
CLIMATE RESEARCH
Clim Res

Vol. 58: 193–207, 2014
doi: 10.3354/cr01191

Published January 7

1.  INTRODUCTION

The most visible impacts of global warming are
manifested in local extreme temperatures, increasing
the probability of extremely high temperatures (Katz
& Brown 1992, Barriopedro et al. 2011, IPCC 2012,
Mueller & Seneviratne 2012). Even considering the
scarcity of extreme event data, it is very likely that
daily temperature extremes are increasing with a
commensurate reduction in the frequency of very
cold days and nights and an increase in heat wave

frequency and duration (IPCC 2012). Identifying and
predicting the changing frequency of extreme high
temperatures is problematic, but may be improved
by combining statistical and physical approaches by
including known atmospheric driving patterns in
extreme value analyses (EVAs).

European temperature maxima are highly respon-
sive to atmospheric circulation patterns (van Ulden &
van Oldenborgh 2006), with large-scale synoptic
pressure systems over a broad Atlantic domain (e.g.
atmospheric blocking) influencing the occurrence
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and distribution of extreme events such as hot spells
(Haylock & Goodess 2004, Cassou et al. 2005). In par-
ticular, Europe has been identified as a region that
experiences highly frequent and long-lasting block-
ing events (Woollings 2010). To better interpret, un-
derstand and predict changes in extreme tempera-
ture, it is important to quantify their dependence on
often-cited causes such as atmospheric blocking, and
compare this relationship with other atmospheric
regimes such as the North Atlantic Oscillation (NAO)
and the El Niño-Southern Oscillation (ENSO). Treat-
ing atmospheric blocking and NAO separately allows
for an independent assessment of weather phenom-
ena (e.g. atmospheric blocking) compared with large-
scale climate variability (NAO) and, subsequently,
the opportunity to improve the predictability of the
proposed model under current climate conditions and
for possible examinations of future climate scenarios.

Robust statistical tools are required to compare the
relative influences of these atmospheric variables and
to assess the likely impacts on the magnitude (maxi-
mum temperatures exceeding a specified threshold),
frequency (annual count of maximum temperature
excesses) and duration (number of continuous days of
maximum temperature excesses) of hot spells. Trend
analyses are only pertinent after the effects of climate
variability have been accounted for (Kundzewicz &
Robson 2004); by assessing the impacts of variable at-
mospheric processes on hot spells, their temporal
evolution may be better diagnosed in future studies.
For the purposes of this study we concentrated on the
dependence of hot spells on atmospheric regimes
rather than trends in the observational record.

EVA has been well established in the literature as a
tool to investigate meteorological extremes (Katz et
al. 2002). Scotto et al. (2011) analyzed the variability
of ob served European temperature ex tremes with
EVA, finding distinct spatial differences. Brown et al.
(2008) examined global daily maximum and mini-
mum temperatures, using the NAO and a pre-deter-
mined linear trend in a non-stationary EVA, identify-
ing significant increases in European maxima since
1950. Increases in daily temperature maxima and
minima have been found using similar techniques in
Spain (Cebrián & Abaurrea 2006), North America
and continental Europe (Gershunov & Douville 2008,
Unkašević & Tošić 2008), correlating the severity of
temperature changes with driving atmospheric con-
ditions. Sillmann et al. (2011) employed EVA to
establish that the severity of European winter cold
spells was significantly enhanced (i.e. colder) by
atmospheric blocking. However, these studies were
limited by a focus on the magnitude of daily temper-

ature minima and maxima, rather than a comprehen-
sive examination of extreme temperature magnitude,
frequency and duration.

Some have extended their analyses to use peak
over threshold (POT) maxima to simulate droughts
(Cebrián & Abaurrea 2006) or heat waves (Abaurrea
& Cebrián 2002), making allowances for annual
cycles, prevailing atmospheric conditions or trends
with covariates (Katsoulis & Hatzianastassiou 2005).
Furrer et al. (2010) extended the analysis further,
developing a heat wave generator for summer daily
maximum temperatures to analyze the frequency,
magnitude and duration of temperature maxima
exhibiting a strong temporal trend. Our analysis en -
hanced that approach with a larger selection of
observation stations to analyze the spatial responses
to atmospheric signals.

We were concerned with 3 large-scale circulation
patterns that are known to influence European or
global temperatures (Brönnimann et al. 2007): (1)
ENSO; (2) the NAO, whose strong influence on the
European winter climate is well known (Hurrell et al.
2003, Cassou et al. 2004) although its role in summer
climate variability is not entirely understood (Jaco -
beit et al. 2009); and (3) atmospheric blocking. This
article presents the development of a stationary
model, premised on POT temperature maxima, to
investigate the frequency, magnitude and duration of
hot spells. The models were applied to a number of
different stations throughout Europe to capture spa-
tial differences in responses. We incorporated atmos-
pheric variables into non-stationary distributions to
investigate the relative changes in extreme tempera-
ture frequency, magnitude and duration with respect
to atmospheric blocking, NAO and ENSO. A key
novel component was the analysis of hot spell dura-
tion to ascertain the correlation between the atmos-
pheric conditions and event longevity.

2.  DATA

2.1.  European Climate Assessment Dataset 

Blended daily maximum temperature series were
obtained from the European Climate Assessment
Dataset (ECA&D) (Klein Tank et al. 2002) for 74 sta-
tions across Europe covering the period 1951−2010
(Fig. 1). Station observations were preferred over grid
box average temperature series as the latter are
known to have extreme temperatures up to 1°C lower
than their observed counterparts (Zhang et al. 2011).
Blended time series, which incorporate synoptic sta-
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tion observations, were selected to minimize the num-
ber of missing observations; further information is
provided in Klein Tank et al. (2002). Quality control
rejected years with >3 missing days per month, >10 d
within the summer season or stations with >5 yr miss-
ing over all. The homogeneity of temperature maxima
was assessed for abrupt and gradual changes in the
annual maxima to ensure that anthropogenic influ-
ences such as station re-location or urban heat island
effects were not present, or could be incorporated in
later analyses using the non-parametric Pettitt test
(Pettitt 1979) for change points. No data inhomo-
geneities were identified in the daily maxima arising
from anthropogenic influences.

2.2.  Covariates

2.2.1.  Atmospheric blocking

Atmospheric blocking events play a major role in
the variability of the European climate through dis-
ruptions to prevailing cyclonic westerly flows by
quasi-stationary high-pressure systems that can per-
sist for a number of days (Schwierz et al. 2004). Sum-
mertime heat waves in the mid-latitudes are typically
associated with persistent blocking anticyclones, and
have a coherent spatial structure characterized by
dry air and soil, no precipitation and increased fire

risk (Gershunov & Douville 2008). Together, these
can create a positive feedback loop that perpetuates
the hot spell.

Many European heat waves have arisen from
atmospheric blocking conditions (Burt 2004, Dole et
al. 2011, Grumm 2011). Links between meteorologi-
cal responses along the periphery of the blocking
regime are well known (e.g. Black et al. 2004). giving
rise to extremes of temperature and precipitation
such as the concurrence of the heat wave in Russia
and floods in Pakistan during August 2010 (Weaver &
Nigam 2008, Galarneau et al. 2012). Research has
demonstrated that much of Europe, particularly
Scandinavia and Russia, is climatologically disposed
to heat waves arising from atmospheric blocking
(Unkašević & Tošić 2008, Tyrlis & Hoskins 2008,
Efthymiadis et al. 2011) .

Atmospheric blocking indices were obtained for the
4 main atmospheric response regions (illustrated in
Fig. 1 with dotted and dashed lines), based on verti-
cally averaged potential vorticity anomalies between
the 500 and 150 hPa pressure layers (from ERA-40
data; Uppala et al. 2005). Negative potential vorticity
anomalies (within regions) that lasted for at least 10 d
were identified as blocking events (Sillmann & Croci-
Maspoli 2009). The main advantage of the region-
specific indices, rather than those calculated from av-
eraged 500 hPa geopotential height (Tibaldi &
Molteni 1990), is the ability to capture the dynamical
features of the block. Further details of the theory and
derivation of this blocking index can be found in
Schwierz et al. (2004) and Croci-Maspoli et al. (2007).

2.2.2.  NAO

The principal mode of variability in the north
Atlantic, and in particular the European, sector
weather patterns throughout the year, is the NAO,
which is a dipole of mean sea level pressures (MSLP)
between Iceland and the southern tip of the Iberian
Peninsula (Jones & Conway 1997, Hurrell & Deser
2009). Indices of the NAO may be calculated either
from the differences in surface pressure anomalies
between the 2 locations, or from a principal compo-
nent time series of the sea level pressures. Positive
(negative) phases represent enhanced (diminished)
Icelandic Low and Iberian High pressure fields. In its
positive phase, warm moist air from enhanced west-
erly flows moves across Europe to generate dry con-
ditions over southern Europe and North Africa,
which influences drought persistence (Della-Marta
et al. 2007). The summer NAO has been correlated
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with droughts in the eastern Atlantic, Mediterranean
and Sahel regions (Linderholm et al. 2009), while the
winter (December to March) NAO is well established
as a driver of precipitation in the north of Europe
(Jones et al. 2003, Hurrell & Deser 2009).

A principal component analysis of the normalized
MSLP differences between the Azores and Iceland
has been shown to be more reliable for large spatial
analyses due to the shifting center of action (Casty et
al. 2005, Allan & Ansell 2006). Similarly, monthly val-
ues of the NAO index are considered to be more
effective in explaining the occurrence of extreme
weather patterns than their seasonal counterparts
(Hurrell & Deser 2009, Jones et al. 2013). A monthly
time series of the NAO index derived from principal
component analysis over the Atlantic sector (20°−
80° N, 90° W−40° E; Hurrell 1995) was obtained from
the Climate Analysis Section of the National Center
for Atmospheric Research. The monthly value corre-
sponding with the occurrence of an extreme temper-
ature was used to fit the non-stationary statistical
model (see ‘Fitting Statistical Models’ below), while
analyses of the impacts employed the maximum
observed summertime value of the NAO index.

2.2.3.  ENSO

Recent research has identified that ENSO can have
a considerable influence on extreme European
weather patterns (Trenberth et al. 2002, Brönnimann
2007), although very strong NAO years can modulate
or mask European weather responses to ENSO
(Zanchettin et al. 2008). Traditionally, Niño 3.4 is used
as a measure of ENSO strength, but this index alone
omits the connection with atmospheric processes,
which are reflected through sea surface temperature
(SST) anomalies. We selected the BEST index (Smith
& Sardshmukh 2000), which is a combination of the
atmospheric component, the Southern Oscillation In-
dex (SOI) and the Niño 3.4 SST (averaged over the re-
gion 5° N−5° S, 170°−120° W), with the monthly mean
climatology removed and a 3 mo running mean ap-
plied to the averaged SST and SOI series.

3.  STATISTICAL THEORY

Extreme value theory provides an appropriate tool
with which to analyze extreme temperature events,
such as the frequency or magnitude of hot spells. Two
principal methods are well established in the atmos-
pheric sciences and hydrology literature: (1) modeling

excesses over a high threshold, or POT with a gener-
alized Pareto distribution (GPD); and (2) modeling
block maxima (such as the annual maximum temper-
ature) with a generalized extreme value distribution
(Coles 2001). A third approach that is now gaining
popularity, initially developed from hydrological mod-
eling for flood forecasting by Davison & Smith (1990),
is to model the occurrence of the excesses and their
magnitude jointly as a point process. Here we extend
the statistical model further by incorporating atmos-
pheric variables, and adding a geometric distribution
to examine hot spell duration (Furrer et al. 2010).

3.1.  Extended point process approach

For a series of extreme temperatures, such as tem-
perature excesses over a high threshold, it is well
established that independent and identically distrib-
uted data will conform to an extreme value distribu-
tion (Coles 2001). An advantage of the POT approach
is that far more information about the upper tail of
the distribution is available than would be possible
with a smaller sample of the maximum value per year
(AMAX). The magnitude of a series X of hot days
exceeding a sufficiently high threshold, u, follows a
GPD of the form:

(1)

with scale (~σ) and shape (ξGPD) parameters, while
their frequency are described by a Poisson distribu-
tion with exceedance rate λ. Selection of an appropri-
ate threshold is often achieved through a stability
exercise, where parameter estimates (and their stan-
dard errors) approximately stabilize. For consistency
and ease of comparison, we adopted station-specific
thresholds equivalent to the 95th quantile of the sta-
tion daily temperature maxima (Q95); a quantile that
achieved parameter stability for the majority of sites.
While it is possible to vary the threshold in time, we
were specifically interested in hot spells and did not
consider a time-varying threshold to be appropriate.

The equivalent distribution for a sequence of block
maxima, such as AMAX, is the generalized extreme
value (GEV) distribution of the form:

(2)

where μ is location, σ is scale and ξGEV is shape.
The point process relationship considers the occur-

rence and magnitude of the maxima as intrinsically
related points in 2-dimensional space (Coles 2001).


( ) 1 1

( )GPD
1 GPD

H x
x u( )= − + ξ −

σ

ξ

( ) exp 1 GEV

1 GEV

G x
x( )( )

= − + − μ
σ

⋅ξ⎡
⎣⎢

⎤
⎦⎥

− ξ

196



Photiadou et al.: Modeling European hot spells 197

As the count of POT maxima within a certain period
(e.g. year) is equivalent to maxima arising from the
GEV distribution over the same period, the para-
meters are directly related as (Davison & Smith 1990):

(3)

Maximizing likelihood of the Poisson process
yields estimates of the GEV parameters, from which
the equivalent GPD and Poisson parameter estimates
can be derived using Eq. (3); this facilitates interpre-
tation of any covariates and the calculation of error
terms (Davison & Smith 1990).

The assumption of independence is often violated
by temperature maxima series, as these are often ge -
nerated by the same weather system and can occur in
clusters (Smith & Weissman 1985). Methods to iden-
tify independent sequences of POT temperature
extremes range from simple approximations taking
the maximum value of a sequence with a minimum
interval between clustered extreme temperatures, to
the use of complex models conditioned on the first
excess in a sequence (Furrer et al. 2010). We adopted
a minimum number of days with maximum tempera-
ture falling below u that was at least equal to the
mean duration of the cluster of extremes (Ferro &
Segers 2003) to define independent sequences of
extremes.

3.1.1.  Non-stationarity of extreme temperature
 distributions

While stationary models include some temporal
variability through the use of all data over a period of
time, the distribution parameter space is assumed to
be constant for the period under consideration. How-
ever, extreme value distributions premised on sta-
tionarity are invalid in the presence of a strong sea-
sonal pattern, atmospheric circulation patterns or
anthropogenic changes (Cooley 2009). A commonly
used approach to improve non-stationarity represen-
tation incorporates a generalized linear model (GLM)
(Dobson 2002) into the statistical distribution para -
meter estimates. The simplest of these models intro-
duces a linear trend term into the distribution para-
meters (e.g. Furrer et al. 2010), while more complex
terms can also be built up to express trends through
their dependence on highly variable atmospheric
processes (Chavez-Demoulin & Davison 2005, Wood
2006).

Significant increases in European temperature min-
ima and maxima are well reported (e.g. Unkašević &
Tošić 2008, Della-Marta et al. 2009, Dole et al. 2011,
Coumou & Rahmstorf 2012), and have been effectively
used in non-stationary EVA to describe changes in ex-
treme temperatures (Brown et al. 2008, Furrer et al.
2010). Our preliminary analyses of the POT daily
maximum temperature series found no significant
trends. Changes in the daily temperature minima or
daily temperature range are often greater than those
in the maxima (Christidis 2005, Unkašević & Tošić
2008, Brázdil et al. 2009, Donat & Alexander 2012),
where heightened humidity may lead to enhanced
cloud cover, suppressing the daily maxima while pre-
venting night-time cooling (Gershunov et al. 2009),
while natural variability may mask the presence of a
weak trend if the magnitude of the variability exceeds
that of the trend. Those studies that in cluded trend
terms in non-stationary extreme value distributions
found that the models were im proved by either the
trend term or an atmospheric covariate, but not both.
In the absence of a large sample of extreme tempera-
tures from which to estimate trends, it is more appro-
priate to give credence to the atmospheric covariate
 information. Furthermore, we considered it more ap-
propriate to include an implicit trend in the form of at-
mospheric circulation patterns rather than determine
a priori the structure of a potentially non-linear trend.

We examined whether atmospheric patterns influ-
ence European hot spells by exploring improvements
to the distribution fit using GLMs of atmospheric
covariates, y, on the distribution parameters. The ini-
tial parameters can be described by:

(4)

where β0(i) are the stationary model parameter esti-
mates and β1(i) are linear transformations of the
atmospheric covariates NAO, ENSO and blocking
with respect to time. The shape parameter, ξ, was
modeled as an intercept-only term with a constant, as
this parameter is numerically difficult to estimate
with any accuracy (Katz et al. 2002).

3.1.2.  Hot spell duration

While the frequency and magnitude of temperatures
exceeding a high threshold are well represented by
the point process, ‘spell’ implies multiple days above
the threshold. We defined a hot spell as a sequence of
more than one day with temperatures exceeding u,
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and examined the duration, z, using a geometric
model with probability density function (P):

P(z) = p(1 – p)z–1 where    z ≥ 1 (5)

where p is the reciprocal of the mean spell duration.
We adopted the discrete geometric distribution in

preference to its continuous analogue, the exponen-
tial distribution, for its simplicity and ease of applica-
tion (Wilks 2005). Non-stationarity in the time series
and the influence of atmospheric patterns on hot spell
duration were examined using a GLM of the distribu-
tion parameter estimates, where the geometric prob-
ability of a hot spell of duration of z days is governed
by the stationary parameter estimates, β0(i), and linear
transformations of the atmospheric covariates, β1(i) .

p(z) = β0(4) + β1(4)y (6)

4.  FITTING STATISTICAL MODELS

4.1.  Stationary model

We applied stationary point processes to each sta-
tion series of POT temperature maxima, assuming no
time variance in the frequency and magnitude of hot
spells; similar stationary models were developed with
geometric distributions for hot spell duration. The
suitability of the selected distributions was tested ob-
jectively through the use of quantile− quantile and
probability distribution plots, examples of which are
shown for Linköping, Sweden, in Fig. 2; parameter
estimates are included in Table 1.

By definition, parameter estimates for the station-
ary model at 4 sites across Europe showed little spa-

tial variation in the frequency of hot spells (λ) arising
from the use of station-specific thresholds for a target
quantile. For similar reasons, the geometric distribu-
tion parameter estimates (p) were largely the same
across Europe, with mean hot spell durations of
around 2 d. Estimates of the GEV location parameter
(μ) reflected the climate at each station, with lower
parameter values further north associated with lower
air temperatures. Similarly, spatial variations in the
scale parameter (σ) reflected the range of tempera-
tures experienced at different locations, with those
further from the sea or in larger landmasses having
higher variability in the extreme temperatures than
those in coastal locations. We found that most sta-
tions had a shape parameter (ξ) <0, likely arising
from a physical upper bound on maximum tempera-
tures (Furrer et al. 2010).

While the distributions were largely appropriate
for lower tail maxima, it was also apparent that the
most extreme maxima were not adequately repre-
sented. This is suggestive of either a secondary distri-
bution for the highest extremes (Sornette 2009) or a
controlling influence that exacerbates temperatures
(Coumou & Rahmstorf 2012). Since atmospheric cir-
culation patterns influence hot spells, and because
there was an absence of sufficient extreme data to
consider mixed distributions, we investigated
improvements to the temperature representation by
including covariates in the statistical models.

4.2.  Non-stationary model

Several measures were employed to compare the
non-stationary statistical models with the stationary
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models, as both subjective and objective measures
are important to make an unbiased model selection
(Villarini & Serinaldi 2011). Subjective measures
included visual comparisons of quantile−quantile
plots and fitted distribution functions; objective
measures included the likelihood-ratio test, tested at
the 5% significance level, or Akaike’s information
criterion (Akaike 1974). If N stations were temporally
independent, 4 stations could be expected to accept
the inclusion of a covariate incorrectly, as the distri-
bution of field significant test results follows a bino-
mial distribution of Bin ~ (N, α). However, temporal
correlation between the stations, arising from a spa-
tially extensive atmospheric signal, will result in
overly optimistic confidence intervals. Karoly & Wu
(2005) addressed this through a bootstrap resample
of the field significance for gridbox squares, deter-
mining a spatial significance level of 19% for trends
in surface temperatures with reference to the local
significance level of 5% at each site. As resampling
each 60-yr time series to improve the confidence
interval estimates was computationally expensive,
we made an allowance for temporal correlation by
accepting field significance where the number of sig-
nificant stations exceeded the nominal test level by at
least 10% (Brown et al. 2008).

We compared the significance of each covariate
separately for the GEV location and scale parameters,
identifying whether temporal variability in either or
both parameters improved the model fit. The signifi-
cance of the atmospheric covariate in the statistical
models is described below, and the resultant impact
and implied direction of correlation (whether negative
or positive) is described in Section 5. Increasing (de-
creasing) the location parameter would result in an in-
crease (decrease) in the distribution mean; increasing
the scale parameter increases the spread of the distri-
bution with a higher density of the peak temperatures
centered round the mean. Changes in these para-
meters are not explicitly examined in the following
sections; rather, the overall impact on the distribution
is presented. A full de scription of how changes in the

GEV parameters influence the overall distribution can
be found in the Appendix.

4.3.  Significance of covariates

4.3.1.  GEV parameter estimates

Fig. 3 illustrates the significance of improvements
to the GEV location and log-transformed scale para-
meters when ENSO and NAO were incorporated as
covariate terms. ENSO improved the point process
parameter estimates across the Central and Eastern
Europe blocking regions (Fig. 3A,B), but the results
were not field significant across the whole European
domain. This demonstrates that although ENSO has
a moderating influence on European extreme tem-
peratures (Kenyon & Hegerl 2008), it is not a signifi-
cant driver and instead enhances the effects of other
atmospheric circulation patterns (Brönnimann 2007,
Folland et al. 2009, Bladé et al. 2012). Therefore, we
rejected ENSO as a covariate term in the point pro-
cess model.

Although some have reported a positive correlation
between hot spell intensity and summer NAO in east-
ern Europe (Unkašević & Tošić 2008, Efthymiadis et
al. 2011), NAO was a significant covariate for the
 location parameter in north European stations
(Fig. 3C,D); a statistically significant result at 30 sta-
tions also demonstrated field significance. In contrast,
NAO was weakly negatively correlated with the
scale parameter for all stations, but had no field sig-
nificance. The resultant impact models incorporated
NAO as a covariate only for the location parameter.

Atmospheric blocking was significantly correlated
with both the GEV location and log-transformed
scale parameters (Fig. 4). Each station was tested for
its relative sensitivity to the blocking region, finding
the greatest improvements to the statistical models
for the blocking region covering the observation sta-
tion; the influence of atmospheric blocking over
regions far removed from the station was negligible

Station                                 Location (μ)             Scale (σ)            Shape (ξ)               Mean hot spell          Mean spell duration  
                                                                                                                                        frequency (λ)                   (1/p) (days)

Linköping, Sweden                 28.80                      2.01                   −0.24                           10.7                                 1.67
Orleans, France                        33.35                      1.99                   −0.25                           7.65                                 3.80
Larissa, Greece                        40.04                      1.96                   −0.16                           7.39                                 3.89
Smolensk, Russia                     29.60                      1.74                   −0.16                           7.00                                 4.20

Table 1. Stationary model parameter estimates for μ: generalized extreme value location; σ: scale; ξ: shape; λ: Poisson rate; and  
1/p: geometric mean; for 4 stations
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(e.g. Northern Europe blocking on
south Europe temperatures). The
location parameter was positively cor-
related with atmospheric blocking at
stations in the north and negatively
correlated in the south; in contrast,
the scale parameter was negatively
correlated with atmospheric blocking
at all locations.

4.3.2. Geometric parameter estimates

Fig. 5 illustrates the significance of
improvements to the geometric distri-
bution when ENSO and NAO were in-
corporated as covariate terms. Con-
trary to the results for the GEV
distribution, ENSO had a significant
positive (negative) correlation with
hot spell duration in northern and cen-
tral (southern and eastern) Europe
(Fig. 5A; for clarity, the direction of the
correlation is not shown). Although
the correlation with ENSO had field
significance, our analysis was focused
on all aspects of hot spells rather than
a select feature such as event dura-
tions; in consequence, we did not use
ENSO as a covariate in the impact
models.

The NAO had a significant influ-
ence on the duration of hot spells for

200

Fig. 3. Significance of improvements to the
point process model for hot spell magnitude
and frequency when including (A,B) the El
Niño-Southern Oscillation and (C,D) the
North Atlantic Oscillation as covariate
terms. Significance: p ≤ 0.05. The covariates
were introduced separately for the location 

(A,C) and scale (B,D) parameters

p-value

Fig. 4. Significance of improvements to the
point process model for hot spell magnitude
and frequency when including an atmos-
pheric blocking index from the (A) north-
ern, (B) central, (C) eastern and (D) southern
regions (dashed lines). The covariates were
introduced for both the location and scale 

parameters
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all of Europe, again with field significance (Fig. 5B).
There was a statistically significant positive correla-
tion between the NAO and hot spell duration in
northern and western Europe and an insignificant
negative correlation in the south and east. That is, in
those regions where the NAO drives hot spell fre-

quency, it also increases the dura-
tion, while in other regions the NAO
only has a secondary role influencing
hot spells (Behera et al. 2012).

Fig. 6 illustrates the significance of
improvements to the stationary geo-
metric model using each of the 4
atmospheric blocking regions as
covariates. The blocking region cov-
ering the observation station had the
most significant relationship with hot
spell duration; in all regions the
direction of correlation was positive
but is not illustrated for clarity.
Atmospheric blocking over southern
Europe had a very small degree of
correlation, equivalent to no influ-
ence from atmospheric blocking.
Others have also found that atmos-
pheric blocking is not a significant
influence on the occurrence of daily
maximum temperatures in southern
Europe (e.g. Katsoulis & Hatzianas-
tassiou 2005, Carril et al. 2007), al -
though it may influence the maxi-
mum night-time temperature in
south west Europe (Sanchez-Lorenzo
et al. 2012).

5.  ESTIMATED IMPACTS OF
 ATMOSPHERIC CIRCULATION

In this section we present the esti-
mated impacts of atmospheric block-
ing and positive phases of the NAO
on hot spell magnitude, frequency
and duration at locations throughout
Europe. To illustrate the likely de -
gree of influence on the highest tem-
perature maxima, we used the maxi-
mum observed value of June to
August NAO and atmospheric block-
ing indices as covariates of the GEV
and geometric parameters.

5.1.  NAO

The influence of the NAO on hot spell magnitude,
in absolute difference in degrees Celsius from the
stationary model, is shown in Fig. 7 for the 10, 25 and
50 yr return period estimates (i.e. 10, 4 and 2% prob-
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p-value

A B

Fig. 5. Significance of improvements to the geometric distribution for hot spell
duration when including covariate terms of (A) El Niño-Southern Oscillation 

and (B) North Atlantic Oscillation

Fig. 6. Significance of improvements to the geometric distribution for hot spell
duration when including an atmospheric blocking index from the (A) northern, 

(B) central, (C) eastern and (D) southern regions (dashed lines)
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ability of occurrence in any year). While data from a
few stations in central Europe suggest that a highly
positive phase of NAO decreases hot spell magni-
tude, the majority of stations that are influenced by
the NAO report hot spell magnitudes of up to 2°C (an
approximately 10% increase in magnitude in combi-
nation with the maximum value of NAO) during
highly positive phases of the NAO.

Fig. 8 shows the influence of the NAO on hot spell
frequency and duration, demonstrating that, in addi-
tion to increasing the magnitude of hot spells, posi-
tive phases of the NAO increase the frequency and
duration. Under the influence of a highly positive
phase of the summer NAO, there is an increased
probability of hot spells in northern Europe with 2 to
4 more events; the probability decreases in central
Europe and there is no change in the south. In con-
trast, and similar to the impacts reported for ENSO,
NAO has a largely significant influence on the dura-
tion of hot spells in all parts of Europe, showing
increases of 2 to 4 d.

5.2.  Atmospheric blocking

Fig. 9 illustrates the influence of atmospheric
blocking, in difference in degrees Celsius from the
stationary model, for the 10, 25, and 50 yr return pe-
riod temperature estimates. Results were calculated

using the most significant re gional
blocking index as determined in ’Fit-
ting Statistical Models’. Estimated
temperature maxima show a wide-
spread increase of between 2 and 4°C
across Europe with the ex ception of a
few stations. There is no specific spa-
tial coherence in the stations report-
ing a decrease in event magnitude
under the influence of atmospheric
blocking, although elevation may be
a factor (Scotto et al. 2011), as some
stations in the Alps indicate the
largest decreases of up to 4°C.

Fig. 10 shows the influence of atmo -
spheric blocking on the estimated fre-
quency and duration of hot spells,
again using the station’s proximate
atmo spheric blocking region. In an
interesting contrast to the results pre-
sented both for the NAO and for
northern Europe atmospheric block-
ing, many central and southern Eu -
rope stations report an increase (not

always significant) in hot spell duration of 2 to 4 d,
with a commensurate decrease in frequency. This is
likely because an increase in the magnitude of tem-
perature maxima, coupled with an increase in the
duration of temperatures exceeding a high threshold,
will result in fewer intervals between hot spells, and
so apparently reduce their frequency.

6.  CONCLUSIONS

We proposed a statistical model combining the
point process and a geometric distribution to exam-
ine the effects of atmospheric blocking, the NAO and
ENSO on the frequency, magnitude and duration of
European hot spells. A POT approach identified the
frequency and magnitude of extreme daily maximum
temperatures, and the duration of the associated
spell. Using known relationships between extreme
value distribution parameters, we fitted the GEV dis-
tribution to the extracted maxima to simulate the fre-
quency and magnitude of hot spells; with spell dura-
tion simulated from a geometric distribution. We then
investigated the impacts of atmospheric non-station-
arity on temperature maxima by combining the GEV
and geometric parameter estimates with GLMs of
covariates.

Our approach was implemented across a wide
range of European stations, allowing a spatial repre-

Fig. 7. Influence of the North Atlantic
Oscillation on (A) 10 yr (B) 25 yr and
(C) 50 yr return period estimates of hot
spell magnitude, shown as absolute
difference in °C from the stationary
model (increase: crosses, decreases:
circles). White symbols: no significant 

relationship
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sentation of the influence of the co -
variates. Using an extensive histori-
cal time series (1950−2010), we were
able to establish meaningful connec-
tions between the different aspects
of hot spells and large-scale circula-
tions, which may be useful in esti-
mating the likely future impacts of
hot spells either for short-term fore-
casts or to assess longer-term im -
pacts by downscaling future projec-
tions from climate models.

In agreement with others (Brönni-
mann 2007, Behera et al. 2012), we
concluded that ENSO was not a sig-
nificant driver of European hot spell
frequency or magnitude; however,
ENSO had a significant positive
(negative) correlation with hot spell
duration in northern and central
(southern and eastern) Europe. NAO
was a significant covariate only in
the north and west of Europe, with
positive correlations with the GEV
location parameter and the geomet-
ric distribution. Again, this is sup-
ported by current research on the
influence of the summer NAO over
European meteorological events
(Folland et al. 2009, Efthymiadis et
al. 2011, Bladé et al. 2012). Atmos-
pheric blocking was the most signifi-
cant driver of hot spells in most of
Europe, with the exception of the
south, having a significant positive
(negative) correlation with GEV
location, and a significant positive
(negative) correlation with the log-
transformed scale in the northwest
(southeast) of Europe.

The maximum recorded values of
June to August NAO and atmos-
pheric blocking over the period
1951−2010 were used to estimate
their relative influences on hot
spells. A highly positive phase of
the summer NAO (such as June
1994) could increase temperature
maxima by up to 2°C for the 10, 25
and 50 yr return periods in compar-
ison to the stationary model, with a
commensurate in crease in the fre-
quency and duration of hot spells in
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Fig. 8. Influence of the North Atlantic Oscillation on (A) frequency and (B) du-
ration of hot spells shown as absolute differences in number of days between
Poisson rate and geometric mean from the stationary model (increase: crosses, 

decreases: circles). White symbols: no significant relationship

Fig. 9. Influence of atmospheric block-
ing on (A) 10 yr, (B) 25 yr and (C) 50 yr
return period estimates of hot spell 

magnitude. As Fig. 7

A B
>4 d

2 – 4 d

0 – 2 d

–2 – 0 d

–2 – –4 d

< –4 d

Fig. 10. Influence of atmospheric blocking on (A) frequency and (B) duration of 
hot spells. As Fig. 8
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northern Europe. However, in central and southern
Europe, the same phase could result in a decrease
in maximum temperatures of 0 to −4°C. In contrast,
a strong atmospheric blocking event (e.g. July
2000) could result in maximum daily temperatures
increasing by up to 4°C across Europe; this rela-
tionship appears to change with elevation, with sta-
tions in the Alps likely to experience lower temper-
atures of up to −4°C.

The statistical models used here assumed that
increases in global mean temperature were effec-
tively harnessed by the temporal variations in atmos-
pheric circulation patterns. The benefit of assessing
only the influence of atmospheric circulation patterns
is that a better assessment of the immediate conse-
quences of hot spell magnitude or duration can be
made when a strong atmospheric blocking event is
predicted, facilitating more realistic emergency plan-
ning. Further, the atmospheric-variable-driven ap -
proach has enabled greater understanding of the
consequences of atmospheric blocking in different
regions and of different phases of the NAO. This
knowledge could be implemented in a hybrid
 statistical− dynamical downscaling approach with cli-
mate model output to improve estimates of the likely
future changes in hot spell duration, magnitude or
frequency.

While the incremental, and statistically negligible,
changes in atmospheric circulation patterns may be
adequately represented in this manner, the point
process model dependent only on atmospheric block-
ing may not be appropriate for estimates of future
changes in hot spells and may require an additional
covariate term to represent trends (or abrupt
changes) in the temperature maxima. This analysis
used station observations to establish the statistical
relationships with atmospheric drivers; the models
would require validation against historical gridded
temperature data prior to use with climate model out-
put to ensure reasonable estimates of likely future
temperature extremes.
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Appendix. The following provides a brief exposition of the impact of changing the GEV parameters on the estimated tempera-
ture distributions. We fitted a nominal GEV distribution, broadly representing one of the stations in the Southern European
 region with the non-dimensional parameters location μ = 34, scale σ = 2 and shape ξ = 0, here referred to as the null model.
We then altered each parameter in turn, keeping the other 2 the same as the null model parameter, by a large enough percent-

age to visualize the change (these changes to the parameter estimates are not necessarily realistic)
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Fig. A1. Probability density plots of the null model (black lines) with the parameters location μ = 34, scale σ = 2 and shape
ξ = 0. The location parameter varied by ±5, the scale parameter by ±1 and the shape parameter by ±1 (dashed lines in A,B, 

C, respectively)
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Fig. A1A shows that a change to the location parameter alone either increases or decreases the mean of the distribution,
with no other changes to the distribution spread or skew. That is, it results in higher or lower temperature estimates for a
given probability, as shown in Fig. A2A. Increasing (decreasing) the scale parameter affects the spread of the distribution,
resulting in a commensurate increase (decrease) of the standard deviation about a constant mean, as shown in Fig. A1B.
This translates into an increase (decrease) in the gradient of the return period estimate curve and, as such, much greater
differences in maximum temperature estimates for higher return periods (i.e. lower annual probability). Finally, the shape
parameter affects the skew of the distribution. An increase in the parameter to the upper limit of 1, shown in Fig. A1C,
results in an upper bound distribution that is heavily left skewed, while decreasing the shape parameter to its lower limit
of −1 results in a heavily right skewed distribution with an effective lower limit. Increases to the scale parameter translate
into a downward curve and gradual change in the return period estimates, while decreases in the parameter result in a
rapid increase in the maximum temperature estimates.

Appendix (continued)
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Fig. A2. Return period estimates for the null model (black lines) with parameters μ = 34, σ = 2 and and ξ = 0. The location
parameter varied by ±5, the scale parameter by ±1 and the shape parameter by ±1 (dashed lines in A,B,C, respectively)
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