analysis and for all the results below, τ = 0.7

guarantees significant correlations with a p-value smaller than 0.05.

The network is next represented as a graph having K=75×75 nodes where the links are described

by an adjacency matrix A. This is a K×K symmetric matrix where the element Aij is given by

Aij =H(|Cij | − τ). (4)125

The quantity H is the Heaviside step function. Here Aij=1 (=0) indicates that nodes i and j are

linked (not linked). Figure 1 provides an example of small network where the circles represent the

(12) nodes and the red solid curves represent the links between the nodes.

By the network reconstruction, the analysis of spatio-temporal correlations in the biomass field is

transformed into the analysis of topological properties of the graph (such as in Fig. 1) of the network.130

In this study, we focus on three topological properties: degree, assortativity and clustering.

The degree, denoted by di (i ∈[1,K]), is the number of nodes that are linked with the specific node

i, as:

di =

K∑
j=1

Aij . (5)

For instance, in Fig 1 the degree of node i is 3. Note that the self correlation is ignored, thus the value135

of di varies from 0 to K-1. The maximum value occurs when all nodes are significantly correlated.

The assortativity (ai) is the average degree of the neighbours of node i. and given by

ai =
1

di

K∑
j=1

Aijdj . (6)

In Fig 1, node i has three neighbours , the degree of each neighbour is 2 and hence the assortativity of

node i is 2. The assortativity measures the second stage relations of the specific node in the network140

and values of ai vary between 0 and K-1.

The clustering coefficient (ci) of node i is the ratio of the number of links among the neighbours

of node i to the number of possible links among its neighbours. The formula for ci is:

ci =
1

di(di − 1)

K∑
j=1

K∑
l=1

AijAjlAli. (7)
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For example in Fig 1, node i has three neighbours. Two of its neighbours are linked but there are145

three possible links among these neighbours. Thus the clustering coefficient is 1/3=0.33. Values of

ci vary between 0 and 1 and the maximum value occurs when all neighbours of node i are linked.

3 Results

Before any early warning indicator can be applied, first the different equilibrium states of the model

and how simulated precipitation and biomass equilibrium fields change with η have to be determined;150

this is presented in Section 3.1. Subsequently, the classical and network based indicators are applied

to the simulated biomass time series in Section 3.2 and we next investigate their capabilities to serve

as early warning signals of transitions between equilibria in the model (Section 3.3).

3.1 Equilibria in the land-atmosphere model

In the land-atmosphere model, the frequency and intensity of rainfall is determined by the water155

and energy transported from the land surface processes. As mentioned above, we use the rainfall

efficiency η as the measure of the dryness of the climate (Konings et al., 2011). For values of η

in the range from 0.7 to 1.0, branches of equilibrium solutions of the model were computed. By

taking different initial conditions for similar values of η, different multiple equilibria were found.

For instance, in the case of η=0.84, a desert equilibrium is found from a high biomass initial con-160

dition. However, an equilibrium state with vegetation cover can be reached from the equilibrium

state obtained with η=0.85. As our main aim is to determine the performance of the early warning

indicators near the desertification transition, it is not necessary to reveal all branches of equilibria in

the model.

In Fig. 2, part of the bifurcation diagram of the model is plotted, showing the relation between165

rainfall efficiency η and the mean daily rainfall P and the equilibrium mean biomass B of the

equilibria. The values of P and B are both spatially and temporally averaged using the data of the

last five years of each model simulation. The dots in Fig. 2 indicate the actual values of η used and

branches of equilibria are labelled L1-L7. Along each branch, B decreases with η and branches

overlap for certain intervals of η. The desertification transition appears near η=0.79, at the left end170

of branch L2, from where the equilibrium biomass shifts considerably from approximately 2 g m−2

to zero.

A different view on the properties of the solutions on the branches is obtained from Fig. 2B where

P is plotted versus η. The positive vegetation-precipitation feedback leads to a high correlation

between B and P . However, the P does not drop to zero at branch L1 as soil evaporation exists and175

maintains a weak precipitation feedback. The correlation between P and B along the branches can

also be clearly seen in the P -B diagram (Fig. 2C). By comparing this to the same diagram without

land-atmosphere coupling (Dakos et al., 2011), we deduce that the ‘gaps’ in the P -B relation are
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caused by the vegetation-precipitation feedback. This suggests that abrupt shifts of the hydrological

processes (i.g., precipitation and evapotranspiration) might be hidden in the smooth curve found180

between mean annual precipitation and maximum woody cover in Sankaran et al. (2005).

The only overlap of branches in Fig. 2C is that of the branches L5 and L7 where the different

solutions are associated with slightly different rainfall rates (Fig. 2B). However the amount of tran-

spiration is almost the same. This implies that more water vapor is stored in the atmosphere in

the lower η case (branch L5) as less precipitation is generated but the water vapor recharge from185

transpiration is almost the same as the higher η case (branch L7). Such water vapor accumulation

process lasts until an extra precipitation occurs, meaning that with the same P and a lower η in

L5 has higher rainfall frequency and yields higher B than higher η in L7. The results agree with

other findings about the effect of rainfall frequency on biomass dynamics (Baudena and Proven-

zale, 2008; Siteur et al., 2014a). Moreover, the range of P (0.6< P <1.0 mm d−1) where patterned190

biomass exists in Fig. 2C is narrower than in the vegetation model without land-atmosphere coupling

(0.3< P <1.3 mm d−1), which coincides with the findings from Dijkstra (2011). This paragraph is

still difficult to understand. Stefan/Bart, can you clean it up?

Typical vegetation patterns on each branch are shown in Fig. 3 and most overlap between branches

occurs (between L2 and L4) when vegetation patterns are spots. For η in the interval [0.85−−0.9],195

the environment can sustain numerous equilibria with a wide range in spot numbers. Along a branch

the spot number remains constant but different branches are associated with different spot numbers.

Qualitatively similar behavior was found by (Dijkstra, 2011) in another land-atmosphere coupled

model (Dekker et al., 2007). Siteur et al. (2014b) revealed that vegetation can adjust to the envi-

ronment by changing biomass of patches or by shifting wavelength. The change of wavelength is200

associated with a jump between the branches. Only spots at the border of the domain survive along

branch L2, which is different to the spot patterns on other branches. This is consistent with the

results in Dijkstra (2011), where also patterns with only border spots can be sustained under low

rainfall.

3.2 Early warning indicators205

Figure 4 shows the two classical indicators, the lag-1 autocorrelation and Moran’s coefficient versus

P (using the values in Fig. 2B) and the behavior of the two indicators is similar. A sharp increase

with decreasing η occurs along branch L6, implying that the indicators are sensitive to the shift

of biomass from a homogeneous distribution to a labyrinth patterns (Fig. 2 and 3). The indicators

drop sharply from L6 to L5 and then gradually increase until L2. When the state is approaching the210

desertification transition along L2, the value of indicators drops considerably. The trend coincides

with the results from Dakos et al. (2011) where both the classic indicators do not smoothly increase

with the decrease in rainfall and a sharp drop occur before the upcoming desertification. Even though

the sharp decrease of the indicators is a clear early warning signal of the upcoming critical transition,
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their behavior is quite irregular and can easily lead to a false alarm.215

We now turn to the network based indicators and show in Fig. 5a the distribution of the degree of a

network determined for a value of η along the different branches (Fig. 3). Two values of η (0.79 and

0.85) are chosen along the branch L2 to illustrate the large change in the degree distribution before

the desertification transition. All distributions are bimodal with the first peak fixed at zero while

the second peak increases from approximately 500 (L6) to 4000 (L3) and then decreases along the220

branch L2. Similar behavior occurs for the assortativity of the networks (Fig. 5b) and the clustering

coefficient (Fig. 5c). As in Tirabassi et al. (2014), the network based indicators will be determined

from the properties of the distribution of each network quantity.

Figure 6 shows these network based indicators as a function of P . Degree, assortativity and clus-

tering are listed in columns. The properties of the distributions (mean, standard deviation, skewness225

and kurtosis) are plotted in rows. All moments are determined by the shift of the bimodal distribution

(Fig. 5a). Both the mean and variance of the degree distribution how a similar variation with P as

the classical indicators (Fig. 2). However, the relative drop of the network based indicators near the

desertification transition (e.g., from 2000 to 200 for the mean degree) is much larger than that for the

classical indicators. The skewness (Fig. 6) is influenced by the areas of the two peaks in the degree230

distribution (Fig. 5a). With decreasing P , the skewness degree drops until -1 and sharply increases

before the desertification transition. Although the skewness degree varies over a small range, the

sign change can be a useful early warning indication for the desertification transition. Note that such

sign change only occurs only along branch L2. The kurtosis of the degree distribution also presents

a useful indicator as it is small and near constant at high P end of branch L2 and then increases235

sharply with decreasing P .

In the middle column of Fig. 6 the properties of the distribution the network assortativity is shown.

Bimodality is also found in the assortativity (Fig. 5b) where the movement of the second peak is the

same as that of the degree distribution. The behavior of the mean, standard deviation and skewness

of the assortativity distribution are similar to that of the degree. The kurtosis behaves different in that240

it decreases with decreasing P and is not constant at the high P end of branch L2. It is interesting

that the behavior of the skewness of the assortativity is similar to that found in the local positive

feedback model (Tirabassi et al., 2014). This suggests that this indicator might be a more broadly

applicable signal for transitions in a wide range of ecological models.

Finally, in the right column of Fig. 6, the properties of the distributions of clustering coefficient245

of the networks are shown. The behavior of the mean, skewness and kurtosis of the clustering co-

efficient is very similar to that of the assortativity; the standard deviation, however, increases with

decreasing P . The position of the second peak in the clustering distribution moves only slightly

with P (Fig. 5c), which leads to relatively small changes in mean and standard deviation (Fig. 6).

However, the kurtosis of the distribution changes dramatically and leads to a sharp peak when the250

state shifts from L3 to L2 (Fig. 6).
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3.3 Quality measures of the indicators

At first sight, both classical and network indicators could be used as early warning indicators of the

desertification transition. However, the sensitivities of these indicators to changes in P are quite255

different. It is hard to distinguish whether sudden changes in an indicators contains a ‘real’ early

warning signal or is just due to the strong variation of this quantity. Hence it is important to determine

and evaluate measures of quality of the indicators. We propose three measures to assess the quality

of the indicators. Each of them can be written in the form

D =
|Ψ1 −Ψ2|
|Ψ1|+ |Ψ2|

, (8)260

where Ψ1 and Ψ2 are the two specific quantities that are compared. A high (low) value of D implies

a large (small) difference between Ψ1 and Ψ2 and vice versa.

The first measure, denoted by Dm, focuses on the sudden change of an indicators along the L2

branch (cf. Fig. 4). It evaluates the magnitude of the difference between the mean of the specific

indicator before and after the sudden shift in L2. Points with η ≤0.82 are classified as the states after265

the sudden shift while points with η ≥0.851 are classified as the states before the sudden shift. For

each indicator, the mean values of the two point groups are set as Ψ1 and Ψ2 in Eq. 8 to calculate

Dm. Indicators with a large shift along L2 will have higher values of Dm. ”Note that the mean value

of the skewness may be negative, which is not accounted in this assessment.” Vincent: I modified

(8) to take this into account; values should be corrected in Table 2270

The second measure (Dr) considers the difference of variations before and after the sudden shift

in L2. The two point groups are classified as for the Dm measure and because only a few points are

available in each group, the the difference between the maximum and the minimum value is used as

the approximation of the variance in the Eq 8. High values of Dr indicate that the specific indicator

has a significant variation along the branch L2 and hence is less suited as an early warning signal.275

Table 2 presents the assessment of all indicators by the three measures: a good indicator ideally

has a high value of Dm and low values of Dr. The classical indicators have typically much lower

values of Dm than the network indicators. Highest values of Dm are found for the mean degree, the

mean assortativity and the kurtosis of the clustering distribution. Highest quality indicators are the

standard deviation of the degree and of the assortativity. In general, early warning signals of network280

indicators have a higher quality than the classical indicators. Vincent: maybe adapt this paragraph

when skewness values become available
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4 Summary and Discussion

In this study, we evaluated the performance of early warning indicators for the desertification transi-

tion in a coupled land-atmosphere model. In contrast to other ecological models (Dakos et al., 2011;285

Tirabassi et al., 2014), multiple overlapping branches of equilibria were found in this model. Three

criteria were applied to assess the quality of early warning indicators and the results showed that the

network based indicators have a relatively high quality compared to the classical ones.

The land-atmosphere coupled model (Konings et al., 2011) captures two feedback mechanisms.

The local infiltration positive feedback results in regular vegetation patterns, which changes with290

the total amount of precipitation. The vegetation-precipitation feedback leads to the discrete P -B

lines in Figure 2C. Multiple stable branches (L2, L3 and L4) are found after vegetation patterns shift

from labyrinth to patches and transitions are caused by the change of number or position of patches

(Dijkstra, 2011; Siteur et al., 2014b). The catastrophic shift to desertification (from L2 to L1 in

Fig. 2) is associated with the disappearance of the boundary patches.295

This behaviour of the model equilibria explains why most of indicators increase from L5 to L4,

then keep a near constant value down to L2 and drop sharply before the desertification Dakos et al.

(2011). The indicators do detect potential critical transitions as they change substantially when mul-

tiple stable states exist (from L5 to L2). As was found in Dijkstra (2011), all branches of equilibria

already exist with the infiltration feedback. The vegetation-precipitation feedback only shifts the300

branches and hence does not appear to be important for the existence of the desertification transi-

tion, but determines the value of P for which this occurs.

The behavior of the classical indicators is similar to that of most network based indicators. How-

ever the network based indicators are more sensitive to upcoming critical transitions and the signals

can be easier distinguished from local variations. This does not mean that classical indicators can be305

abandoned as they provide early warning signals at an very early stage of transition (Scheffer et al.,

2009; Dakos et al., 2011). However, the network based indicators provide more peaky signals when

the critical transition is approached (Tirabassi et al., 2014) and hence form a useful addition to the

classical indicators.
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Tables

Parameter Value Unit Parameter Value Unit

A 0.2 - κv 0.41 -

g 9.81 m s−2 ηmax 0.33 -

α0 0.2 d−1 k2 5 5g m−2

W0 0.2 - DO 100 m2 d−1

DW 0.1 m2 d−1 DB 0.1 m2 d−1

σO 0.01 - σW 0.01 -

σB 0.01 - rw 0.08 d−1

rEt
min 100 s m−1 ρH2O 1000 kg m−3

α1 0.01 g−1 m−2 c 152 ppm

C1 0.0017 g mol−1 Rb 0.1 d−1

Q10 1.6 - k1 3.3 mm

m 0.6 - k3 2.5 g m−2

ν 0.0259 mm m−2 mol−1 f 0.04 -

k4 10 mm σ 5.6703×10−8 J s m−2 K−4

εs 0.97 - R0 1353 W m−2

hra 25 m

Table 1: Values of parameters in the land-atmosphere coupled model
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Variable Indicators Type Dm Dr

Degree

Mean network 0.871 0.459

SD network 0.696 0.023

Skewness network - 0.603

Kurtosis network 0.653 0.883

Assortativity

Mean network 0.821 0.305

SD network 0.609 0.062

Skewness network - 0.178

Kurtosis network 0.197 0.060

Clustering

Mean network 0.357 0.406

SD network 0.112 0.328

Skewness network - 0.328

Kurtosis network 0.619 0.871

Lag-1 autocorrelation classic 0.010 0.110

Moran’s I coefficient classic 0.117 0.178

Table 2: Evaluation of the quality of the early warning indicators by the two different measures Dm

and Dr.

Figures375

Fig. 1: Diagram to illustrate a complex network and its properties (from Tirabassi et al. (2014)).

Circles indicate the grid cells of B and form the nodes of the network. Solid lines indicate the links

between the nodes. Node i has degree di=3, clustering coefficient ci=0.33 and assortativity ai=2.
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Fig. 2: The relation between the rainfall efficiency η, the mean biomass B (panel A) and the mean

precipitation P (panel B), with a P -B diagram in panel C. Solid lines indicate equilibria of the

model and the dots indicate the actual values found in the model simulations.
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Fig. 6: Network based indicators as a function of mean annual rainfall P . Three network variables

are listed in columns and different statistic indicators are listed in rows. The diagrams are divided

by red dashed lines into six regions for different branches.
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Appendix A

Model description

A1 Atmospheric boundary layer model

The potential temperature (θ) and the specific humidity (q) varies with the height of the ABL. For

simplicity the model assumes that the energy and water vapor are well mixed in the ABL. Conse-380

quently θ and q are constant in the ABL. On the top of ABL, both θ and q are assumed to have a

linear relation with the height above the surface z, as:

θ(z) = γθz+φθ (A1)

q(z) = γqz+φq (A2)385

where γ and φ are slope and intercept, respectively.

The change of the h in time t is as a function of latent heat flux,

dh

dt
=

(1+2A)(θ′ω′)s
γθh

(A3)

where (θ′ω′)s is the sensible heat flux from the surface; A is the ratio of the sensible heat flux at the

top of the ABL to the surface sensible heat flux, which is called Tennekes parameter and assumed as390

constant (0.2).

When the ABL grows, the heat and humidity fluxes in the top of the ABL is proportional to the

difference between the value on the top of the ABL and the value below the fluxes. The temperature

and humidity of the ABL can be estimated by the conservation equations:

h
dθ

dt
= (θ′ω′)s +(γθh+φθ − θ)

dh

dt
(A4)395

h
dq

dt
= (q′ω′)s +(γqh+φq − q)

dh

dt
(A5)

where (q′ω′)s is the sensible heat flux at the surface. The (θ′ω′)s and (q′ω′)s, which are calculated

in the vegetation model, are described in the Section A2.

The precipitation occurs only when the h crosses the height of the LFC and LCL. Another condition,400

z/L≥ 5, is included in the model of Konings et al. (2011) to make sure that the air parcels are able

to rise from the LFC to the LCL. Here L is the Obukhov length:

L=
u3
∗θ

κvg(θ′ω′)s
(A6)

where z = h/2 is the center of the ABL; κv is von Karman’s constant; g is the acceleration due to

gravity; u∗ is the friction velocity.405
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The amount of rainfall is proportional to the total water vapor in the atmosphere column. The

moisture over the height of the free atmosphere is also taken into account. Following Konings et al.

(2011) to prevent the uncertainties from the free atmosphere, the model accounts for the water vapor

in the atmosphere column with double height of the ABL, as:

P = ηmaxη

2h∫
0

qdz (A7)410

where P is the amount of rainfall and the duration is set at two hours; ηmax (0.33) is the maximum

rate that the water vapor can transform into rainfall; η ∈[0,1], called rainfall efficiency, is a free

parameter to account for all factors that influences the rainfall process.

A2 Vegetation dynamics model

The vegetation model (Rietkerk et al., 2002) integrates the surface energy balance in the vegetation415

dynamics to simulate the water and heat feedback to the atmosphere (Konings et al., 2011). In this

study, we consider a lattice with 75×75 grid cells. The dynamics of surface water content (O), soil

water content (W ) and biomass (B) are simulated in each cell with stochastic process (Dakos et al.,

2011). The horizontal exchange of water and biomass are estimated at the boundary of neighbouring

cells. The vertical fluxes of water and energy from the land to the atmosphere (e.g., transpiration,420

sensible heat flux, etc) are averaged values of all grid cells.

Precipitation (P ) is the only source that can recharge the water in the vegetation model. The O

obtains water from P and re-distribute it spatially or vertically. The dynamical equation of O is

written as:

∂O

∂t
= P −α0

B+ k2W0

B+ k2
O+DO∇O+σOOξO(t) (A8)425

O can lose water due to infiltration (the second term in Eq A8). The infiltration rate is determined

by current O and B (Rietkerk et al., 2002). α0 is the maximum infiltration rate; k2 is the saturation

constant of infiltration; W0 is the relative infiltration fraction of bare soil. DO∇O is the diffusion of

the surface water O with diffusivity DO. σOOξO(t) is the noise of the O. The noise is a proportional

to O. ξO(t) is Guassian white noise with standard deviation σO = 0.01.430

The soil water content W is recharged by infiltration of O and lost by evapotranspiration and deep

soil drainage. The governing equation is:

∂W

∂t
= α0

B+ k2W0

B+ k2
O−Et −Es − rwW +DW∇W +σWWξW (t) (A9)

The first term is the infiltration rate of O, which is the same as Eq A8. Et and Es are vegetation

transpiration and bare soil evaporation, respectively. rwW is the deep soil drainage, which is pro-435

portional to W with a constant rate rw. The diffusion and noise term are similar to Eq A8.

The Et and Es are linearly related with latent heat fluxes of vegetation and bare soil respectively, as:

Es =
LEs

λρH2O
(A10)
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Et =
LEt

λρH2O
(A11)

where ρH2O is the water density; LEt and LEs are latent heat fluxes of vegetation and bare soil440

respectively, which are estimated by the Penman-Monteith equation, as:

LE =
∆(Rn −G)+

ρcpVPD
ra

∆+ γ
(
1+ rs

ra

) (A12)

LE is the latent heat flux of the bare soil or vegetation, which is determined the parameterization

of the surface resistance rs. Rn is the net radiation; G is the soil heat flux; ρ is the air density;

cp is the specific heat capacity of the air; VPD is the vapor pressure deficit; ∆ is the slope of the445

saturated vapor pressure to temperature; γ is the psychrometric constant, which is a function of the

surface pressure and the latent heat of evaporation λ, as γ = cpPs/(0.622λ). ra is the aerodynamic

resistance; rs is the surface resistance. When calculating vegetation latent heat flux LEt, the model

use the stomatal resistance rEt
s as rs. When rs represents the bare soil resistance rEs

s , the latent heat

flux of the soil LEs will be calculated.450

The stomatal resistance rEt
s is a function of W , VPD and leaf area index (LAI). The LAI is posi-

tive related with the biomass B. For simplicity Konings et al. (2011) assume a linear function as

LAI=α1B, which holds due to the low values in B in this semi-arid region. α1 represent the constant

ratio of LAI to B. The formula of rEt
s is:

1

rEt
s

=
1

rEt

min

W

W + k1
(1−m log(VPD))α1B (A13)455

Where rEt

min is the minimum stomatal resistance per unit LAI; k1 is the saturated water stress; m is a

factor used to represent the increase rate of resistance with decreased VPD.

The soil resistance rEs
s is calculated as:

1

rEs
s

=
1

rEs

min

W

W + k1

(
1− B

B+ k3

)
(A14)

Where rEs
s is the minimum soil resistance; k3 is the constant used in the function to estimate the460

effect of biomass shade to soil evaporation.

The dynamics of biomass is determined by carbon assimilation rate and respiration. Carbon assimi-

lation positively relates to the amount of biomass B and CO2 gradient between inside and outside of

the stomata, while the respiration rate is determined by B and the air temperature Ta. The formula

is given as:465

∂B

∂t
= (gCO2

cC1α1B−Re(Ta)B)
1

τ(W )
+DB∇B+σBBξB(t) (A15)

Where gCO2
is the stomatal conductance of CO2; c is the CO2 gradient between the atmosphere and

the internal space of stomata; C1 is the conversion rate between carbon gain and biomass growth.

Re(Ta) is the respiration rate with specific air temperature Ta. τ(W ) indicates the drought adaption
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of the vegetation. The diffusion and noise term are similar to Eq A8.470

The stomatal conductance gCO2
is determined by the opening of the stomata, which has a linear

positive relation with Et, as:

gCO2
= ν

Et

q− q∗
(A16)

Where ν is the ratio of CO2 stomatal conductance to H2O stomatal conductance; q is the surface

specific humidity; q∗ is the saturated specific humidity. The respiration rate is governed by a Q10475

function as:

Re(Ta) =RbQ
Ta−10

10
10 (A17)

Where Rb is the referred respiration rate at 10◦C. The τ(W ) is given as:

τ(W ) =
1

4

W 2 + fk4
W 2 + k4

(A18)

Where k4 is a constant related to soil water; f is the metabolic rate without water. Note that the time480

step of the biomass dynamics is 1 day, which is different with the time interval (2.5 min) of the ABL

and water simulations.

The surface energy budget is composed by net radiation Rn, sensible heat flux H , latent heat flux

LE and soil heat flux G. The net radiation is calculated by:

Rn = (1−α)Rs + εsσ
(
εaT

4
a −T 4

s

)
(A19)485

Where α is the surface albedo, which is linearly interpolated between α= 0.25 when B = 0 g m−1

and α= 0.15 when B =25 g m−1. σ is the Stefan-Boltzmann constant; εs and εa are emissivity of

the surface and atmosphere respectively. Rs is the incoming shortwave radiation. It is a function of

number of day DOY, hour angle ha and the latitude φ. It is given by:

Rs =
R0

r2
cosβ (A20)490

Where R0 is the solar constant; r is a factor to correct the distance between the earth and the sun; β

is the solar zenith angle. The r is determined by the DOY as:

r = 1.0+0.017cos
2π

365
(186−DOY) (A21)

The β is affected by the hour angle and the latitude φ, as:

cosβ = cosφcosha cosδ+sinφsinδ (A22)495

Where δ is the solar declension.

The sensible heat flux H is a function of surface resistance and the temperature gradient between

the surface and the atmosphere:

H =
ρcp
ra

(Ta −Ts) (A23)
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Here ra = hra/(zoκvu∗). hra and zo are the height of the surface layer and the surface roughness500

respectively. The zo is determined by the canopy height hc as zo = 0.1hc and hc = 0.05/(3B).

The land surface energy balance equation is:

Rn −λρEt −λρEs −G−H = 0 (A24)

Where G= 0.15Rn is the soil heat flux. There are three unknowns (Rn, H and Ts) in Equation A19,

A23 and A24, from where the energy balance of the surface can be estimated. The simulated H and505

LE are used to determine the surface sensible and latent heat fluxes in the atmosphere model as:

(θ′ω′)s =
H

ρcp
(A25)

(q′ω′)s =
LE

ρcp
(A26)

All parameters are listed in Table 1.510
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