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1. Problem and its Context (Background) 
 

On 10 February 2011, The Times published an article which opened with the following sentence: 

“Flash floods, snow flurries and even tornados that pass unnoticed by the Met Office's weather 

stations will soon be monitored by a new network of amateur weathermen (The Times, 2011)”. 

Subsequently, the newspaper article describes a project of the United Kingdom’s Meteorological 

office (Met office), which includes the development of a web application named the ‘Weather 

Observation Website’ (WOW). The main purpose of the WOW application is to connect amateur 

weather stations to the World Wide Web so that meteorological measurements, carried out by 

volunteers with amateur weather stations, can be uploaded and shared with others. With this 

project the Met office aims to provide a platform for amateur meteorologist as well as to gain more 

data and subsequently better insight regarding local weather conditions that are hard to monitor 

with merely official weather stations.  

Since the Met office took action in 2011, the project has received a substantial response from 

volunteers. Only a year later, the data from more than 400 amateur weather stations was uploaded 

on a structural basis (Bell et al. 2013). As a result, the project has inspired various other 

meteorological institutes. Four years after the Met office launched their web application, the Royal 

Dutch Meteorological institute (KNMI) launched a similar one named 'WOW-NL jouw weer op de 

kaart’ (KNMI 2015). The Dutch web application serves the same purpose for the KNMI and owners of 

an amateur weather station in the Netherlands.  

With the growing use of these types of amateur weather stations, there is now a significant amount 

of free sensor data available that can be used for meteorological analysis. However, Williams et al., 

(2011) argue that due to the nature of the data it is necessary to question its quality. Since these 

weather stations are being operated by amateurs, there is no control or possibility to directly verify 

the measurements that come from them. This should be acknowledged as an important limitation, 

since many factors such as for example the placement of a weather station can have a significant 

influence on the resultant measurements. Besides that, other issues can play a big role as well. For 

instance, the varying quality of weather stations that amateurs use can equally cause different 

results. It should consequently be acknowledged that using the data from amateur weather stations 

as input for further analysis and applications, requires caution and substantial pre-processing in 

order to filter out possible corrupted measurements (Muller et al. 2015). Not doing so could 

potentially propagate errors towards other parts of an analysis/application and may cause incorrect 

conclusions or results. 

Others have also acknowledged this and subsequently carried out statistical analysis, inter-

comparisons and calibrations to assess the quality of similar data (Sosko & Dalyot 2015; Bell 2014; 

Wolters & Brandsma 2012; Muller et al. 2015). The results of these studies are promising as they 

conclude that ultimately, if appropriate validation and quality control methods are used, this type of 

Volunteered Geographic Information (VGI) results in a valuable meteorological source with a high 

spatiotemporal resolution. This is especially the case for areas that are monitored by only few official 

weather stations, since the use of additional data points can result in a more complete and accurate 

estimation of the local weather. 

Keeping the former mentioned quality issues in mind, it is necessary to question how these apply to 

the data derived from amateur weather stations in the WOW-NL application, and subsequently how 

they can be circumvented or alleviated. In this case, it is a benefit that there is also data available 

from official weather stations. Accordingly, this data can be used to test the data from amateur 
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weather stations, as the measurements from the official weather station are supposed to be 

validated. Ideally, the data from amateur weather stations and official weather stations can be used 

to complement each other instead of existing separately. Therefore, the main research question in 

this master thesis is as follows: 

“To what extent can the integration of spatial data, derived from amateur weather stations 

in the WOW-NL application, and formal KNMI data improve the spatiotemporal resolution of 

meteorological data?” 

Furthermore, this master thesis is written according to the following structure. Chapter 2 describes 

the research objectives, including a formulation of the main research question and the associated 

sub-questions. This chapter also contains a sub-section regarding the research limitations (the scope 

of the research). Next, chapter 3 is dedicated to the theoretical background. This includes an 

overview of the most important theoretical concepts that are relevant for this research. 

Furthermore, chapter 4 describes the methodology of the research, which includes a description of 

the steps that were required to realize the research objectives. Besides that, the chapter also 

contains clear description of the data, software and research materials that were necessary to 

conduct this research. Chapter 5 contains the results that were derived from performing all the steps 

that where described in the methodology. Subsequently, chapter 6 includes the most important 

conclusions of this research. Finally, chapter 7 comprises recommendations that are based on the 

findings of this research. Additionally, this thesis includes a list of references as well as an Appendix, 

which includes various supportive research materials.  
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2. Research Objectives 
 

This chapter includes a description of the research objectives that are set, and guide the research. 

Furthermore, the aim of this research is to most adequately answer the main research question, 

which is formulated as follows: 

 “To what extent can the integration of spatial data, derived from amateur weather stations 

in the WOW-NL application, and formal KNMI data improve the spatiotemporal resolution of 

meteorological data?” 

The main research question describes the integration of two specific types of spatial data. However, 

it should be noted that they are exemplary for both formal and informal data. Hereby, formal data is 

defined as spatial data that is produced and validated by official organizations that are either 

commercial or subsidized by a government (Cinnamon 2015). On the other hand, informal data is 

defined as spatial data that is collected by members of the public, i.e., volunteers. The latter includes 

data that is collected by sensors as well as data that is collected according to human observations. 

Keeping this dichotomy in mind, it should be noted that more abstractly formulated, the purpose of 

this research is to examine the potential benefits that are associated with integrating formal and 

informal data.  

This is done according to a case study with amateur weather stations and formal KNMI data. 

Amateur weather stations in the WOW-NL application usually measure: wind direction, wind speed, 

temperature, rainfall, air pressure, and humidity. Besides that, it should be mentioned that there are 

also other cases in which volunteers monitor environmental phenomena with in situ sensors. 

Equivalent sensors that are managed by volunteers for instance measure nitrogen dioxide (NO2) and 

carbon monoxide (CO) to determine air quality (Muller et al. 2015). Characteristic for this type of 

data is that the phenomena that they describe are often limitedly covered by formal data providers 

in terms of spatiotemporal resolution (Corke et al. 2010; Muller et al. 2015). As a result, the 

integration with informal data could potentially complement the formal data, and subsequently 

improve its spatiotemporal resolution. 

However, as was mentioned in the introduction, the integration of formal data and informal data 

comes with a variety of issues. The most important issues are related to the quality of the informal 

data. A central theme in this research therefore consists of analysing data derived from amateur 

weather stations in order to determine its quality. The methods that are used in order to do this are 

further clarified in the chapter 4. Furthermore, the main research question is answered according to 

a set of sub-questions, which are formulated as follows: 

 What are the benefits and shortcomings of Volunteered Geographic Information that is 
derived from sensors?  

 
Firstly, it is a key objective to gain a clear picture of the benefits and shortcomings that are 

associated with VGI that is derived from sensors. Hereby, it is questioned what exactly can be gained 

by using this type of data as well as what the main pitfalls are. Accordingly, these are structurally 

described in order to gain a comprehensive overview of how these potentially apply to WOW-NL 

data. As a result, this illuminates the aspects of the WOW-NL data that are important for further 

analysis in order to determine its quality. Next, the second sub-question has a methodological 

nature, and is formulated as follows: 
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 How can the quality of data derived from amateur weather stations be determined? 
 
In order to answer this sub-question, a method was developed that is capable of determining the 

quality of the WOW-NL data. Besides the characteristics of sensor VGI, the formal KNMI also plays an 

important role in this method, as it can be used as a validated source to (statistically) compare with 

the WOW-NL data. The eventual method and its processes that are used in this research are 

described in the chapter 4. Subsequently, the third sub-question is focused on the analytical part of 

this research, and is formulated as follows: 

 How accurate is the data that is derived from amateur weather stations in the WOW-NL 
application? 

 
The third sub-question is answered by conducting the methods that were chosen in the previous sub-

question.  Consequently, the quality of the data that is derived from the amateur weather stations in 

the WOW-NL application could be determined. This is a crucial step in the research, as negative 

results could potentially alleviate the positive effects of the integration of the WOW-NL data with the 

KNMI data. Nevertheless, the following sub-question is posed to further clarify how the integration 

of both data types can be done in order to improve the spatiotemporal resolution of meteorological 

data and maps: 

 How can the data that is derived from amateur weather stations in the WOW-NL application 
improve the spatiotemporal resolution of temperature data and maps produced by the KNMI?  

 
This sub-question could only be answered after the informal data was analysed and validated since 

quality cannot be determined after the data is already integrated. Besides that, it should be noted 

that temperature has been chosen as an example since it is a meteorological phenomenon which is 

known to vary significantly over small distances (especially in urban environments) (Muller et al. 

2015). Consequently, improving the spatial resolution of temperature data and maps can potentially 

reveal relatively much local differences in temperature that are not visible on similar maps with a 

coarse spatial resolution. Therefore, it is chosen to make temperature maps for the Netherlands, 

which have a higher spatial resolution than official KNMI maps. In order to produce temperature 

maps with a high spatial resolution, it is also necessary to review interpolation methods since in 

between observation locations values are always estimated (Meng et al. 2013). Accordingly, the most 

appropriate interpolation method was chosen and conducted with the integrated data as input. 

2.1. Scope 
The research questions and the associated explanations have described the overall research 

objectives that are set in this master thesis. Concluding, the aim of this research is to explore the 

benefits that are associated with the integration of formal and informal data. Especially, the focus is 

set on the integration of sensor VGI and official sensor data. As a case study, it is chosen to use 

formal KNMI data, and data derived from amateur weather stations (WOW-NL). As a prime example 

within this case study it is chosen to improve the spatial resolution of Dutch national temperature 

data and maps. However, before this can be done it is necessary to analyse the informal data so that 

its quality can be assessed.  

Besides these overall objectives, it is necessary to further demarcate this research. It should be noted 

that this research does not aim to develop a generic method to integrate formal and informal data.  

Instead, the research is primarily dedicated to examine the resultant shortcomings and benefits that 

are associated with integrating formal and informal data according to one specific case study. Since 

there are more examples of this type of volunteered environmental sensor data, it is perceived as a 
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topic that might be of importance to other applications. However, this research examines the 

integration of formal and informal data according to one example. Hence, all results will only lead to 

conclusions for this specific case.  

Furthermore, it should be stressed that this research emphasizes on developing an integrated spatial 

dataset, which confirm the potential of integrating formal and informal sensor data. In order to 

demonstrate the benefits of this integration, geo-visualizations will be made that illustrate the 

improved spatiotemporal resolution of the data. Therefore, this master thesis consists of a 

substantial part that is dedicated to the development of a practical GIS application. As a result, the 

data and the associated steps - data collection, data modelling, data management, and data 

visualization - are extensively described. 

Besides that, it is also important to note that this research was commissioned by the KNMI, and 

conducted in collaboration with GIMA. Next to this master thesis, another similar research was 

carried out at the same time by Koolen (2016). His research is characterised by a more practical 

approach, however there is some methodological overlap with this thesis. Nevertheless, it should be 

stressed that while there are some similarities, the research is considerably different and should be 

viewed as such. As both the researches are part of the same project, they will be publically available 

on the KNMI online library, where will be published together.  

3. Theoretical background 

3.1. Volunteered Geographic information & sensor data 
Feick & Roche (2013) argue that ‘crowdsourced’ spatial data or Volunteered Geographic Information 

are terms that are used to describe geographic information that is generated by volunteers, i.e., by 

others than commercial or governmental organizations. According to them, the term VGI is widely 

applicable to many different types of data that can be used for many different purposes. They state 

that:  

“[…] VGI ranges from data that are experiential and largely personal in nature (e.g. geotagged 

vacation photos) through passively contributed information concerning personal activity 

spaces (e.g. credit card transactions, cellular phone tracking) to what might be considered 

quasi-scientific data (e.g. locations of animal sightings, amateur weather station readings) 

(Feick & Roche 2013, p.22).” 

In order to comprehend the wide range of VGI, it is necessary to briefly touch upon its origin. The 

term VGI was first introduced by Goodchild (2007), as he argued that: “VGI is a special case of the 

more general Web phenomenon named user-generated content (Goodchild 2007, p.212)”. He states 

that, initially, the World Wide Web was characterized by an environment in which users where 

mainly consuming content that was predefined by the developers of websites. As the World Wide 

Web developed during the past decade, it became more user-centred, interoperable and users 

increasingly started to contribute to websites by sharing their own data; which is referred to as ‘user-

generated content’. As a result, this trend initiated a new collective way of using the World Wide 

Web, which is often referred to as ‘the Web 2.0.’.  

Accordingly, Goodchild (2007) argues that the development of the Web 2.0. has been essential for 

the arrival of VGI as it created an environment that made it is much easier to share geographic 

information. Besides that, the arrival of relatively cheap sensors and GPS equipped devices (e.g., 

smartphones, cameras) has also contributed to the growth of VGI. This is due to the fact that this 
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made it much easier for the public to gather spatially referenced data. This is also what sets VGI apart 

from other user generated content, as VGI has to refer to a place on earth. Since this is one of the 

only requirements, a relatively diverse range of data can be considered as VGI.  

Besides its many different forms, VGI is also used for a wide range of different purposes. Some VGI 

applications are dedicated freely map the world, while others are for instance focused on improving 

disaster management or environmental monitoring (Zook et al. 2010). What most types of VGI 

applications have in common is that they aim to produce data for which there is no viable 

alternative. This can for instance be caused by the absence of similar data, or the high prices that 

formal data providers ask. Hence, it should be acknowledged that, despite the considerable variation 

in the type and purpose of VGI, altogether its power lies in illuminating local activities in various 

places that go unnoticed by the world’s media (Goodchild, 2007). Besides that, VGI is only dependent 

on volunteers, so the potential of VGI is inherently linked to the large amount of volunteers that can 

contribute as well as to the amount of data that they can produce.  

Conversely, there are also some important limitations that apply to most types of VGI. Firstly, VGI is 

often characterized by a lack or absence of metadata. This is due to the fact that many VGI 

applications do not make it mandatory to include metadata (Flanagin & Metzger 2008). Furthermore, 

the quality of VGI is frequently disputed, as there are no formal methods of control in most cases. As 

a result, VGI can for instance lack in completeness, accuracy or other quality aspects that would 

normally be inspected with the production of formal data. Also, VGI is known to have a subjective 

spatial coverage, since volunteers tend to prefer generating VGI for popular places. As a result, urban 

areas are commonly better covered than remote places. Nevertheless, it should be noted that the 

most important benefits and shortcoming that are associated with VGI tend to be case and type 

specific.  

Accordingly, it is also important to take the nature of VGI into account. While many types of VGI are 

acquired by means of human observation (e.g., animal spotting, textual description, perceptions of 

safety), others come from sensors (e.g., camera, GPS, amateur weather stations) (Haklay 2013). It 

goes without saying that data derived from sensors should be acknowledged as more objective than 

human observations as sensors cannot be biased in ways that humans tend to be. However, it should 

be stressed that sensors do come with their own range of issues.  

3.1.1. Sensor data 
In general, there are many different examples of sensor data that is crowdsourced by volunteers. 

Muller et al. (2015) differentiate between three different types of crowdsourced sensor data, 

namely: active, passive, and semi-passive (figure 1). Active crowdsourcing requires humans to 

constantly interact with applications in order to generate output. This means that volunteers have to 

interact with a device on a constant basis in order to generate data. With passive crowdsourcing, no 

human interaction is required in order to collect and subsequently upload data.  
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Figure 1: Venn diagram showing the interaction of animate and inanimate crowdsourcing components, including active and 
passive techniques, (Muller et al. 2015, p.37). 

In this case volunteers merely act as regulators, since they only have to manage the sensor device by 

its installation and maintenance. Automated weather stations for instance fall into this category 

since they automatically push the measurements to a server or another device via WIFI, while (in 

theory) they only have to be installed once. Besides that, semi-passive crowdsourcing falls 

somewhere in between, and only requires human interaction when data needs to be published to a 

server. Subsequently, it is also of considerable importance whether a sensor is ‘static’ or ‘mobile’. 

Static sensors are in situ sensors that do not move, while mobile sensors are used to measure 

phenomena while moving across space (multiple locations). Mobile sensors are usually not mobile by 

themselves as they are rather mounted to a mobile platform (Castell et al. 2014).  

Although the issues that arise with using sensor VGI are heavily dependent on its specific type and 

user case, some common issues can be recognized as well (Muller et al. 2015). Firstly, the 

maintenance of VGI sensors can become an issue since its responsibility entirely lies with the 

volunteers that own them. Accordingly, a lack of maintenance can cause for malfunction and lead to 

corrupted results. Furthermore, calibration errors can equally cause for artificial biased results, as 

volunteers are often not willing or capable to (re)calibrate their sensors. Thirdly, the continuity of the 

data output can also be a factor that can become a limitation since there are no guarantees that 

volunteers will consistently manage a sensor and forever generate data. Of course, this is also true 

for formal data providers, although they should be considered as more reliable. Besides that, issues 

such as signal loss can be beyond the control of a volunteer and equally disturb data continuity 

(Chapman et al. 2014; Muller et al. 2015).  

3.1.2. Amateur weather stations 
Although the common issues that are associated with crowdsourced sensor data are relevant, it is 

even more important to consider case specific limitations. Bell (2014) also acknowledges this, and 

has resultantly researched which factors can potentially cause issues for data that is derived from 

amateur weather stations. According to Bell (2014) the following factors can cause uncertainty: 
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calibration issues, design flaws, communication and software errors, metadata issues, and 

representativity errors. Subsequently, he describes them as follows: 

Calibration issues 
Amateur weather stations can be wrongly calibrated, as they can be biased from before installation 

or they can drift gradually over time. Calibration is an important process since this makes 

measurements accurate, consistent and comparable with measurements from other devices. This 

part is however frequently carried out wrong or not at all, as it is often too complicated or expensive 

for volunteers. This is an important difference with professional weather stations, as their sensors 

are recalibrated on a structural basis, making sure that they stay accurate. 

Design flaws  

The design of amateur weather stations often compromises meteorological standards and resultantly 

makes them susceptible for inaccurate measurements. These design flaws are usually cost-driven as 

the manufacturers aim to keep the amateur weather stations affordable for volunteers. Besides that, 

they also try to keep the weather stations user-friendly and aesthetically appealing. These 

compromises resultantly degenerate the quality of the weather stations. One of the most common 

design flaws includes a weakly manufactured radiation shield, which results in overheating. 

Professional weather stations are not bound by these market-driven compromises and primarily 

prioritize accurate measurements. It is therefore of considerable relevance to know which weather 

station generated what data so these design flaws can be taken into account. 

Communication and software errors 
The communication and software related issues can cause errors of relatively large proportion, as 

well as extensive gaps in the data. After the measurements are converted into an electrical signal 

they have be transported from the weather station to a (online) database. Any errors that might 

occur in this process should be acknowledged as communication and software errors. Since amateur 

weather stations often transport data via WIFI, these errors can be caused by issues as simple as 

connection loss/disturbance or software errors on the receiving end. Mostly, these errors result in 

wrongly assigned time steps or data gaps. Accordingly, it should be relatively easy to filter out these 

errors with appropriate quality control methods. 

Metadata issues  

As is often the case with spatial data, the lack of metadata makes it difficult to interpret its usability 

and quality; this is also evident for data derived from amateur weather stations. Issues in this regard 

arise because volunteers are not obliged to follow instructions for providing metadata. Examination 

of WOW data as well as data from Weather Underground makes it clear that, although there is 

relatively much metadata generated, some aspects remain neglected as for instance a substantial 

amount of volunteers do not include the elevation of their weather station. Accordingly, this 

information is crucial for an accurate interpretation of their measurements since elevation is directly 

related to some of the meteorological phenomena that amateur weather stations measure. 

Professional weather stations and meteorologist are obliged to provide metadata for all their 

measurements. Since their weather stations are already of a higher quality it should be 

acknowledged that for volunteers it is even more important to provide extensive metadata. 

Representativity error 

A representativity error occurs when a weather station samples a meteorological aspect at a spatial 

scale, which is different from the scale it resolves in a specific application. This means for example 

that when a thermometer measures temperature in a small garden in a built environment, those 
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temperatures are not representative for the surrounding area since conditions are fairly different in 

the garden as opposed to the built-up environment. It is therefore very important to know where 

amateur weather stations are installed, since this determines for what areas they monitor 

representative data. This is a complex responsibility for volunteers, since often they install weather 

stations in their garden while living in an urban environment. Even in their garden, temperatures can 

vary significantly if there is variation in terms of vegetation, exposure, etc. Professional weather 

stations are generally well placed in regard to their aimed scale of representation, as these issues are 

taken into account. Furthermore, these types of errors can be worse than other errors and can exist 

despite off a perfectly working weather station. It is therefore crucial to take the placing and 

representativity into account when examining data derived from amateur weather stations. 

Finally, the most important benefits and shortcomings regarding VGI that is derived from sensors 

have been described. Although there is a strong conviction that VGI has much potential, it has 

become clear that some sort of quality control is imperative. Since data derived from amateur 

weather stations should be viewed as a form of VGI, there is an evident need for quality control in 

this case. Accordingly, prior research has indicated that an important element that is required for 

quality control includes a good estimation of the weather at the sites of amateur weather stations 

(Bell 2014). These estimations can be gained by making interpolations based on the measurements 

of official weather stations. As a result, it necessary to further elaborate on the most important 

aspects of interpolation methods, this is done in the next paragraph. 

3.2. Spatial interpolation  
Interpolation is mathematic tool that is often used in geography to predict values of continuous 

spatial phenomena at unmeasured locations according to observed values at other locations. In most 

cases it is not feasible to measure continuous spatial phenomena (e.g., snow depth, temperature, 

rainfall) for all places in a given area, hence making sensible estimates is essential. Theoretically, 

interpolation is based on Tobler’s first law of geography, which states that: “Everything is related to 

everything else, but near things are more related than distant things (Tobler as cited in Meng et al. 

2013, p.28)”. Accordingly, interpolation methods assume that the values of continuous spatial 

phenomena are to certain degree related to each other, dependent on their location. As a result, 

interpolation methods are able to make relatively accurate value predictions for complete 

continuous surfaces, based on measured values at sample sites, combined with the distance to 

unmeasured sites. 

Evidently, not all continuous spatial phenomena are distributed across space in a similar fashion. 

Some are for instance characterized by a higher degree of spatial autocorrelation than others. 

Hereby, spatial autocorrelation refers to: “a measure of the degree to which a set of spatial features 

and their associated data values tend to be clustered together in space (positive spatial 

autocorrelation) or dispersed (negative spatial autocorrelation) (ESRI 2015c)”. Besides that, other 

factors than distance can have a significant influence on the values of continuous spatial phenomena 

as well (e.g., elevation on temperature, surface type on albedo effect). Hence, there are many 

different interpolation methods, which can take distance, spatial distributions, and ancillary data into 

account.  

Furthermore, interpolation methods can provide estimates for any given location, however for 

computing and visualisation purposes interpolations are mostly conducted for raster grids. This 

results in raster datasets that have one predicted value that is valid for a whole raster cell, which 

represents an area on earth dependent on its selected cell size and location. 
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As interpolation methods yield varying results dependent on the spatial phenomenon they aim to 

predict, it is important to use the method that gives the most accurate output. This means that the 

predicted values should resemble the values that can be observed in the real world as close as 

possible. The accuracy of interpolations can be verified according to various methods (e.g., cross-

validation, data splitting). However, before there will be elaborated on these methods, it is necessary 

to review the most important interpolation methods that are relevant for this research.   

3.2.1. Interpolation methods 
Firstly, it should be noted that besides the interpolation methods that will be discussed in this 

research, there are many others that are used in a wide range of different disciplines. However, the 

focus in this research lies on the interpolation methods that are used to interpolate climatological 

phenomena, and especially the methods that can be used to interpolate temperature.  

According to Li & Heap (2008), interpolation methods can be sorted into three main categories. 

These are ‘geostatistical’ methods, ‘non-geostatistical’ methods, and ‘combined’ methods. Non-

geostatistical methods, or deterministic methods, only consider the values and the geometric 

properties of sample observations in order to predict values at unknown locations. Methods that fall 

into this category for instance include ‘Inverse Distance Weighting’ (IDW), ‘Thin plate splines’ (TPS), 

and ‘Nearest Neighbor’ (NN).  

Conversely, geostatistical methods make use of both mathematical and statistical properties of 

sample observations in order to predict values at unknown locations. Accordingly, geostatistical 

methods measure the spatial autocorrelation of sample observations and subsequently include these 

in the prediction for unknown values (Dobesch et al. 2007; Dyras et al. 2005; Joly et al. 2011; ESRI 

2015d). Moreover, geostatistical methods also give a probabilistic estimate of the quality of the 

predictions. The geostatistical interpolation methods are all based on the works of Danie Gerhardus 

Krige, hence all the varying methods are named as a specific type of ‘kriging’ interpolation. 

Finally, combined methods are usually developed for specific purposes and integrate aspects from 

both geostatistical methods and non-geostatistical methods (Li & Heap 2008; Sluiter 2012). Examples 

include: ‘Trend Surface Analysis Combined with kriging’ and ‘Lapse Rate Combined with kriging’. 

3.2.2. Important features  
Besides the former described categorization, interpolation methods have some fundamental features 

that are of considerable importance as well. Accordingly, Dyras et al. (2005) state that interpolation 

methods can either be ‘global’ or ‘local’. This refers to whether or not an interpolation method takes 

all sample observations into account for the prediction of an unknown value. In case all values are 

taken into account, it should be considered as a global method. Conversely, if only a few sample 

observations that are within a specific area around an unknown value are considered, the 

interpolation method should be acknowledged as local. 

Furthermore, it should be noted that there is also a relevant difference between exact interpolation 

methods and inexact interpolation methods. Exact interpolation methods result in continuous 

surfaces, in which values at sample sites exactly match the values of the sample observations. 

Conversely, inexact interpolation methods do not reproduce the similar values as the original sample 

observations. Inexact interpolation methods do not reproduce these values in order to improve the 

smoothness of the interpolated surface (Lam 1983; Sluiter 2009).  

Another important distinction between interpolations methods is based on whether they produce 

gradual or abrupt surfaces. The smoothness of the surface is determined by how the weights are 



15 
 
 

assigned to the sample observations. While some methods result in predictions with spikes, others 

result in relatively smooth surfaces (Li & Heap 2014).  

Furthermore, it is also important to distinguish between univariate and multivariate interpolation 

methods. Hereby, univariate methods refer to interpolation methods that only take samples of the 

primary variable into account. On the other hand, multivariate interpolation methods are also 

capable of using secondary variables for their predictions. Accordingly, these methods are capable of 

dealing with ancillary data. Often, these multivariate interpolations can lead to more accurate results 

since in reality more aspects than distance and spatial autocorrelation influence the distribution of 

spatial phenomena (Li & Heap 2014; Li & Heap 2008).  

3.2.3. Non-geostatistical methods 

Nearest neighbor 
Firstly, one of the notable non-geostatistical methods includes the Nearest Neighbor method (NN). 

The NN method predicts the values at unknown locations by giving them a similar value to the 

nearest neighboring sample observation. This technique is also known as Voronoi triangulation, as it 

divides the interpolation surface in Voronoi triangles based on the distance between the sample 

observations. Consequently, for each observation there is a triangle polygon with the observation 

site in the center. For all other unknown points that are located in this polygon, it is evident that they 

are the closest to the observation sample point. As a result, the NN method creates unrealistic, 

abrupt surfaces, and is only sporadically used in meteorology (Sluiter 2009; Li & Heap 2008).  

Inverse Distance Weighting 

Subsequently, the Inverse Distance Weighting (IDW) is another notable, local interpolation method 

although it takes more than one neighboring sample observation into account. Accordingly, IDW 

takes all sample observations into account within a certain radius around the unknown value that has 

to be predicted, and gives them weights according to their distance from that location. This way, IDW 

assigns bigger weights to sampled observations that are closer to the unknown value, and the 

weights diminish as a function of distance (integrating Tobler’s first Law of geography). These 

weights are proportional to the inverse distance raised to the power of q (while q > 1). Although, the 

standard value for q = 2, this not a mandatory value; testing different values may result in a more 

appropriate value for q. The results from the IDW can be assessed with cross-validation. Finally, it 

should be noted that IDW is a method that is often used in meteorology, for instance for 

temperature interpolations (Hofstra et al. 2008; Li & Heap 2008; ESRI 2015a).  

Splines  

Spline interpolation uses multiple polynomial functions to fit a trend line through all sample 

observations; hence it’s a global exact method. However, each polynomial is fitted locally, exactly 

through a set of points, and subsequently connected to other polynomials in order to generate one 

smooth line (Li & Heap 2008). Furthermore, splines are often used in meteorology and are frequently 

used for the interpolation of temperature. However, it should be noted that it is more appropriate 

for interpolating at low temporal resolution (monthly, yearly averages). To measure the quality of the 

interpolation it also justified using a cross-validation.  

Linear regression 

The last non-geostatistical method that is worth discussing is the linear regression method (LM). In 

essence this model should be acknowledged as a regular linear regression model, hence the model 

assumes that the data is normally distributed, independent, and has a stable variance. Furthermore, 

linear regression expresses the relation between a predicted primary variable and the explanatory 
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secondary variable(s). It does so by fitting a straight (linear) line through all the sample observations 

that results in the smallest sum of squared residuals. Consequently, it should be noted that LM is a 

global, inexact interpolation method. In meteorology, LM is often used, however in most cases it is 

used in combination with other methods (Sluiter 2009; Dobesch et al. 2007; Li & Heap 2008). 

3.2.4. Geostatistical methods  
Geostatistical interpolation methods are inspired by the assumption that spatial autocorrelation is an 

important factor for the prediction of continuous spatial phenomena. As a result, the kriging 

interpolation methods are based on the assumption that the variation of spatial phenomena is too 

complex to be quantified according to deterministic or mathematical methods only (Oliver & 

Webster 2014; Sluiter 2009). Consequently, kriging interpolation methods treat the variation as if it is 

random, and therefore describe the spatial variation with a stochastic surface, including an attribute 

which is named a ‘regionalized’ variable (Sluiter 2009). Accordingly, the kriging interpolation 

methods assume that the value of a random variable Z at (x) is given by:  

If the variation is homogenous and the structural effects are taken care of, the semivariance y (h) can 

be estimated with the following formula: 

Subsequently, plotting y(h) against h results in a variogram (figure 2), and gives an quantitative 

indication for the spatial arrangement (spatial autocorrelation) of the sampled observations. 

Variograms are of considerable importance for geostatistical interpolation methods, since they 

provide estimations for the most appropriate weights for sample observations.  

 

 

 

 

 

 

 

Formula 2: Estimating the semivariance, (Sluiter 2009, p.13).  

Figure 2: Example of a variogram, (Li & Heap 
2008, p.12). 

Formula 1: kriging principles, (Sluiter 2009, p.13). 
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Furthermore, there are some important features of the variogram that require some additional 

explanation. As can be observed in figure 2, the model levels out at a certain amount of spatial lag. 

Subsequently, the first point at which this happens is called the ‘range’ (ESRI 2015b; Oliver & 

Webster 2014). All sample observations within a distance smaller than the range are characterized by 

certain degree spatial autocorrelation, as opposed to all sample observations that are further apart. 

Furthermore, the value on the y-axis at which the range is reached is called the ‘sill’. Finally, the value 

at which the semivariogram model intercepts the y-axis is named ‘the nugget’. The nugget might 

seem strange since at zero spatial lag there should be no variation in theory. However, the nugget 

represents the micro-scale variation (Dyras et al. 2005). Altogether, the nugget effect can be caused 

by measurement errors, or by variation at scales that are smaller than the measurement interval. 

This is for instance often the case with minerals, since at micro scale they can still be characterized by 

some variation as they are usually not distributed equally over a small patch but rather concentrated 

at certain points.  

Ordinary kriging 

The ordinary kriging (OK) interpolation method is quite similar to IDW, as it is a linear combination of 

measured sample observations. However, with OK the weights that are assigned to the different 

sample observations is not directly determined by distance, but by the spatial correlation as is 

described by the variogram (Dyras et al. 2005). This way the spatial autocorrelation is taken into 

account for the interpolation. In meteorology, the OK method is not often used stand-alone, but 

rather as part of other methods (e.g., Residual kriging, Indicator Kriging) (Sluiter 2009). 

Universal kriging 

The Universal kriging (UK) interpolation method, or kriging with external drift, assumes that the 

mean is not constant and that there is an overriding trend in the data which can be modeled by a 

deterministic function (ESRI 2015b; Sluiter 2009). As a result, this makes it possible to use ancillary 

data, although this should only be done if there is a scientific justification. In environmental science 

there are many of these relationships (e.g., height and rainfall), which can be taken into 

consideration with UK. Consequently, the use of ancillary data can improve results; hence UK is often 

used for meteorological interpolations. 

Cokriging 

The Cokriging (CK) interpolation method is a multivariate variant of the OK method and incorporates 

a multivariate variogram or covariance model with multivariate data (Dyras et al. 2005). The value 

predictions with CK are based on a linear sum of the explanatory co-variables. It should be 

mentioned that the model can become relatively complex if many co-variables are used (Sluiter 

2009). Nevertheless, the CK interpolation method is often used in meteorology, and can sometimes 

lead to satisfactory results, especially if spatial correlation between variables is high (Sluiter 2009). 

Residual kriging   

The Residual kriging (RK) interpolation method firstly uses a regression model to predict values for 

variable that has to be interpolated. Secondly, the residuals have to be calculated, based on the 

comparison with the sample observations. Next, the residuals are interpolated for the whole model 

with the OK interpolation method. Thereafter, the predicted values and the interpolated residual 

values are summed to obtain the final prediction (Li & Heap 2008; Dyras et al. 2005). RK can be used 

for meteorological phenomena, and is for instance used to interpolate monthly temperatures 

averages in the United States (Wu & Li 2013). 
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Indicator kriging 

The Indicator Kriging (IK) interpolation method is dedicated to interpolating categorical variables. 

Accordingly, the IK method is not used to get precise predictions, but more to gain insight regarding 

the uncertainty of spatial variables (Li & Heap 2008).  It can for instance be used for the interpolation 

of climatological phenomena such as the occurrence of rainfall (Sluiter 2009).  

3.2.5. Combined methods 
Based on the geostatistical interpolation methods, non-geostatistical methods and other statistical 

approaches, many combined interpolation methods are developed in order to interpolate unknown 

values for continuous spatial phenomena. While there are many more, there are only two examples 

described in order to give an indication of how combined methods are constructed.  

One of the combined interpolation methods which haves multiple variations, combines regression 

analysis with kriging and is known as Regression kriging. One of its notable variations is known as 

“kriging combined with (linear) regression” and conducts regression analysis and subsequently uses 

OK on the resultant values. Accordingly, this method makes use of geostatistical interpolation 

techniques as well as non-geostatistical techniques. 

Besides that, there are many other possible combinations. There are for instance also combined 

interpolation methods that merely use non-geostatistical methods such as the Linear regression 

combined with Inverse Distance Weighting (Li & Heap 2014; Li & Heap 2008). Altogether, it should be 

noted that these combined methods are usually developed for specific applications and can in some 

cases lead to improved interpolation results.  

3.2.6. Quality indicators  
Due to the wide range of different interpolation methods, there is a need for indicators that describe 

their performance, i.e., their accuracy or precision. Li & Heap (2011) have also stressed this concern, 

and subsequently conducted an elaborative comparison between the various performance indicators 

that are commonly used.  

According to Li & Heap (2011), the quality of inexact interpolation methods can be assessed by 

examining the difference between the interpolated values and the observed values at sample sites. 

Based on either the absolute differences or the squared differences, various performance indicators 

can be calculated (Li & Heap 2011). The Mean error (ME) for instance compares the model predicted- 

and the observed means, and is mainly used in order to describe average model bias. This way, it can 

be assessed whether a model tends to averagely over-predict or conversely, under-predict the 

interpolated values. However, this measure should be interpreted with caution as negative values 

and positive values counteract each other, which can result in a lower ME than the actual errors (Li & 

Heap 2011; Willmott & Matsuura 2005). Furthermore, the Mean absolute error (MAE) is a 

performance indicator that considers absolute errors. Accordingly, the MAE can be calculated by 

summing all the absolute errors and subsequently dividing them by the number of sample 

observations. The MAE is a performance indicator that gives the mean of the absolute errors, and is 

therefore susceptible for infrequent big errors.  

To overcome the issue of dealing with infrequent big errors, the Mean square error (MSE) and the 

Root mean square error (RMSE) can be consulted. The MSE is calculated by firstly summing the 

individual squared errors, and secondly by dividing them by the number of sample observations. In 

order to calculate the RMSE, the square root of the MSE has to be taken. Accordingly, the RMSE and 

the MAE are measures that describe the size of the average errors, however the RMSE gives 

relatively large weights to outliers. This is also the case with the MSE as both measures consider the 
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squared difference between the predicted values and the observed values. As a result, it should be 

noted that although the RMSE and the MAE are fairly similar, the MAE is less sensitive for large 

errors. It is therefore advised to check both performance indicators to examine the influence of 

potential outliers. Nevertheless, it should be realized that these measures merely give an estimation 

of the size of the average error but they do not give any explanation for what causes the errors, or 

about the average difference between the errors (Li & Heap 2008).   

Besides the former mentioned performance indicators, there are many others (e.g., Willmott’s D and 

the Averaged standard error), however these are all only slightly different and will not all be 

discussed due to their limited relevance for this research. Concluding, it should be stressed that 

examining the former mentioned performance indicators gives a sufficient overview of how accurate 

an inexact interpolation is.  

Cross-validation 

Furthermore, it should be noted that there are also performance indicators that can be used to 

measure the success of both exact and inexact interpolation methods. The most notable 

performance indicators can be obtained by conducting a cross-validation or the ‘leaving one out’ 

method. Accordingly, the method is performed by leaving a sample observation out, by pretending it 

does not exist. Instead, the value for the sample observation site is interpolated, based on all other 

sample observations. Thereafter, the difference (residual) with the real sample observation can be 

calculated by subtracting the new interpolated value. This procedure has to be repeated for all 

sample observation in order to get the residuals for all sample observations. Altogether, the 

evaluation of the cross-validation can be obtained by getting the RMSE or the MSE of the residuals 

(Tomczak 1998). The cross-validation gives a good indication to what extent the interpolation model 

is capable of predicting unknown values, without the use of additional samples. Consequently, it is a 

method that is well suited for exact interpolation methods as they do not have differences between 

predicted and observed values at sample observation sites.  

Data splitting   

Besides cross-validation, another method to derive performance indicators for spatial interpolations 

is by means of ‘data splitting’. Accordingly, data splitting is conducted by dividing the sample 

observation dataset into a training set and a validation set. Firstly, the interpolations are carried out 

for the training set. Thereafter, the sample observations that are part of the validation set are 

compared to the interpolated values. Performance indicators can be derived from data splitting by 

calculating the MSE and the RMSE from the residuals. However, it should be mentioned that for data 

splitting there should be sufficient sample observations available since half of them are not used 

anymore for the interpolation (Williams et al. 2011; Sluiter 2009).  

 

 

 

 

 

 



20 
 
 

4. Methodology 
 

This chapter elaborates on the methodological steps that need to be conducted in order to answer 

the research questions that where posed in the second chapter. Furthermore, figure 3 gives a global 

methodological overview of the workflow regarding this research. Firstly, the theoretical concepts 

will be examined and extensively reviewed. Secondly, the informal data should be assessed for its 

quality, where after the informal data should be corrected for possible corrupted measurements. 

After these three steps have been conducted, the data integration will take place in order to improve 

its spatiotemporal resolution. This was done according to three different integration scenarios. 

Finally, the integrated data will be used as input to make temperature maps that show the improved 

resolution of the data. However, it should be noted that these steps consist of more detailed 

methodological choices and complex processes that will be extensively described in the following 

paragraphs.  

 

  

 

 

 

 

 

 

 

 

 

  

 

  

 

   

4.1. Informal data assessment 
The assessment of the informal data will be one of the most important parts of this research. In this 

step the objective will be to examine the accuracy of the data that is derived from amateur weather 

stations in the WOW-NL application. Hereby, it will be important to test which parts of the data are 

accurate and which parts are biased. It should however be noted that this task is not clear-cut, and 

assessments of the data will always include a degree of uncertainty. Nevertheless, Bell (2014) has 

carried out similar research and developed a method that provides useful guidelines. 

Firstly, Bell (2014) states that in order to test whether any given amateur weather station is biased, it 

is necessary to have an reliable independent estimation of the weather at the site of the amateur 

weather station (figure 4). Accordingly, these estimations can be used to compare with the 

Figure 3: Conceptual overview of workflow. 
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measurements that have been carried out by volunteers. As a result, these comparisons give insights 

into the quality of the amateur measurements since the size of the differences tells something about 

the plausibility of those amateur measurements being correct.  

 

Figure 4: Spatial distribution of Automatic weather stations (KNMI stations) and WOW-NL stations. 

Consequently, this step of the research consists of two parts. The first objective is to find the 

interpolation method that gives the most accurate predictions of temperature values at the sites of 

amateur weather stations (based only on AWS measurements). Next, the second objective is to 

extensively compare the predictions that are based on professional measurements with the WOW-

NL data. 

4.1.1. Finding the best interpolation method 
The first step in this part of the research is to find an interpolation method that gives the ‘best’ 

estimates of temperature at the sites of amateur weather stations. This is done according to 

measurements derived from Automatic weather stations (AWS), which are the official KNMI stations 

(figure 4). The method that is used to find the most appropriate interpolation method will be 

explained according to the four questions: How? What? & When? 
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How? 

In this research it is chosen to find the ‘best’ interpolation method for temperature in the 

Netherlands at a temporal resolution of 10 minutes. This is done by comparing four of the most 

promising interpolation methods for three different months in different seasons. The results of all 

these interpolations will be tested for quality according to a cross-validation as was described in the 

theoretical background. This means that for every interpolation, the leave-one-out cross-validation 

will be conducted and quality indicators will be calculated. Accordingly, the quality indicators that 

will be consulted include the RMSE and the ME.  

In order to determine which method is the best, quality indicators are not the only criteria that will 

be consulted. Instead, the three criteria ‘stable ’, ‘replicable’, and ‘high quality’, as described in table 

1, will together decide which interpolation model will be used for the second step of the data 

assessment procedure. These criteria where selected during an extensive discussion with experts (dr. 

Raymond Sluiter, prof.dr.ir. Arnold Bregt, and Qijun Jiang). 

Selection criteria: Description: 

Stable 

 

The RMSE of the model (tested with cross-

validation) should be relatively stable 

through time & the ME should not 

structurally over- or under predict.  

Replicable  The method should not become too 

complicated, and easy for others to 

understand and to replicate. 

High quality The quality should not be significantly 

lower than other methods in terms of 

quality (RMSE), and preferably the best.  

Table 1: Selection criteria for the most appropriate interpolation method. 

Firstly, a stable model is essential since there will be thousands of interpolations conducted that will 

be compared to amateur weather data. If the model performs well on average but has relatively 

much and big outliers, those comparisons will become irrelevant. 

Secondly, it is chosen to also prefer less complex models to complex models. The reason for that can 

best be underpinned by one of Einstein’s most famous quotes: “Everything should be made as simple 

as possible, but not simpler (Einstein 2010, p.475)”. Accordingly, this quote compactly summarizes 

the theory of Occam’s razor, which prescribes that if there are two equally performing, competing 

hypotheses which are trying to predict the same thing, the less complex one is better (Blumer et al. 

1990).  

Finally, the last selection criterion is purely based on the RMSE and ME quality indicators. Evidently, it 

makes sense to use a model that out performs competing models. This is especially true if the 

differences between them are considerable; in that case it is preferred to select the one with the 

lowest RMSE and ME.  

What?  

As was described in the theoretical background, many interpolation methods exist that can be used 

to interpolate air temperature in the Netherlands. Besides that, it has also been stressed that finding 

the most appropriate method dependents on the type of spatial phenomenon that has to be 
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predicted and the available data. As a result, there has been chosen to test four different methods 

that are commonly used to interpolate temperature in the Netherlands, namely: IDW, OK, UK, and 

TPS (Dirksen 2015; Salet 2009; Sluiter 2012). As is illustrated in figure 5, these methods result in very 

different maps representing very different spatial distributions. Besides the different results, these 

techniques also have different ways of making the calculations. As a result, this also means that 

different parameters and methodological steps had to be chosen in order to come to the results. 

Accordingly, these will be described in the following paragraphs.  

Inverse Distance Weighting  

As was described in the theoretical background, the IDW interpolation method is one of the most 

straightforward models that have been tested. Accordingly, only a few parameters have to be set 

and calculations are relatively easy. In this case the standard power function (2) has been used, since 

small scale testing showed that tweaking the power function shows only little improvements and 

fluctuates per interpolation. Furthermore, the amount of neighboring measurements that have to be 

taken into account has been set to the max, making it a global interpolation method. This is done 

since the area only covers the Netherlands, which is not too large and relatively uniform. Besides 

that, the automatic weather stations do not provide a big sample as most of the times circa 30-35 

stations provide measurements. Finally, it should be noted that these interpolations where done 

using the gstat package in the R programming language, hence making it possible to automate it for 

the entire data set (Pebesma & Graeler 2016).  
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Figure 5: Temperature map of the Netherlands 8-8-2015 – 17:50, based on AWS data. From top left to bottom right: 
IDW, TPS, OK, and UK. 
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Ordinary Kriging 

The OK interpolation method is one of the more complicated methods that have been tested in this 

research. Overall, the OK method is much like IDW, although instead of distance OK uses spatial 

autocorrelation to determine weights of surrounding observations. Accordingly, the OK method 

requires for every interpolation that a sample variogram has to be made, and a model has to be 

fitted. Hence, the OK method requires some additional elaboration. 

Firstly, it should be noted that these procedures had to be automated, as they needed to be 

repeated thousands of times. Consequently, the Automap package for the R programming language 

was used (Hiemstra 2015). This package was built in order to make it possible to test multiple 

variograms models as well as multiple nugget-, sill-, and range parameters for all interpolations. The 

objective is to test multiple models and parameters, and to select the best configuration each time.  

The parameters that have to be set include: the sill, the range, the nugget, and the fitted models. 

Firstly, the sill is estimated by taking the mean of the maximal value and the median value of the 

semivariance. Furthermore, the range is chosen by multiplying the diagonal of the bounding box that 

is associated with the dataset. The nugget is set to the minimal semivariance value. It should be 

noted that these procedures are all standard practice in the Automap package and turn out to give 

optimal results as will be illustrated (Hiemstra 2015). 

 

Figure 6: Examples of variogram models, source: Dirksen 2015, p.36.  
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Besides these parameters, the variogram models that have to be tested need to be specified as well. 

In this case the most common variogram models are tested, these include: the Exponential, the 

Gaussian, the Spherical, and the Matern, M. Stein's parameterization (figure 6). The Matern, M. 

Stein's parameterization does not have a standard form hence it is not illustrated. In order to select 

the most appropriate model, the difference between the sample variogram and the fitted model is 

consulted. Accordingly, the model that has the smallest sum of the squared residuals is chosen. Once 

the most appropriate variogram model is chosen, it can be used to determine the weights of the 

surrounding observations, as was the case with IDW. Thereafter, the predictions can be made and be 

assessed with a cross-validation. Finally, it should be noted that this entire selection procedure has to 

be done for every time step; hence using a programming tool is the only viable solution.  

Universal Kriging  
Closely related to the OK interpolation method is the UK 

interpolation method. As was stated in the theoretic 

background, the UK interpolation method can be used 

when there is an overriding trend in the data, which can be 

modeled by a deterministic function. For air temperature in 

the Netherlands, previous research has revealed that the 

distance to shore can be used as such explanatory variable 

(Dirksen 2015; Salet 2009; Sluiter 2012). Accordingly, the 

distance to the shore was digitalized in a GIS, and used as an 

explanatory variable in this research (figure 7). It should 

however be noted, that the logarithmic distance to shore 

shows the best results, hence it is also used in this research 

(Salet 2009). 

Although OK and UK show quite some resemblance, there 

are notable differences. Instead of making the sample 

variogram straight from the data, as was the case with OK, 

the UK interpolation method first removes a trend that can 

be fitted through the data of the logarithmic distance to the 

shore and the observed sample temperatures. Thereafter, 

the de-trended data is used to make the sample variogram in the same fashion as was the case with 

OK. Accordingly, the parameter selection and the variogram model fitting are also done identically. 

Again, all the steps have to be conducted for every time step in order to make predictions and 

subsequently do a cross-validation, hence it was all automated with the Automap package in the R 

programming language (Hiemstra 2015). 

Thin plate splines  
As was stated in the theoretic background, spline interpolation methods fit multiple polynomials 

exactly through a set of data points. However, there are also ‘cubic’ splines that do not fit exactly 

through all data points but rather aim to capture the global variety (Hiemstra & Sluiter 2011). Figure 

8 illustrates this concept, with on the left a spline that captures the global variety and on the right a 

spline that captures local variety.  

Figure 7: Distance to shore map of the 
Netherlands (Dirksen 2015, p.20). 



27 
 
 

 

Figure 8: Splines fitted to random data focusing on either global or local accuracy (Hiemstra & Sluiter 2011, p.12). 

Subsequently, Thin Plate Splines (TPS) are two-dimensional cubic splines that balance between local 

accuracy and global accuracy (illustrated by the middle spline in figure 8). Previous research has 

shown that TPS can be used to successfully interpolate temperature in the Netherlands, hence it is 

also tested in this thesis (Dirksen 2015; Sluiter 2012; Sluiter 2009). Furthermore, TPS can be 

compared to fitting a thin metal sheet through a set of data points. The balance between the local- 

and the global accuracy is established by using a cost function that on the one hand minimalizes the 

minimum error at the observation location, while on the other hand minimalizes the bending of the 

sheet. The degree to which this cost function favours the first over the second factor is controlled by 

the λ parameter. Accordingly, the λ parameter is estimated from the observation points by doing a 

Generalized Cross Validation (GCV). This procedure was also automated with R, with a script written 

by Hiemstra () that primarily uses the ‘Tps’ function from the ‘Fields’ package (Douglas et al. 2016; 

Hiemstra & Sluiter 2011). As a result, this method could be repeated for every time step in order to 

make interpolations and subsequently do cross-validations for the whole study period.   

When?  

Next to the selection criteria and the chosen interpolation methods, it also necessary to discuss the 

temporal resolution of this research step. Firstly, it should be noted that the WOW-NL data set 

consists of temperature measurements that are registered every ten minutes. Next to the WOW-NL 

data set, the official AWS measurements are also available for this resolution. It should be noted that 

this is considered as a relatively high temporal resolution in terms of meteorological standards.  

 

Figure 9: The growth of registered WOW-NL stations over time. 
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Besides that, the amount of amateur weather stations that are registered to the WOW-NL 

application is continuously growing (figure 9). However, it should be stressed the WOW-NL 

application only exists since April last year. Consequently, this means that the WOW-NL data is only 

available for 3 out of 4 seasons, which is an important limitation. Nevertheless, in order to capture 

the influence of the three different seasons in the interpolation results, it is chosen to make 

interpolations for the months: August, October, and January.  

Coming back to the tested interpolation methods, this means that for every month temperature 

interpolations and cross-validations had to be made for approximately 4.000 time steps. Given the 

amount of cross-validations that are conducted, it is possible to plot the performance of the 

interpolation through time in order to get a comprehensive overview of the stability of each 

interpolation method. 

In order to start with the next research step, the procedure of finding the best interpolation method 

had to be completed first. Accordingly, it was concluded that TPS was the most optimal interpolation 

method for this data set. In order to read how this was concluded the reader is referred to paragraph 

5.1.1. 

4.1.2. Comparing interpolations with WOW-NL data 
When the most optimal interpolation method for the selected dataset has been determined, the 

second part of the data assessment can begin. Accordingly, this part starts with conducting the TPS 

interpolation method for every time step. This is done in order to get estimated temperature values, 

based on the AWS measurements, for all the WOW-NL stations (locations). As a result, every WOW-

NL measurement includes an interpolated temperature value as well as an observed temperature 

value. These values play an important role, as the main objective of this part of the research 

comprises the comparison of these two values.  

Comparison methods    

Firstly, it should be noted that a few different causes could result in differences (residuals) between 

the WOW-NL measurements and the interpolations. On the one hand, there are the combined 

factors that altogether form the bias of amateur weather station, and on the other hand there is the 

actual variation in temperature that exists across space. It should be stressed that is impossible to 

distinguish these two with absolute certainty. However, the size of the residuals and their 

occurrences among different subsets of the data, gives insight into which factors cause issues for 

amateur weather stations. As a result, the used comparison method is dedicated to extract patterns 

from the bulk of (all) data by analysing different sub-sets (e.g., day versus night residuals, summer 

versus winter residuals). By using these different subsets it becomes clear which dimensions of the 

WOW-NL data are characterised by the biggest deviations from the AWS predicted temperatures. 

Observed vs. predicted 
Since there are approximately 3 million measurements compared to their associated interpolated 

temperatures, there are many useful ways of analysing and highlighting these differences. The first 

method that is used consists of plotting the measured temperatures against the predicted 

temperatures. This results in a comprehensive graphical overview that clearly illustrates the 

distribution and size of the residuals. Since this is done before corrections took place, they also show 

where outliers occur.  Besides that, it should be noted that plotting the observed values versus the 

predicted values could be done for each and every subset.  
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Boxplots 

Since plotting the observed values versus the predicted values merely gives a visual overview of 

general patterns, it is necessary to analyse the residuals further. Accordingly, this will be done 

according to boxplots of the residuals, which come with a few further benefits. Firstly, they provide 

some information regarding the symmetry and the skewness of the data. Secondly, boxplots clearly 

illustrate the spread and the outliers of the residuals. Furthermore, boxplots can be used to 

graphically display the differences between subsets since they can be plotted next to each other, 

which enhances the inter comparisons between them. 

Raster diagram 

In order to gain a comprehensive overview of how the average and the mean bias fluctuate over 

time, it is chosen to plot raster diagrams. These include the mean biases for every hour and every 

month for all WOW-NL data. Accordingly, it should be noticed that these raster diagrams comprise 

three dimensions of data. On the x-axis the months are plotted, while the y-axis includes the 

different hours of the day. Furthermore, the cells of each raster are filled according to their 

associated mean bias values by means of a colour ramp. Concluding, this plot will compactly 

summarize the deviations of the WOW-NL measurements according to different moments in time 

and season.  

Bubble plots 
Besides the statistical approach, it is also important to examine the spatial component of the data. As 

a result, bubble plots where made that illustrate the average and the absolute bias per station on a 

map. These bubble plots illustrate whether the bias per station is distributed across space relatively 

random, or if they are concentrated in certain places. Besides that, these bubble plots give a clear 

overview of which stations are close to the interpolations and which are not. Additionally, it is also 

becomes clear if the individual stations generally measure lower than the interpolations or higher.  

Summary statistics  

Next to the previous methods, it is also important to analyse the residuals in terms of summary 

statistics. Accordingly, multiple measures are used that each have their own strengths and 

weaknesses as was described in paragraph 3.2.6. These include: RMSE, ME, Minimum value, Median, 

Mean value, and the Maximum value. Furthermore, these summary statistics can be calculated for 

each subset, making it easy to compare them with each other.  

Subsets comparison  
The plots and the summary statistics of the residuals should be considered as the means to analyse 

differences between the measured temperatures by WOW-NL stations, and the interpolations of 

KMNI measurements. However, instead of analysing all the measurements together, it is of 

considerable importance to analyse different subsets and compare the results. Accordingly, the 

following subsets were used.  

Different seasons 

The first subset consists of the six different months (July, August, October, November, December, 

and January), since they are part of three different seasons. The primary reason for the analysis of 

this subset is due to the fact that the different seasons are characterised by a considerable difference 

in temperature and in radiation. According to Bell (2014), the different types of amateur weather 

stations can show different biases in different climatologic circumstances. Consequently, making 

different subsets for the three different months will illuminate to what extent the bias changes or 

stays the same as the seasons change.  
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Day and night 

One of the most important findings that Bell (2014) described includes the influence of solar 

radiation on the bias of amateur weather station temperature readings. As a result, it is imperative to 

analyse weather the difference between the observed temperature and the predicted temperature is 

bigger at night than during the day. This is important since at night there is no solar radiation that 

directly hits the amateur weather stations, which means that this radiation bias should be nullified. 

Besides that, the radiation bias should also be bigger in the summer, as the sunlight is much stronger 

than in the winter. Therefore, the seasonal change has also been integrated in this subset. As a 

result, it becomes clear to what extent this radiation bias applies to the WOW-NL data in the selected 

months.  

WOW-NL Station rating 

Another interesting subset that has been analysed consists of the different WOW-NL station ratings 

(KNMI 2015). The station ratings refer to a quality classification system that the WOW-NL application 

has implemented, that gives amateur weather stations a rating between 1-5 (worst to best), 

according to their location attributes. The methods that are used to rate the location attributes are 

based on the standards that are prescribed by the COL (Climatological Observers Link), the WMO 

(World Meteorological Organisation), and the Met Office. The way the classification system works is 

shown in Appendix C. Furthermore, this subset is examined in order to test if WOW-NL stations that 

adhere to meteorological standards observe temperatures that are closer to the interpolations.   

WOW-NL Urban Climate Zone rating 

Next to the overall station rating, it is also relevant to consider a few individual factors from the 

WOW-NL classification system since they are of considerable importance to temperature 

measurements. The Urban Climate Zone (UCZ) index, classifies the stations surroundings according to 

the amount and type of built environment in its vicinity (Appendix C). This is especially relevant since 

urban climates tend to be warmer than rural climates (Santamouris 2014). The expected bias would 

thus be relatively higher for those stations located in urban areas since the interpolation model does 

not consider the urban environment in its predictions.  

WOW-NL Exposure rating 

Besides the UCL, the Exposure rating takes into account, obstructions that are in the vicinity of the 

weather station. This is also an element that is important to analyse separately, since temperature 

measurements can be significantly influenced by surrounding buildings and constructions. 

Accordingly, these can shelter the weather station from wind, sunshine and rain which have a 

significant influence on temperature measurements. Accordingly, the stations which have the best 

exposure are expected to best resemblance the interpolated temperatures, as official weather 

stations setup with maximum exposure.  

WOW-NL temperature rating 

Furthermore, the WOW-NL classification system also includes a specific rating for temperature 

instruments, which has also been used as a specific subset. This classification system is primarily 

based on the calibration history and radiation screen. As was discussed, radiation has a large impact 

on temperature measurements. Consequently, the stations with high ratings in this regard are 

expected to have measurements that resemble the interpolated temperatures the closest.   

Individual Performance   
The next subset that is important to analyse comprises the individual weather stations. Since to date 

there are approximately 250 amateur weather stations subscribed to the WOW-NL application, it is 
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also possible to analyse the residuals per station. This is especially beneficial for making correction as 

stations with abnormal reading stand out by plots with predominantly outliers and bad summary 

statistics. Furthermore, this also gives insight into whether individual station can perform well, and to 

what extent individual stations influence the total bias of all WOW-NL stations.  

Reputable WOW-NL stations  

According to a field study where the most popular amateur weather stations were tested next to an 

official weather station from the Met office, two type of stations from the same brand came closest 

to the official measurements (Bell et al. 2013; Bell 2014). These two stations include the Davis 

Vantage Pro 2 and the Davis Vantage Vue. As a result, it is interesting to test whether these findings 

are also valid for the interpolations and the measurements of WOW-NL stations. Accordingly, this 

subset includes the WOW-NL stations that are presumably either one of these two stations. Since it is 

not mandatory to disclose the station type when connecting a weather station to the WOW-NL 

application, it is necessary to filter these stations out otherwise. It is therefore chosen to retrieve 

hints from the columns ‘Site Description’ and ‘Additional information’ in the WOW-NL dataset. 

Stations belonging to this subset either include one of the following words in either of these 

columns: Davis, Vue, VP2, VP, and Vantage.  

Together, the different comparison methods and the different subsets give an overview of how close 

the WOW-NL data comes to reliable temperature estimates, based on official measurements. 

Furthermore, the comparisons also illuminate under what circumstances the WOW-NL stations 

experience difficulties in making plausible measurements. Additionally, these circumstances also give 

clear indications of what might cause these difficulties for the amateur weather stations. Altogether, 

this part of the research completes the methodological description of the data assessment. The 

results that come from conducting these steps are described in paragraph 5.1.2. 

4.2. Gross error and outlier removal  
After the assessment of WOW-NL data is completed, the data should be analysed for outliers and 

gross errors. This part of the research is crucial since the data assessment showed that the WOW-NL 

data includes quit some measurements that are highly unlikely and most probably the result of a 

malfunctioning WOW-NL station (paragraph 5.1.2). Besides that, other issues such as data gaps, 

repetitive stations, and stations that only include a few measurements also occurred in the WOW-NL 

data. If these measurements are not filtered out, their errors could propagate towards the data 

integration and cause unnecessary problems.  

According to Osborne & Overton (2004), an outlier is defined as: “[..] a data point that is far outside 

the norm for a variable or population (Osborne & Overton 2004)”. This means that the data point is 

so different from the rest of the population, that it might be generated by another procedure than a 

valid observation or data entry. Accordingly, it is important to understand that this type of 

measurements can have a significant influence on further analysis. For instance, using a wrong 

temperature measurement in an IDW interpolation could result in a completely unrealistic map with 

false information. Hence, it is imperative to filter such measurements out.  

However, according to  Burke (2001), the removal of outliers is no trivial procedure. They argue that 

while a data point might be significantly different from the rest of the population, it can still be a 

valid observation. Nevertheless, there are some standard practices that can be used in order to 

determine which data points are outliers that can potential be removed. One of the most common 

methods to detect outliers consist of consulting the mean of a variable minus/plus three times its 
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standard deviation (Leys et al. 2013). Although, it should be noted that this method should only be 

used if the data follows a normal distribution. If the variable is completely normally distributed, this 

outlier detection method selects 0.13% of all the data and classifies them as outliers.  

Although Leys et al., (2013) clearly underpin some limitations of this method, it is chosen as a starting 

point in this research (their objections merely apply to smaller datasets). Furthermore, it should be 

stressed that this method can only be used to identify possible outliers. In order to remove them 

there should be a valid reason to, which is highly dependable on the type of data. For instance, 

temperature measurements above 60 ℃ in the Netherlands are not possible, so it is safe to conclude 

that this is an error. As a result, it is therefore necessary to make rules for selecting and removing 

outliers and gross errors for the WOW-NL data set.  

4.2.1. WOW-NL outliers and errors 
Firstly, it should be noted that in order to filter out the outliers and gross errors two variables are 

consulted. On the one hand, the residuals per measurement are taken into account, while on the 

other hand the observed temperature values are considered. Since the results in paragraph 5.1.2 

illuminated a few issues which are unique for this dataset, the following objectives are set: 

 Filtering out repetitive measurements  

 Filtering out stations that where off most of the time 

 Filtering out unrealistic measurements 

Filtering out repetitive measurements  

The first objective is dedicated to WOW-NL stations that are repeating certain measurements for a 

certain amount of time. The data assessment clearly showed that some stations (e.g., 936386001, 

936496001, and 938336001) have repetitive measurements while the actual temperature was most 

likely varying (Appendix D). Accordingly, it should be assumed that these measurements are 

incorrect, since in reality temperatures do not stay stable for long periods of time. However, it should 

be stressed that it is not aimed to remove all measurements from a station if it has been in a 

repetitive state for a given period of time, since other measurements can still be correct. In this 

research it is therefore chosen to remove all measurements that are repeated for at least 3 hours (18 

time steps). This means that for every station the consecutive measurements have been analysed.  

Filtering out stations that where off most of the time 
The second objective is dedicated to the stations that only show a few measurements in the whole 

study period. As can be observed in Appendix D, some stations (e.g., 927226001, 933846001, and 

923406001) have only a few or no bins with observed versus predicted temperatures. Regardless of 

their accuracy, it is chosen to assume that these stations do not provide reliable measurements due 

to their poor sample size. Consequently, all WOW-NL stations that provide measurements for less 

than 5% of the total study period are removed from the dataset. With this threshold it is taken into 

account that some station have only joined WOW-NL in January. These will not be removed as 5% of 

the time accounts for approximately 9 days. Furthermore, the data gaps will be removed by keeping 

all the measurements that do not include an observed temperature out of the dataset.  

Filtering out unrealistic measurements 
The unrealistic measurements are filtered out by consulting the temperature residuals. As was 

mentioned, the standard practice of consulting the mean minus/plus three times the standard 

deviation was the starting point. Although, before this method could be applied, it was necessary to 

examine the distribution of the residuals since the method is only applicable to normally distributed 

variables. The next step consists of determining whether or not the outliers seem realistic. In this 
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regard it is important to keep in mind that the residuals include the difference between temperature 

estimations based on automatic weather stations and the observations that are made by WOW-NL 

stations. Since microclimates can deviate significantly from the air temperature on a coarse scale at 

which the KNMI measures, it is important to have relatively large boundaries for the bias. 

Consequently, it is chosen to not remove data with a bias of -10℃ to 10℃, and all data that has a 

residual smaller than the mean minus/plus three times the standard deviation.  

After all the previously described steps had been conducted, the dataset is ready for the next 

research step, which includes the data integration. This was done according to three different data 

integration scenarios, that each aim to explore and illuminate potential benefits that arise with the 

integration of formal and informal data. Finally, the results of the gross error and outlier removal can 

be observed in paragraph 5.2. 

4.3. Data integration scenarios 
The final part of this research consists of the data integration. Accordingly, the informal data and the 

formal data are integrated in order to explore its potential benefits. It was chosen to use three 

different scenarios which each aim to illuminate potential benefits, by integrating the data in a 

different way. The three scenarios include: (1) threating the WOW-NL data as equal compared to the 

AWS data, (2) using the WOW-NL data only as predictive variable, and (3) making further corrections 

to the WOW-NL data. The methodological steps that are carried out during these scenarios are 

described in the following paragraphs.  

4.3.1. WOW-NL as equal 
The first scenario consists of threating the WOW-NL data as equal to the AWS data. To formulate this 

scenario more straightforward, it consist of ‘doing nothing’ to the WOW-NL data and treating it as if 

it are accurate measurements. As a result, the WOW-NL data can immediately be integrated and 

used for further analysis. However, the success of integration still needs to be tested.  

This is done according to two different analyses. Firstly, the success of the integration is tested 

according to interpolations and quality indicators. Accordingly, the same methods (including 

parameters) that were used in paragraph 4.1.1 are now tested with the integrated data. This means 

that both WOW-NL stations and automatic weather stations will be considered as equal, and both be 

taken into account in the interpolations. However, the study period is slightly shorter than in 

paragraph 4.1.1, due to the intensity of the calculations. It is therefore chosen to make interpolations 

and cross-validations for all time steps for one week in August, October, and January. This way the 

different seasons are captured in this analysis as well.  

However, instead of doing the leave-one-out cross-validation for all stations, it is only done for the 

automatic weather stations. This means that in the cross-validation, the values of the automatic 

weather stations are predicted according to all other stations (both WOW-NL and AWS). This is due 

to the fact that these are the only measurements that are validated, hence the only comparison that 

makes sense. As a result, this scenario examines if the AWS measurements can be predicted more 

accurately according to integrated data, or according to AWS data only. It is predicted that WOW-NL 

stations might improve predictions especially when there is much spatial variation which is hard to 

capture with fewer stations. Again, the RMSE is plotted over time, and compared to the RMSE of the 

interpolations that where done in paragraph 4.1.1.  

Besides the evaluation in terms quality indicators, it is also necessary to examine the result of the 

interpolations visually. Since the observation sample has improved drastically by the data 
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integration, the resultant maps are affected as well. Therefore, the different interpolation results are 

also compared in terms of their visualisation. However, this is only done on a small scale (one 

example each) since it is not feasible to compare thousands of maps. Finally, the results of this 

scenario can be observed in paragraph 5.3.1. 

4.3.2. WOW-NL as secondary predictive variable 
The second integration scenario threats the WOW-NL data as less reliable than the AWS 

measurements. This is done by using the WOW-NL data only as a secondary predictive variable in the 

UK method as was described in paragraph 4.1.1. This means that the WOW-NL data will be used to 

remove a trend that can be fitted through the WOW-NL data and the observed temperatures at 

automatic weather stations. Thereafter, the de-trended data will be used to make the sample 

variogram as was the case with OK. However, this means that a continuous surface with temperature 

values based on WOW-NL measurements is necessary in order to have a temperature estimates on 

the location of automatic weather stations. As a result, this scenario consists of (1) making 

interpolations based on the WOW-NL data, and (2) conducting interpolations and cross validations 

with the WOW-NL data as secondary variable in the UK method.  

WOW-NL interpolations  

In order to use the WOW-NL data as a second variable in the UK interpolation method, it is required 

to have temperature estimation based on the WOW-NL data for the automatic weather stations. In 

order to obtain those values it is chosen to use the TPS interpolation method. This is chosen due to 

the overall robustness of the IDW method, combined with the limited time available for this 

research. Ideally, another study like was done in paragraph 4.1.1 would be necessary to find out 

which interpolation method performs the best with more observation samples. However, since the 

TPS method has proved itself as a well performing, robust method for interpolating temperature 

data with a high temporal resolution, it is justified to use this method. As a result of this step, all AWS 

measurements have both the temperature that was observed by the official station, as well as a 

temperature value based on the WOW-NL interpolation. This makes it possible to make 

interpolations with the UK method, and the WOW-NL data as secondary variable.  

UK cross validation 

As was the case in the previous scenario, it is necessary to conduct interpolations and subsequently 

test the quality. Accordingly, it is chosen to also perform the leave-one-out cross-validation. Since the 

WOW-NL data is merely used as a secondary predictive variable, the cross-validation can only be 

done for the automatic weather stations. This means that again the RMSE can be plotted against 

time, so that a comprehensive overview of the interpolation quality can be obtained. Besides that, it 

should be stressed that the study period is exactly the same as in the previous scenario. As a result, 

the outcome of the first scenario can also be compared with the results of the first scenario. 

Furthermore, the results of the second scenario will also be interpreted visually, with maps that 

illustrate the result of the interpolations. It is chosen to use a time step that illustrates a situation 

where the interpolation outperforms the AWS TPS interpolation.    
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4.3.3. Correct WOW-NL 
The third and final integration scenario aims to correct the WOW-NL data before it is actually 

integrated. Since Bell (2014) states that incoming solar radiation has a significant influence on the 

bias of the WOW-UK measurements, it is relevant to examine if this also applies to the WOW-NL 

data. This is examined by a prediction model that aims to predict the interpolated temperatures 

based on the WOW-NL observed temperature values and the incoming solar radiation. Accordingly, 

this made it possible to test whether the solar radiation has any predictive significance for the 

residuals between the interpolated temperature values and the observed WOW-NL temperatures. 

This research step is done according to two different prediction models. Firstly, a multiple regression 

analysis was conducted for all the data, and secondly, a random forest model was used to analyse 

specific days where there was relatively much solar radiation. However, before the prediction models 

could be constructed, reliable estimations of solar radiation at the sites of WOW-NL stations had to 

be made. As a result, this integration scenario consist of three steps: (1) interpolating radiation data, 

(2) a multiple regression analysis, and (3) a random forest analysis.  

Sun interpolations   

Since the WOW-NL station do not measure radiation, there is a need for another source that includes 

measurements for solar radiation at any location in the Netherlands. Ideally, this should be derived 

from satellite images (e.g., cloud cover) or weather forecasting models. However, due to the limited 

time available for this research it was chosen to make interpolations from hourly averages at 

automatic weather stations. Since the solar radiation is merely used as a global predictive variable, 

this rough estimates were viewed as sufficient. Consequently, the AWS measurements of average 

joule per square centimetre where used to make interpolations (BRON). This means that the 

temporal resolution for this variable is slightly lower than the WOW-NL resolution. Since rough 

estimates where valued as sufficient, it was chosen to use the IDW interpolation method with the 

standard power function (q=2). The selection for IDW was mostly made due to the robustness of the 

IDW method. As a result, all WOW-NL measurements also include an estimated joule per square 

centimetre which could be used as input for the prediction models.  

Multiple regression analysis for all data  
In order to describe the relation between an ‘dependent’ variable and a related ‘predictor’ variable, a 

linear regression analysis can be used (Montgomery et al. 2015). In case there is more than one 

predictor variable, the highly similar multiple regression analysis is a suitable alternative. Accordingly, 

the multiple regression analysis aims to fit a linear model through the data, which best predicts the 

dependent variable according to the predictor variables. The dependent variable is estimated by: (1) 

a constant, (2) and a slope multiplied with the predictor variable(s). In order to make a prediction 

model that generates good estimates of the interpolated temperatures, the variables: observed 

temperatures, incoming solar radiation, and the time of measurement where used. This way it can be 

tested whether sunlight is a good predictor variable for the deviation from the observed temperature 

by WOW-NL stations. This resulted in the following formula for the multiple regression analysis: 

Predicted temperature = b0 + b1(solar radiation) + b2(observed WOW-NL temperature) + 

b3(moment of measurement). 

The resultant model can be used to correct the WOW-NL observations. However, it should be 

stressed that the predicted temperatures play an important role in this model. All the variance that 

can be explained according to the model will be removed and the residuals will be the only 

temperature deviation from the interpolations that are left. In theory, the resultant deviation from 

the predicted temperatures should be viewed as the local variation in temperature. Nevertheless, it 
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won’t make sense to do cross-validations in order to test the quality of the corrected data, since the 

interpolations where already based on the AWS data.  

Random forest model for hot days 
Besides the multiple regression analysis for the whole dataset, it is also interesting to use a more 

powerful prediction method for a few exemplary sunny days. Accordingly, it is chosen to use the 

random forest regression method for two relatively hot days in August. The random forest method is 

an ensemble machine learning approach, which means that it uses many (weak) models in order to 

construct a (powerful) model by aggregation (Breiman 1999; Liaw & Wiener 2002). The random 

forest model is an ensemble of decision trees, which generates either a classification or a predicted 

value (regression). The threes are individually constructed by randomly selecting a subset of the 

training data, and subsequently the nodes are split by using a random selection of predictor 

variables. Ultimately, the different threes together form the forest, and the prediction value is 

chosen by the average outcome of all the threes combined. The random forest model is also selected 

since it is suitable for dealing with larger data sets (Breiman 1999; Liaw & Wiener 2002). Finally, it 

should be noted that both correction models will be supported with maps that are based on the 

corrected WOW-NL data.  
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5. Results 
 

This chapter includes all the results that came from the different steps that where conducted during 

the research. These include: the WOW-NL data assessment, gross error and outlier removal, and the 

different integration scenarios. In order to keep the structure of this chapter clear, the results of 

these different steps are described separately. 

5.1. Data assessment 
The data assessment part consists of two steps. Accordingly, the first step consists of finding the 

most optimal interpolation method for AWS temperature measurements, in order to gain accurate 

temperature estimates at the sites of WOW-NL weather stations. Next, the second step includes an 

extensive comparison between interpolated temperature values, and the actual temperature values 

that where measured by the WOW-NL stations. These two research steps together form the 

methodological part of the data assessment and are described in the next two paragraphs. 

5.1.1. Finding the best interpolation method 
In this part of the research, four interpolation methods where compared for an extensive period of 

time. More specifically, the interpolation methods IDW, OK, UK, and TPS where tested for three 

different months in different season (August, October, and January). This period was chosen in order 

to find out how the interpolation methods perform under different climatic circumstances. 

Furthermore, the temporal resolution is also relatively high, as the interpolations and cross-

validations where made for every 10 minutes during the three month period. Subsequently, this 

made it possible to plot the RMSE of every cross-validation against its moment in time (figure 10).  

 

 

 

 

 

 

 

 

 

 

 

The results of the cross-validation clearly show big differences between the four interpolation 

methods. Firstly, it should be noted that IDW structurally performs less than the other three methods 

in terms of RMSE values; this is valid for all three months. Furthermore, it becomes clear that the two 

Kriging methods tend to be less stable, as they have relatively high, and much outliers compared to 

the other two methods. It should be noted that the y-axis figure 10 is fixed to RMSE values 0-3, 

however the outliers of the Kriging methods occasionally go up to an RMSE of approximately 15 

Figure 10: The RMSE of cross-validation from the four tested interpolation methods IDW, OK, UK & TPS based on AWS in 
August, October & January (y-axis is fixed at RMSE = 0-3.0). 
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(Appendix A). Evidently, these extreme outlier interpolations are useless when compared to the 

WOW-NL measurements since they do not produce reliable temperature estimates at the site of 

WOW-NL stations. Furthermore, it should be noted that TPS shows good performance on both 

stability and RMSE values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides that, the instability of the Kriging methods is also confirmed when examining the boxplots 

that come from the cross-validations (figure 11). The y-axis for the boxplot for October is fixed to 0-

2.5 since a couple of outliers on 28-10-2015 have an RMSE of approximately 15, which make the 

figure unreadable if they are included (Appendix B). Nevertheless, the boxplot from January clearly 

shows that the Kriging interpolations have more, and bigger outliers than IDW and TPS.  

When exploring the Kriging outliers a bit further, it should be noted that it is known that a small 

number of sample observations can lead to difficulties when making the variogram. According to 

Hengl (2007), the 35 automatic weather stations are not enough to make reliable variograms, as he 

Figure 11: RMSE Boxplots of cross-validation from the four tested interpolation methods IDW, OK, UK & TPS in August, 
October & January. 
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advises for a minimum of 50 sample observations. Comparing his advice to the results that are 

presented in figure 10 and 11, it should be acknowledged that the Kriging interpolation methods 

indeed seem to perform poorly in some situations. However, the vast majority of the interpolations 

are successful. So, if only one, or only a few interpolations had to be made, the Kriging methods 

would still be worth testing.  

Besides that, it is interesting to further evaluate Kriging interpolations with poor quality. Accordingly, 

figure 12 illustrates interpolated temperature maps made with TPS and OK on a moment that the 

Kriging interpolations perform poorly. It is clear that the general patterns look the same, however 

the OK interpolation has some strange deviations in the southern part of Limburg. There is no reason 

to assume that temperatures deviate approximately 30 degrees Celsius within such a small area, 

hence these estimates are most likely false. When these two interpolations where examined by 

means of a cross-validation, TPS significantly outperformed OK with an RMSE of 0.6 as opposed to an 

RMSE of 7.5. Concluding, these maps illustrate that comparisons between the interpolated values 

and WOW-NL measurements do not make sense if the interpolations have poor quality. 

 

 

 

 

 

 

 

 

 

 

 

 

Coming back to the overall comparison between the four interpolation methods, it is also important 

to examine the performance in terms of average RMSE and ME. Table 2 clearly illustrated that the 

TPS interpolation method performs best overall, however in August and October it is similar or less 

compared to UK. Nevertheless, it should also be stressed that the differences are relatively small. 

Accordingly, the difference between the best and the worst interpolation method is only 0.17 

degrees Celsius in terms of RMSE. Besides the RMSE, it is also important to check if interpolation 

methods structurally over, or under predict. Table 3 shows that this is not the case, as all 

interpolation methods have a ME of approximately 0%.  

 

 

 

 

Figure 12: Air temperature on 30-8-2015 17:19:01 interpolated with different methods, from left to right: TPS & OK. 
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Concluding, the most appropriate interpolation method is chosen according to the selection criteria 

(stable, replicable, high quality) that where described in paragraph 4.1.1. In terms of stability the 

interpolation methods IDW and TPS considerably outperformed OK and UK, as they had way less, 

and lower outliers.  

Furthermore, the complexity of the OK and UK methods is also clearly higher since they require 

variograms, including many parameters that have to be selected. Besides the Kriging methods, IDW is 

viewed as the least complex method since it only considers distance between measurements 

according to a simple power functions (q), and radius. The TPS method is somewhere in between 

because the polynomial functions and the cost function are more complex from a mathematical 

standpoint.  

Finally, the quality of TPS in terms of RMSE was clearly better than all other methods. Besides TPS, 

UK and OK performed more or less equally, with UK performing slightly better than OK. The IDW 

method structurally performed the worst in this regard.  

When considering all three selection criteria it should be stressed that TPS is the most appropriate 

interpolation method for this dataset. It is the best performing in terms of quality, while it is also a 

stable method that is not too complex. The only real alternative could be IDW since it is a less 

complex method that is also stable. However, it structurally performs less than TPS while its relative 

simplicity does not impose a clear benefit over TPS that outweighs it shortcomings in terms of 

quality. Besides that, the extreme outliers of the Kriging methods make them unusable for some time 

steps in the dataset. As a result, TPS is chosen to make interpolations to the WOW-NL stations in the 

next research step. 

5.1.2. Comparing interpolations with WOW-NL data 
The second part of the data assessment consist of the extensive comparison between interpolated 

temperature values and the observed temperature values by the WOW-NL stations. Accordingly, the 

first step consists of making interpolations for every time step for the whole data set. As was decided 

in the previous paragraph, this is done with the TPS method. As a result, all measurements by the 

WOW-NL stations include both an observed temperature as well as a predicted temperature.  

  

 August October January Total 

IDW 1.01 0.92 0.95 0.96 

OK 0.89 0.82 0.79 0.84 

Uk 0.87 0.80 0.74 0.80 

TPS 0.88 0.80 0.70 0.79 

Table 2: Average RMSE values 

          

 August October January Total 

IDW 0.02 -0.01 -0.04 -0.01 

OK 0.01 0.00 0.00 0.00 

Uk 0.01 0.00 -0.01 0.00 

TPS 0.02 0.01 0.00 0.01 

Table 3: Average ME values 

          



41 
 
 

Degrees °C 

All WOW-NL data  

An overall plot for all time steps and all WOW-NL stations gives a first indication of how the WOW-NL 

data (approximately 3.4 million observations) resembles the predicted temperatures (figure 13).  

Accordingly, it becomes clear that in general 

most WOW-NL stations observe higher 

temperatures than predicted temperatures. 

However, it should be noted that there are 

also many cases in which they observe lower 

temperatures. Moreover, between 0°C and 

20°C, there is a large group of WOW-NL 

observations that closely resemble the 

interpolated values. Besides that, it is hard to 

extract further conclusions from this plot 

since it includes all measurements, from all 

WOW-NL stations, for approximately 26.000 

time steps. Nevertheless, the plot also 

includes clear indications that there are 

some gross errors and significant outliers 

present in the dataset. For instance, the 

hexagon bins with an observed temperature 

of 0 °C strongly suggest that either one or a 

few WOW-NL stations are registering 

repetitive measurements. This is implied 

since they form a straight line, which can be 

the results of a station that keeps registering 0 °C while the actual temperature is varying. Besides 

that, there are some other suspicious hexagon bins at other observed temperature values. For 

instance, the one that is located at observed temperature -6 °C and predicted temperature 25 °C. 

This difference between the interpolated temperature and the actual temperature is highly unlikely, 

which strongly suggests that there are also quit some measurements that do not make sense and 

should not be taken into account for the data integration. Concluding, it is imperative to further 

analyse subsets of the data to gain better insight into the WOW-NL bias.  

   

 

 

 

 

  

 

 

 

 

Figure 13: Hexagonal binned data points of predicted 
temperature (KNMI interpolations) vs observed temperature 
(WOW-NL) for all time steps in July, August, October, November, 
December, and January. 

Figure 14: Average residual per WOW-NL station of predicted temperature (KNMI interpolations) vs observed 
temperature (WOW-NL) for all time steps in July, August, October, November, December, and January. From left to 
right: Average absolute residuals, and Average residuals. 

 

Degrees °C 

Degrees °C 
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Figure 14 confirms the conclusion that most WOW-NL stations rather observe higher temperatures 

than lower temperatures, compared to the interpolations. Furthermore, it also becomes clear that 

there are quite some differences among the WOW-NL stations in terms of average residuals. Besides 

that, figure 14 gives a comprehensive overview of which stations perform very poorly and are likely 

to contain big errors. For instance the WOW-NL stations which are located in Zeeuws-Vlaanderen 

and in Walcheren show average residuals that far exceed 5°C. It is highly unlikely that the actual 

temperatures are deviating from the interpolations with that amount. As a result, these bubble plots 

indicate that the combined factors that altogether form the bias of amateur weather station are 

significantly influencing its measurements in some cases.  

Individual stations 

In order to examine what exactly causes these average residuals, it is necessary to analyse the 

residuals per individual station. Accordingly, these can be found in Appendix D, where for each 

individual WOW-NL station the predicted temperature is plotted against the observed temperature.  

The stations that caught attention in the bubble plots turn out to be stations that have 

measurements that are obviously wrong. Station id 936496001 (Walcheren) and 938386001 (Zuid-

Limburg), are both stations that have repetitively been measuring 0°C for an extensive period of 

time. The WOW-NL station with site id 933846001 (Zeeuws- Vlaanderen) was only operable for a 

short period of time and also only registered 0°C (Appendix D). Further analysing these stations on 

the WOW website from the Met office shows that these stations either do not provide 

measurements anymore, or are re-registered under a different name and or site id (BRON).  

Beside the stations that caught the attention in the bubble plots, the individual plots also illuminate 

some additional trends. Firstly, it became clear that there are quit some stations that have unrealistic 

errors in them, as can be observed in the bottom plots of figure X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Individual WOW-NL stations with binned data points of predicted temperature (KNMI 
interpolations) vs observed temperature (WOW-NL) for all time steps in July, August, October, November, 
December, and January. 

 



43 
 
 

As a result, it should be acknowledged that some form of gross-outlier and error removal is 

imperative for this dataset. Not doing so would clearly propagate these erroneous measurements 

towards the data integration, resulting in an unreliable integrated, end product. Besides that, the 

middle plots illustrate that there are also WOW-NL stations that very closely resemble the 

interpolated values. Finally, the top plots in figure 15 show WOW-NL stations that increasingly 

deviate from the interpolated values as the predicted temperature starts rising. This strongly 

suggests that these WOW-NL stations are characterized by some degree of radiation bias as was 

described in paragraph 3.1.2. Furthermore, this would be in alignment with the findings of Bell 

(2014), as he describes that radiation bias is one of the most challenging obstacles for amateur 

weather stations. Nevertheless, this is only an indication, hence more decisive results are required.  

Seasonal and temporal subsets 
Besides the individual WOW-NL station, there are a few subsets that deserve some attention as well. 

Firstly, the seasonal differences are examined, as they include different temperatures, degrees of 

incoming radiation, and other climatological aspects that can influence WOW-NL measurements. 

Consequently, it is chosen to make subsets by season, which means that July and August comprise 

summer, October and November comprise autumn, and December and January comprise winter.  

 

 

 

 

 

 

 

 

     

 

 

 

It becomes clear that the residuals of the WOW-NL measurements and the interpolations vary 

considerably across the different seasons (figure 16). In the summer, the residuals are the largest and 

show a sizable difference with both autumn and winter. Besides that, it should be noted that most of 

residuals are positive which means that the WOW-NL measurements are mostly warmer than the 

interpolated temperatures. Furthermore, the difference between autumn and winter is smaller than 

the gap with summer, although most of the residuals are still positive. Also, the range of the outliers 

is much bigger in the summer than in the autumn and the winter.  

Another important subset that is analysed, consist of the difference between the parts of the day. It 

becomes clear that the residuals vary less compared to the seasonal change as the inter quartile 

range is much more similar (figure 17). However, there are some slight differences as the daytime 

Figure 16: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to season (no outliers). 

Figure 17 Boxplots of all WOW-NL residuals of predicted 
versus observed temperatures, grouped according to 
the part of the day (no outliers). 
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shows the largest residuals, followed by the night, and subsequently by the morning. Nevertheless, it 

should be mentioned that the boxplot regarding the different times of the day is based on all the 

measurements in the different seasons; so seasonal differences could interfere with the comparison.  

As a result, it is chosen to make raster diagrams that comprehensively show the variation of the 

residuals over time, and during the different seasons (figure 18). Again, this figure underpins the 

notion that there is a considerable difference in terms of residuals between the summer period and 

the winter period. Besides the conformation of the previous plots, these diagrams also show some 

new information. Firstly, it becomes clear that difference between average residuals in the afternoon 

and the morning are much higher in the summer than during the winter. This difference gradually 

evolves during autumn, as October still has clear differences between the afternoon and in the 

morning while November does not. Furthermore, the afternoon in the summer shows the largest 

average differences between the WOW-NL measurements and the interpolated temperatures. 

Besides that, the raster diagram also highlights a situation where the WOW-NL stations averagely 

measure lower temperatures than the interpolations, as the average bias in November is 

approximately -0.2°C. Finally, it should be noted that the differences between the WOW-NL 

measurements and the interpolation show considerable variation over time. It is however not clear 

what causes these fluctuations, as they are merely revealed and highlighted. Moreover, it is of critical 

importance to understand these aspects of the WOW-NL data so that they can be taken into account 

in the data integration.  

 

 

         

 

 

 

 

 

 

 

 

Station attribute subsets 

Besides the temporal subsets, it is also important to examine the WOW-NL data according to their 

attributes (Appendix C). The most obvious subset consist of the difference in temperature instrument 

according to the WOW-NL standards. It would be logical to assume that the instruments with the 

highest classification (A) would show the best results, however this was not the case (figure 19). 

Conversely, the temperature subset did not seem to give any significant results as all categories had 

more or less the same average bias.  

Figure 18: Raster diagrams of average (left) and absolute average (right) WOW-NL residuals of predicted versus 
observed temperatures, represented for every hour and every month (July, August, October, November, December, and 
January). 
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Furthermore, the subset that was made according to the exposure of the WOW-NL stations did come 

with some significant differences (figure 20). Accordingly, the first category (very open exposure), 

showed the closest resemblance with the interpolated values, although the differences with the next 

three categories is only small. Nevertheless, the category that includes the WOW-NL station that are 

very sheltered (category 5), shows the biggest deviation from the interpolated values.  

The UCZ index comprises the next subset, and showed some variety in terms of average bias (figure 

21). Firstly, it becomes clear that the rural areas and the areas with a small amount of buildings have 

the smallest average bias. Secondly, it should be noted that the differences between these categories 

(7-5) do not seem notable. The other categories do not seem to follow an obvious pattern in terms of 

average bias, as they vary substantially.  

 

  

Figure 19: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to temperature instrument index (no outliers 
plotted). 

Figure 20: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to exposure index (no outliers plotted). 

Figure 22: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to station rating (no outliers plotted). 

Figure 21: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to ucz index (no outliers plotted). 
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The last attribute subset that was tested includes the overall WOW-NL station rating (figure 22). 

Although it was expected that there would be significant differences between the categories, they 

are rather similar in terms of average bias. This means that regardless of the WOW-NL station rating, 

the measurements deviate from the predicted temperatures in a similar fashion. Although, this 

similarity was not predicted, it is in alignment with the results from the previous subsets, as the 

station rating is partly based on them (Appendix C).   

Reputable WOW-NL stations 

Furthermore, the final subset that was analyzed was based on reputable weather station brands. 

Accordingly, the metadata was analyzed to filter out Davis weather stations. This was done since Bell 

(2014) found that the Davis stations resemble the measurements of official Met office stations the 

closest (as was described in paragraph 4.1.2. However, the results from the WOW-NL compression 

did not show similar patterns (figure 23). The Davis stations have a slightly lower mean deviation 

from the interpolations as well as slightly lower outliers. Nevertheless, these differences are small, 

and should be viewed as negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Gross error and outlier removal 
Now that the assessment of the WOW-NL data has been completed, it has become clear, which parts 

of de WOW-NL data deviate most from the predicted temperatures. Besides that, it has also been 

illuminated that there are quit some WOW-NL measurements that seem to be the result of a 

malfunctioning WOW-NL station or other error. As was described in paragraph 4.2, these erroneous 

measurements had to be removed in order to prevent propagation towards the data integration. The 

purpose of this research step is threefold, and consist of (1) filtering out repetitive measurements, (2) 

filtering out stations that where off most of the time, and (3) filtering out unrealistic measurements. 

Figure 23: Boxplots of all WOW-NL residuals of 
predicted versus observed temperatures, grouped 
according to reputable brand (no outliers plotted). 
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5.2.1.  Filtering out repetitive measurements  
The first step consists of filtering all the station out that where registering repetitive measurements. 

As was discussed in paragraph 4.2, it is chosen to filter out all observations that are similar for at 

least three hours (18 time steps). This was done by ordering all the data per individual station and 

sorting it by time step. Accordingly, the measurements that showed identical repetitive temperature 

measurements for 3 hours or longer, where removed from the data. The result of this step can be 

observed in figure 24, which shows the original data in the top left graph, and the results of the first 

step in the top right graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2. Filtering out stations that where off most of the time 
The second step is dedicated to filter out all the measurements of stations that where on only a short 

amount of the study period. This was done in order to filter out all stations that only provide a small 

sample, which are not viewed as reliable. This was done by counting all the observations per 

individual station and checking whether that sum was smaller than 5% of the study period. The 

results of this step can be observed in figure 24 (bottom left graph). 

  

Figure 24: The predicted temperatures versus the observed WOW-NL temperatures: original data (top 
left), and after filtering out repetitive measurements (top right), filtering out stations that where off 
most of the time (bottom left), and filtering out unrealistic measurements (bottom right). 
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5.2.3. Filtering out unrealistic measurements 
The last step is primarily dedicated to filtering out measurements that are outliers, and are very 

highly unlikely to be accurate measurements. The initial method to detect outliers consist of the 

consultation of the mean residual value, minus/plus three times the standard deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, before that method can be used it is important to test if the data is normally distributed. If 

this would not be the case, and the data would for instance be heavily skewed, it would not make 

sense to have even thresholds on both sides of the mean. Nevertheless, the WOW-NL residuals seem 

to be relatively normally distributed, although it is slightly skewed as it shows more positive residuals 

(figure 24). Furthermore, the qq-plot indicates that the WOW-NL data is heavy tailed, which means 

that it includes more extreme values than should be expected from a normal distribution (figure 25). 

Applying the mean minus/plus three times the standard deviation method would mark all 

measurements that have a residual that is either bigger or smaller than 3.9°C as outliers, which 

comprises 1.24% of all the WOW-NL data. Since the WOW-NL residuals are not completely normally 

distributed, and using the mean minus/plus three times the standard deviation marks 1.24% as 

outliers, it is chosen to use a larger threshold. Accordingly, it is chosen to mark all the measurements 

that are 10°C above or below the predicted temperature as outliers. This results in a selection of 

0.3% of the data that are marked as outliers. Consequently, these will be removed from the WOW-NL 

data set. When the WOW-NL data is assessed, and the gross errors an outliers are removed, the data 

integration part can start. This results from this part of the research are described in the following 

paragraph. 

  

Figure 24: Histogram of the residuals from the WOW-NL 
observations versus the predicted temperatures.  

Figure 25: Normal Quantile-Quantile plot of the 
residuals from the WOW-NL observations versus the 
predicted temperatures.  
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5.3. Integration scenarios 
The last part of this research consist of the data integration. This means that the WOW-NL data is 

integrated with the AWS data in order to explore its potential benefits. This was done according to 

three different scenarios that are characterised by a different methodology as was described in 

paragraph 4.3. Accordingly, the results that came from these different scenarios are described next.  

5.3.1. WOW-NL as equal 
The first integration scenario threats the WOW-NL data as if it is equal to the AWS data. Accordingly, 

there were no further modification done besides from the gross error and outlier removal. By using 

the leave-one-out cross validation it was tested whether the temperatures at the automatic weather 

stations could be predicted better using only AWS measurements, or by using the integrated data. 

This resulted in the following graphs (figure 26). 

It becomes clear that there are many situations in which the WOW-NL data improve the 

interpolations and the results of the cross-validations. Although, it should be noted that in the 

summer the differences are not substantial. This is in alignment with the other research results, as 

the WOW-NL observations deviate the most from the interpolations in the summer. October and 

January clearly show improvements in terms of RMSE compared to the interpolations based merely 

on automatic weather stations. Especially in January the improvement is considerable, as the RMSE 

of the WOWNL TPS interpolation stays much lower than the RMSE of the interpolation based on 

automatic weather stations. Besides that, the WOWNL IDW and the WOWNL OK interpolation 

method perform worse than the AWS interpolations. However, when comparing their performance 

with the results of the same method without the WOW-NL measurements, it becomes clear that they 

almost always perform better (table 3 & table 4).   

 

 

 

 

 

Besides that, it should be stressed that the statistics also confirm that the integrated data set 

performs worse overall for the summer. This is valid for all three interpolation methods. Accordingly, 

this suggests that the WOW-NL data is less accurate in the summer than in the other months, as they 

actually make the interpolation models perform worse, while they improve the sample size.  

 

 

 

 

 

 August October January 

AWS IDW 0.96 0.80 1.24 

AWS OK 0.86 0.71 0.93 

AWS TPS 0.89 0.69 0.63 

Table 3: Average RMSE values AWS  

          

     August October January 

WOWNL IDW 1.02 0.69 0.90 

WOWNL OK 1.01 0.65 0.60 

WOWNL TPS 0.97 0.65 0.42 

Table 4: Average RMSE values WOWNL (AWS + WOW-NL) 

 



50 
 
 

 

 

 

  

Fi
g

u
re

 2
6

: 
R

es
u

lt
s 

o
f 

th
e 

cr
o

ss
 v

a
lid

a
ti

o
n

 f
o

r 
th

e 
in

te
rp

o
la

ti
o

n
 m

et
h

o
d

s:
 A

W
S 

TP
S 

(r
ed

),
 W

O
W

N
L 

O
K

 (
g

re
en

),
 W

O
W

N
L 

TP
S 

(b
lu

e)
, 

a
n

d
 W

O
W

N
L 

ID
W

 (
p

in
k)

  
fo

r 
th

re
e 

d
if

fe
re

n
t 

w
ee

ks
 in

 A
u

g
u

st
, O

ct
o

b
er

, a
n

d
 J

a
n

u
a

ry
. 

 



51 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the maps that are derived from the integrated data set also show a clear enhancement 

over the map that is purely based on AWS measurements (figure 27). However, the WOWNL IDW 

interpolation produces an unrealistic map which includes an omnipresent circle pattern. The 

WOWNL OK and the WOWNL TPS interpolation produce smooth maps that illustrate data with an 

improved spatial resolution. Furthermore, it should be noted that this is a situation in which the 

interpolations with the integrated data have a low RMSE. There are also situations where this is not 

the case. 

Overall, it should be concluded that the data integration can in some situation lead to improved 

temperature interpolations, both in terms of performance indicators as well as visually. Although, 

most of the time in August, the integrated data set made interpolations deteriorate in terms of 

RMSE. This suggests that the WOW-NL data has less predictive power in the summer, as normally an 

increase in observation sample size should improve interpolation quality. Nevertheless, October and 

January did showed that the integration of the WOW-NL data improved the interpolations.   

Figure 27:  Air temperature on 05-01-2016 13:00:00 interpolated with different methods, from top left to bottom right: 
WOWNL OK, WOWNL TPS, WOWNL IDW, and AWS TPS. 
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5.3.2. WOW-NL as secondary predictive variable 
The second integration scenario threats the WOW-NL data as less reliable than the AWS data. This is 

done by only using the WOW-NL data as a secondary predictive variable in the UK interpolation 

method (as was described in paragraph 4.3.2). However, the first step comprises an interpolation of 

the WOW-NL observations for a continuous grid, in order to have temperature estimates on the 

locations of automatic weather stations (figure 28 shows one example). This is done for every time 

step so that each AWS measurement has both an observed temperature and an interpolated WOW-

NL temperature. This procedure made it possible to use the WOW-NL data as a secondary variable in 

the UK interpolation method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

WOW-NL UK interpolation results  

The second step of this scenario consists of making interpolations and cross-validations for each time 

step during the same study period as was used during the previous scenario. The results of the cross-

validation give a comprehensive overview of how successful the WOWNL UK interpolation is through 

time (figure 29). Accordingly, it becomes clear that during August, the WOWNL UK interpolation 

method does not seem to improve the interpolation results much. Most of the time, the AWS TPS 

interpolation is quite similar in terms of RMSE. However, it should be mentioned that there are also 

some time steps where either the WOWNL UK or the AWS TPS interpolation performs worse. Besides 

that, in August the WOWNL UK performs slightly better overall with an RMSE of 0.81 compared to 

0.89 for AWS TPS (table 5).  

Furthermore, in October the WOWNL UK consistently scores much better in terms of RMSE than the 

AWS TPS interpolation. This improvement is also confirmed by the average RMSE, which is 0.56 for 

WOWNL UK compared to 0.69 for AWS TPS. It should therefore be concluded that using the WOW-

NL data as a secondary predictive variable in October improves the quality of the interpolations. 

 

 

Figure 28:  Air temperature on 05-01-2016 15:30:00 
interpolated with WOWNL TPS 
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 August October January 

AWS_OK 0.86 0.71 0.93 

AWS_TPS 0.89 0.69 0.63 

WOWNL_UK 0.81 0.56 0.42 

Table 5: Average RMSE values interpolation methods 

 

This is also the case for January, where the WOWNL UK deviates the most from the AWS TPS 

interpolation. Also, the WOWNL UK interpolation structurally outperforms AWS TPS in terms of 

RMSE. Equally, it should be mentioned that there are only a few exceptions where the RMSE of the 

WOWNL UK is higher than the AWS TPS. The average RMSE of the WOWNL UK is 0.42 compared to 

0.63 for AWS TPS.  

Besides the performance of the WOWNL UK 

interpolation in terms of RMSE, it is also 

important to examine the results visually 

(figure 30). It should be noted that the 

WOWNL UK interpolation result is also 

dependent on the interpolations that where 

done in order to generate a continuous 

surface based on WOW-NL measurements 

(figure 28). Since this was done using the TPS method, the resultant UK interpolation includes TPS 

patterns. However, between the three different interpolations there is quite some difference. It is 

important to stress that the WOWNL UK interpolation performs much better in this particular 

example (figure 30). 

 

 

 

 

 

 

 

 

 

 

 

Finally, it should be concluded that using WOW-NL data as a secondary variable can improve 

temperature interpolations for the Netherlands. Although, it should be mentioned that during 

August the difference was negligible. For October and January the differences seem more relevant as 

they are much bigger. This is also in alignment with the findings from Bell (2014), the results from the 

data assessment, and integration scenario 1. Although it cannot unequivocally be proven that the 

WOW-NL measurements are worse in summer, the indirect based evidence all points in this 

direction. Nevertheless, it should be stressed that these findings are based a cross-validation with 

automatic weather stations. Accordingly, it is impossible to determine if interpolations improve for 

all places in the Netherlands. Conversely, it is sure that the WOW-NL as secondary variable improves 

temperature estimations for the sites of automatic weather stations. 

Figure 30: Air temperature on 05-01-2016 15:30:00 interpolated with different methods, from top left to right: AWS TPS 
and WOWNL UK. 
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5.3.3. Correct WOW-NL 
The last scenario aims to further correct the WOW-NL data before it is actually integrated. 

Accordingly, a multiple regression analysis and a random forest analysis where conducted in order to 

examine the relation between the interpolated temperature, incoming solar radiation, the time of 

measurement, and the observed WOW-NL temperatures. The first step consisted of an interpolation 

of radiation measurements by the automatic weather stations as was described in paragraph 4.3.3. 

As a result, each WOW-NL measurement included a prediction of the average incoming sunlight. This 

step made it possible to add incoming solar radiation in the prediction models.  

Multiple regression analysis for all data  

The multiple regression analysis shows that solar radiation has a significant positive relation with the 

predicted temperature (figure 31). However, it should be noted that the predictive power is not as 

high as was expected. The most important element in the multiple regression analysis consist of the 

observed temperatures at the WOW-NL stations. 
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Altogether, the model has a relatively high R-squared, which means that a considerable share of the 

variance is explained by the model (98%). Nevertheless, it should also be stressed that the model 

does not fulfil all the necessary requirements, as the residuals are not normally distributed.  

Furthermore, it should also be assessed if: the other variables are normally distributed, if there is 

multicollinearity, if there is no auto-correlation, and if there is no homoscedasticity (Montgomery et 

al. 2015). Since the objective is not to make a generic statistical model, and the predictive power of 

the radiation is relatively low, it is chosen not to go in further detail about the remaining statistical 

assumptions.  

Furthermore, the model was used to make corrections to all the WOW-NL data. As is shown in figure 

32, the changes are relatively small. Since the multiple regression model is determined by the best fit 

based on the smallest sum of the residuals, it does not make drastic changes. The total RMSE of the 

Formula: 
Predicted temperature ~ observed temperature + time step + radiation 
 
Residuals: 
    Min      1Q   Median      3Q        Max  
-9.6940  -0.3520  0.0818       0.4528  9.8451  
 
Coefficients: 
                 Estimate  Std. Error  t value   Pr(>|t|)     
(Intercept)   -4.925e+00   1.953e-01   -25.21     <2e-16 *** 
temperature    9.620e-01   1.153e-04  8343.13    <2e-16 *** 
time step    3.499e-09    1.344e-10   26.04      <2e-16 *** 
radiation              3.634e-04   9.211e-06    39.46    <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8405 on 3330056 degrees of freedom 
Multiple R-squared:  0.9814, Adjusted R-squared:  0.9814  
F-statistic: 5.863e+07 on 3 and 3330056 DF, p-value: < 2.2e-16 

 
Figure 31: Summary report of the multiple regression analysis. 
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predicted temperature versus the observed temperature changes from 1.32, to 1.24. Accordingly, 

this should be acknowledged as only a small improvement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Random forest model for hot days 

When using the random forest model for two of the warmest days in August, the correction model 

seems to perform substantially better. Where the multiple regression analysis is restricted to a linear 

fit, the random forest model is not. As a result, the random forest model is capable of making more 

drastic corrections than the multiple regression analysis (figure 33).  

 

 

 

 

 

 

 

 

 

 

Figure 32: Predicted temperatures plotted versus the observed temperatures by WOW-NL 
stations. From left to right: before correction model, and after correction model. Color scale 
shows density from blue (least dense) to red (most dense).  

Figure 33: Predicted temperatures plotted versus the observed temperatures (2016-08-05 till 2016-08-
07) by WOW-NL stations. From left to right: before random forest model, and after random forest 
model. Color scale shows density from blue (least dense) to red (most dense). 
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However, it should be noted that these two exemplary hot days are easier to model than the whole 

data set. Nevertheless, the RMSE of the predicted temperature versus the observed temperature 

improves from 1.58 to 0.66. Besides that, it becomes clear that during these hot days, the incoming 

solar ration has much more predictive power compared to the multiple regression analysis for the 

whole data set (figure 34).  Additionally, figure 34 shows that the random forest model levels out in 

terms of mean error after approximately 50 trees.   

 

 

 

 

 

 

 

 

 

Furthermore, it is also important to examine the results of the correction models visually, by making 

maps with the corrected data (figure 35). Accordingly, it becomes clear that the WOW-NL TPS map, 

which is made with the corrected data from the random forest model, shows the most resemblance 

with the AWS TPS map. This is according to expectations, since the model performs well and takes 

the interpolated temperature as the dependent variable. However, there are still some differences 

with the AWS TPS map, which are the result of the unexplained variance in the model. Furthermore, 

the multiple regression model made less powerful corrections, hence the map that is based on its 

corrections deviates most from the AWS TPS map.  Since the corrections are both based on models 

that take the interpolated temperature as the independent variable, it does not make sense to test 

the quality with a cross-validation. This is due to the fact that the interpolations are based on the 

AWS measurements, and the cross-validation can only be done with AWS measurements.  

Finally, it should be argued that both models showed that incoming solar radiation was significantly 

related to interpolated temperatures. However, the predictive power was less than was expected 

(multiple regression analysis). However, the random forest model for two exemplary hot days in 

August showed that solar radiation has more predictive power for warm days. Overall, the 

corrections by the random forest model where more drastic than the regression analysis. Finally, 

maps made with the corrected data show that although corrections have been made, there is still 

substantial difference from the AWS interpolations. However, it should be acknowledged as a 

limitation that the quality of the interpolations cannot be tested according to a cross-validation.  

  

Figure 34: The amount of trees plotted versus the Mean error of the model and its relative variable 
importance.  

 

Variable Variable importance 

(% Increase MSE) 

Radiation 19.6 

Observed temperature  21.2  

Time step       23.6       
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Figure 35: Air temperature on 06-08-2015 13:00 interpolated with different methods. From top left to bottom right: 
WOWNL TPS after corrections with multiple regression model, WOWNL TPS after corrections with random forest 
model, and AWS TPS. 
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6. Conclusion 
 

The most important objective of the conclusion is to adequately answer the main research question, 

which was formulated as follows: 

“To what extent can the integration of spatial data, derived from amateur weather stations 

in the WOW-NL application, and formal KNMI data improve the spatiotemporal resolution of 

meteorological data?” 

Firstly, it became clear that VGI is a source of spatial data with much potential. However, the use of 

VGI also requires caution since there is a considerable lack of quality control and validation 

standards. As a result, substantial pre-processing is necessary in order to filter out possible corrupted 

measurements. Besides the general limitations, there are also some case specific issues that apply 

especially to data from amateur weather stations. These include: calibration issues, design flaws, 

communication and software errors, metadata issues, and representativity errors. Given the former 

mentioned issues, it is concluded that some sort of quality control is imperative for the utilization of 

the WOW-NL data.  

In order to assess the quality of WOW-NL data, its measurements where compared with reliable 

temperature estimates. Accordingly, these where derived from interpolations based on formal AWS 

data. However, this required the selection of the best interpolation method for temperature 

measurements with a 10 minute temporal resolution. An extensive inter-comparison showed that 

TPS is the best performing interpolation method in this regard.  

Accordingly, the comparison of the WOW-NL observations and the interpolations showed that the 

WOW-NL stations generally observe higher temperatures than the interpolated temperatures. 

Examining the individual stations showed that some stations are very closely following the 

interpolated temperatures, while other stations only showed big residuals when the interpolated 

temperatures went above approximately 20 °C. Besides that, there were also stations that where 

clearly registering outliers and errors. Considering the temporal subsets, it should be concluded that 

the observed WOW-NL observations deviated the most from the interpolations during the summer 

(daytime). Furthermore, the station attributes did not show notable differences among the various 

subsets. Besides that, the stations from reputable brands did not show closer resemblance to the 

interpolated temperatures either.  

Before the WOW-NL data could be integrated with the formal AWS data, it was necessary to conduct 

a gross error and outlier removal. Accordingly, the following type of WOW-NL measurements were 

removed: repetitive measurements, measurements from stations that where off most of the time, 

and unrealistic measurements. Removing the WOW-NL observations that where 10 °C higher or 

lower that than the interpolated temperature proved to be a suitable method of filtering out 

unrealistic measurements.  

Finally, the formal KNMI data and the WOW-NL data were integrated according to three different 

scenarios. The first scenario threats the WOW-NL data as if it is equal to AWS data. The results of the 

first scenario showed that the integrated data improved the temperature interpolations for the 

Netherlands in both October and January. However, in August the integrated data did not improve 

the interpolations.  
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In the second scenario the WOW-NL data was treated as less reliable than the AWS data. Equally, the 

integrated data improved interpolations drastically for October and January. For August, the 

improvements were negligible. 

It should be noted that the data assessment merely illuminated that WOW-NL observations deviate 

from the interpolations most is August. This does not necessarily mean that these observations are 

wrong. However, the results from integration scenario 1 and 2 also show that the quality of 

temperature interpolations in August decreases with the integration of WOW-NL data. Although it 

cannot unequivocally be proven, this strongly suggests that the WOW-NL measurements are also less 

accurate in summer. 

Furthermore, the third scenario aimed to correct the WOW-NL data before the integration. 

Accordingly, a multiple regression analysis showed that corrections could be made according to the 

time step, the observed WOW-NL temperature, and incoming solar radiation. However, the 

corrections only resulted in a marginal improvement over the original WOW-NL data. When the same 

relation was modelled with a random forest model for exemplary warm days in August, more drastic 

corrections could be made and solar radiation had more predictive power. The corrected data could 

subsequently be used to make interpolated maps. However, it should be noted that there is no 

possible method to test if these corrections actually improve the interpolations.   

Finally, it should be concluded that the integration of the WOW-NL data and AWS data can improve 

the spatiotemporal resolution of meteorological data and maps. However, it remains hard to tell 

whether the data improves for all places in the Netherlands, since it can only be tested for the 

locations of the automatic weather stations. Furthermore, this research studied temperatures on the 

scale at which the KNMI measures, while many WOW-NL users might be interested in micro climates 

(e.g., gardens, urban areas, etc.). Accordingly, these WOW-NL stations can also provide useful data, 

although their quality should not be assessed with the methods that were used in this research.  
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7. Recommendations 
 

The final chapter of this master thesis includes recommendations for the KNMI. As the WOW-NL 

project continues after the finalisation of this research, recommendations can both contribute to 

policy and further research. Accordingly, the aim of this recommendation is to include helpful 

suggestions for both domains.  

Regarding the policy of the WOW-NL applications, a few different areas of potential improvement 

became apparent during this research. One of the biggest limitations regarding the WOW-NL data 

included the lack of metadata. Accordingly, it is known that metadata is one of the most important 

elements that enables efficient use of spatial data. This especially true when a spatial database 

includes data from heterogeneous sources, which is also the case for the WOW-NL database. Besides 

that, consulting metadata enables users of spatial data to assess whether data aligns with their 

specific needs in terms of usability and quality. It would for instance be incredibly useful to know 

which type of weather station (model) is responsible for which observations. This would give users of 

the WOW-NL data better insight regarding the quality of the measurements. Additionally, this would 

also enhance the data assessment for the KNMI, since similar weather stations will generally have 

the same type of bias. Consequently, it is advised to examine the possibilities to include the station 

model in the required information that owners of a weather station have to disclose when 

connecting with the WOW-NL application.  

Furthermore, it became clear that determining the representativity of WOW-NL stations is a 

relatively complex task, despite of the sophisticated site rating criteria that are available in the 

metadata. However, if the owners of WOW-NL stations would have the possibility to include a digital 

image of their specific set-up, it would become easier to assess the representativity of a WOW-NL 

station. Consequently, it is advised to examine the possibility to add this functionality to the WOW-

NL application. However, it should be stressed that this requires more effort from the volunteer, 

hence it should not be a mandatory request. A good example of this possibility is already 

demonstrated by the WOW-UK application.  

During the meetings with the project team, it became apparent that there is no or little 

communication between the KNMI and the owners of WOW-NL stations. This is partly due to 

technical restrictions, which withholds the personal information of the WOW-NL station owners from 

the KNMI. However, it is strongly advised to overcome this restriction, and start communications in 

order to solidify the WOW-NL community. Additionally, contact with the owners of WOW-NL stations 

can potentially result in some practical benefits as well. Whenever, a WOW-NL station shows 

suspicious measurements (e.g., repetitive, unrealistic, or no measurements), it would be possible to 

warn the owners in order to solve the issues. Additionally, it would become possible to give more 

general feedback regarding the quality of the measurements. As a result, the quality of the WOW-NL 

data can be improved and additionally a more lively community can be created.   

Besides that, this research illuminated that the WOW-NL data includes a substantial amount of gross 

errors and outliers. However, after the removal of these erroneous measurements, the WOW-NL 

data turns out to have much potential. It should be acknowledged as beneficial if such 

measurements could be removed a priori instead of a posteriori. Hence, it is advised to examine the 

possibilities to construct a quality control method, which is capable of safeguarding the data base 

from the most common errors before they are stored.  
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Besides the various recommendations that aim to contribute to the policy regarding the WOW-NL 

application, there are also various suggestion regarding further research.  Firstly, it should be noted 

that this research only covered one variable (temperature), while most WOW-NL stations measure 

several others (e.g., precipitation, wind, and air pressure). Since the results of this research 

illustrated that the WOW-NL temperature data includes the potential to enhance the spatiotemporal 

resolution of formal data, it is worth testing to what extent this is valid for other variables.  

Furthermore, this research primarily focussed on temperature at the scale at which the KNMI 

measures. However, the WOW-NL data potentially contains data that can be used to study 

temperature at different scales (e.g., urban heat island) or even smaller micro climates (e.g., villages, 

neighbourhoods, streets, etc.). Hence, it would be useful to examine relations between the WOW-NL 

data, and other spatial data sources that describe the environment in which the WOW-NL stations 

are placed. Other related sources could for instance include: land use data, elevation models, 

satellite data, etc.  Accordingly, further research could illuminate to what extent the WOW-NL data 

can be used to study temperature at smaller scales.  

Besides that, the WOW-NL data can potentially also be used to study extreme situations. This 

research primarily studied the overall potential of WOW-NL temperature data in everyday situations. 

However, extreme weather can have much local variety that is hard to capture with only the AWS 

stations. Accordingly, the WOW-NL data can potentially be used as a useful source that sheds light on 

local situations in extreme weather conditions.  

Concluding, it should be stressed that the KNMI showed considerable interest in WOW-NL project 

and the data that is derived from the WOW-NL application. The commissioned researches of Koolen 

(2016), and this master thesis illustrate this. As a result, it is therefore advised to conserve this policy, 

and to continue with data assessment and research regarding the improvement and usability of 

WOW-NL data.  
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Appendix 
 

Appendix A: Results of Kriging interpolation methods per month  
 

 

 

 

 

 

 

 

 

 

 

Appendix B: RMSE Boxplot tested interpolation methods October 
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Appendix C: Site rating of WOW-NL stations. 
The WOW-NL stations have an quality rating which is based on various location attributes. The way 

the location attributes are used to determine this quality rating is based on the following 

classification system by the Met office (http://wow.metoffice.gov.uk/support/siteratings): 

  WOW lets you provide details about a number of attributes that help other WOW users and the 

Met Office understand the surrounding environment. These attributes have been compiled 

based on site grading schemes used by the Climatological Observers Link (COL), the World 

Meteorological Organisation (WMO) and the Met Office. 

 Exposure 

 Measurements of air temperature 

 Measurements of rainfall 

 Measurements of wind 

 Urban Climate Zone Index (UCZ) 

 Reporting hours 

 

These Location Attributes are used to calculate a Site's Rating 

Exposure 

5: Very open exposure: no obstructions within 10h or more of temperature or rainfall 

instruments. 

4: Open exposure: most obstructions/heated buildings 5h or from temperature or rainfall 

instruments, none within 2h. 

3: Standard exposure: no significant obstructions or heated buildings within 2h of temperature 

or rainfall instruments. 

2: Restricted exposure: most obstructions/heated buildings >2h from temperature or rainfall 

instruments, none within 1h. 

1: Sheltered exposure: significant obstructions or heated buildings within 1h of temperature or 

rainfall instruments. 

0: Very sheltered exposure: site obstructions or sensor exposure severely limit exposure to 

sunshine, wind, rainfall. 

R: Rooftop site: Rooftop sites for temperature and rainfall sensors should be avoided where 

possible. 

T: Traffic site: equipment sited adjacent to public highway. 

U: Exposure unknown or not stated. 

Exposure ratings relate to the site of the temperature and rainfall instruments only, which should ideally be at ground 

level. Sensors for sunshine, wind speed etc are best exposed as freely as possible, and rooftop or mast mountings are 

usually preferable. 

Exposure guidelines are based on a multiple of the height h of the obstruction above the sensor height; the standard is 

a minimum distance of twice the height (2h). Thus for a raingauge at 30 cm above ground, a building 5 m high should 

be at least 9.4 m distant (5 m less 0.3 m, x 2), and a 10 m building should be at least 17 m from a thermometer screen 

(10 m less 1.5 m, x2). 

 

http://wow.metoffice.gov.uk/support/siteratings
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Measurements of air temperature 

A: Standard instruments in Stevenson Screen, calibration within last 10 yr, site exposure 

minimum rating = 3. 

B: Standard instruments in Stevenson Screen or manufacturer supplied AWS radiation screen, 

calibration within last 10 yr, site exposure = 2 or 3. 

C: Standard instruments in Stevenson Screen or manufacturer supplied AWS radiation screen, 

site exposure 1 or less. 

D: Non-standard instruments and/or no or non-standard radiation screen and/or sheltered site, 

site exposure 1 or less. 

U: Instruments unknown or not stated. 

0: No air temperature measurements made at this site. 

STANDARD INSTRUMENTS in this context means: Calibrated mercury-in-glass thermometers or calibrated electronic 

temperature sensors. 

Measurements of rainfall 

A: Standard ''five inch'' manually-read raingauge or calibrated tipping-bucket raingauge, at 

standard height above ground (30 cm), site exposure minimum = 3. 

B: Standard ''five inch'' manually-read raingauge or calibrated tipping-bucket raingauge, the rim 

mounted at standard height above ground (30 cm), exposure = 2 or 3. 

C: Standard ''five inch'' manually-read raingauge or calibrated tipping-bucket raingauge, the rim 

mounted at standard height above ground (30 cm), exposure 1 or less. 

D: Non-standard raingauge and/or tipping-bucket raingauge, exposure 1 or less. 

U: Instruments unknown or not stated. 

0: No rainfall measurements made at this site. 

STANDARD INSTRUMENTS in this context means: Standard-pattern (Snowdon or Met Office Mk II pattern) ''five-inch'' 

copper raingauge, with deep funnel, the rim of the gauge level and mounted at 30 cm above ground level, meeting the 

minimum exposure requirement of being at least 'twice the height'' of the obstacle away from the obstacle. 

Measurements of wind 

A: Wind sensors calibrated within last 10 years, mounted 10m above the ground on mast or pole, 

with no obstructions within 100m. 

B: Wind sensors mounted above the ground on mast or pole, with no obstructions within 50m. 

C: Wind sensors mounted on building or wall. 

U: Instruments unknown or not stated. 

0: No wind measurements made at this site. 
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Urban Climate Zone Index (UCZ) 

1: Intensely developed urban zone with detached close-set high-rise buildings with cladding, e.g. 

downtown towers. 

2: Intensely developed high density urban with 2 - 5 storey, attached or very close-set buildings 

often of brick or stone, e.g. old city core. 

3: Highly developed, medium density urban with row or detached but close-set houses, stores & 

apartments e.g. urban housing 

4: Highly developed, low density urban with large low buildings & paved parking, e.g. shopping 

mall, warehouses. 

5: Medium development, low density suburban with 1 or 2 storey houses, e.g. suburban housing. 

6: Mixed use with large buildings in open landscape, e.g. institutions such as a hospital, university, 

airport. 

7: Semi-rural development with scattered houses in natural or agricultural area, e.g. farms, 

estates. 

U: UCZ unknown or not stated. 

UCZ descriptions as defined by the World Meteorological Organisation (WMO-No.8, 7th Edition) 

Reporting hours 

A: Will always aim to provide a weather report at 09:00 GMT. Daily temperature and rainfall 

values relate to standard 24 hour period morning to morning. 

B: Will always aim to provide a weather report between 06:00 and 09:00 GMT. Daily temperature 

and rainfall values relate to standard 24 hour period morning to morning. 

C: Daily temperature and rainfall values relate to the 24 hour period midnight to midnight. This is 

the default for most automatic weather stations. 

D: Air temperature and rainfall terminal hour is other than A, B or C above, or extremes do not 

relate to 24 hour periods. 

U: Reporting hours unknown or not stated. 

How site ratings are calculated 

Each site is automatically allocated a 'site rating'' based on the observing location attributes 

entries submitted on site registration. The system is based on the quality and exposure of the 

temperature and rainfall data: 

5* = E5, T=A, R=A 

4* = E >= 3, T=A, R=A 

3* = E >= 3, T[=A,B or C], R[=A,B or C] 

2* = E >= 1, T[=Any], R[=Any] 

1* = E =0,1,R or U, T[=Any], R[=Any] 

(Where E = Exposure, T = Temperature, and R = Rainfall, and each of these are described in Location Attributes). 

If temperature is measured at a site, but not rainfall, the site rating will be based on the quality and exposure of the 

temperature data alone. If rainfall is measured at a site, but not temperature, the site rating will be based on the quality 

and exposure of the rainfall data alone. 

If there is no temperature or rainfall data, the site will be classed as 1* 



70 
 
 

Appendix D: Individual station residuals (binned) for July, August, October, 

November, December, and January. 
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