Contributions from the DISC to **S** accomplish the Aeolus mission objectives

Oliver Reitebuch¹

Isabell Krisch¹, Christian Lemmerz¹, Oliver Lux¹, Uwe Marksteiner¹, Nafiseh Masoumzadeh¹, Fabian Weiler¹, Benjamin Witschas¹, Vittoria Cito Filomarino¹, Markus Meringer², Karsten Schmidt², Dorit Huber³, Ines Nikolaus⁴, Frédéric Fabre⁵, Michael Vaughan⁶, Katja Reissig⁷, Alain Dabas⁸, Thomas Flament⁸, Adrien Lacour⁸, Jean-Francois Mahfouf⁸, Ibrahim Seck⁸, Dimitri Trapon⁸, Saleh Abdalla⁹, Lars Isaksen⁹, Michael Rennie⁹, Angela Benedetti⁹, Will McLean⁹, Karen Henry⁹, Dave Donovan¹⁰, Jos de Kloe¹⁰, Gert-Jan Marseille¹⁰, Ad Stoffelen¹⁰, Ping Wang¹⁰, Gerd-Jan van Zadelhoff¹⁰, Gaetan Perron¹¹, Sebastian Jupin-Langlois¹¹, Bas Pijnacker Hordijk¹², Marcella Veneziani¹², Simone Bucci¹³, Giacomo Gostinicchi¹³, Lorenzo Di Ciolo¹³, Sebastian Bley¹⁴, Alexander Geiss¹⁵, Thomas Kanitz¹⁶, Anne-Grete Straume¹⁶, Denny Wernham¹⁶, Trismono Krisna¹⁶, Jonas von Bismarck¹⁷, Guido Colangeli¹⁷, Vittorio Trivigno¹⁷, Massimo Romanazzo¹⁷, Stefano Aprile¹⁷, Tommaso Parrinello¹⁷

¹DLR, Institute of Atmospheric Physics, Germany ²DLR, Remote Sensing Technology Institute, Germany ³DoRIT, Germany ⁴*Physics Solutions, Munich University* of Applied Sciences, Germany ⁵ Les Myriades, France ⁶OLA, UK ⁷IB Reissig, Germany ⁸Météo-France, France ECMWF, UK DoRIT ABB ETEO FRANCE rgisch Instituut an Infrastructuur en MilieTROPOS s&t serco

¹⁰KNMI, The Netherlands
¹¹ABB, Canada
¹²S&T, The Netherlands
¹³serco, Italy
¹⁴TROPOS, Germany
¹⁵LMU, Germany
¹⁶ESA-ESTEC, The Netherlands
¹⁷ESA-ESRIN, Italy

esa

IB Reissig

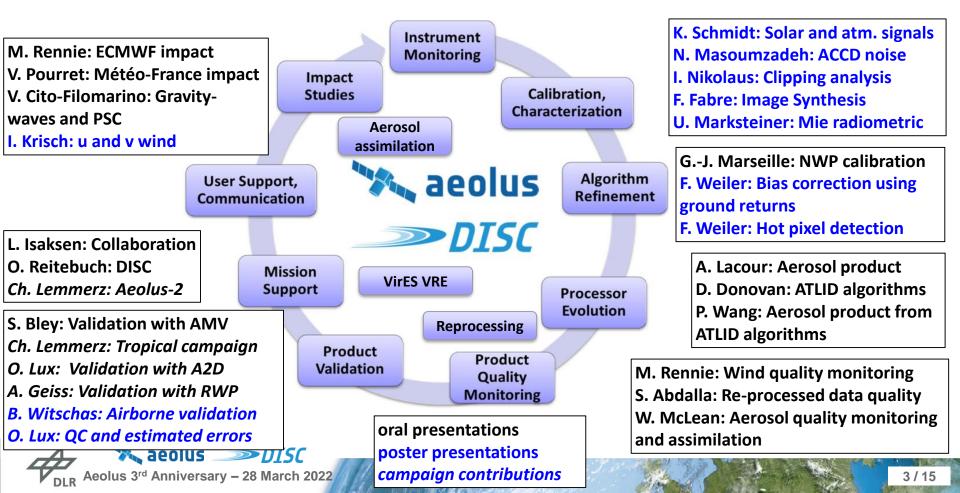
Knowledge for Tomorrow

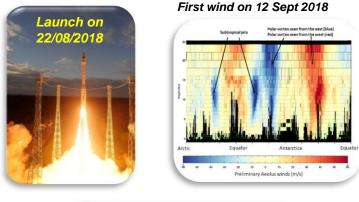
All slides © Aeolus DISC. All rights reserved.

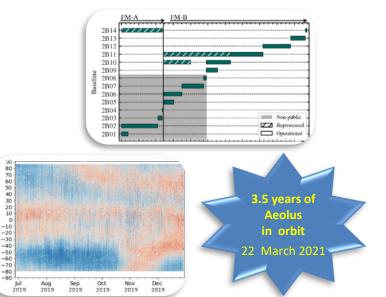
aeolus

DISC

The Aeolus Data Innovation and Science Cluster DISC

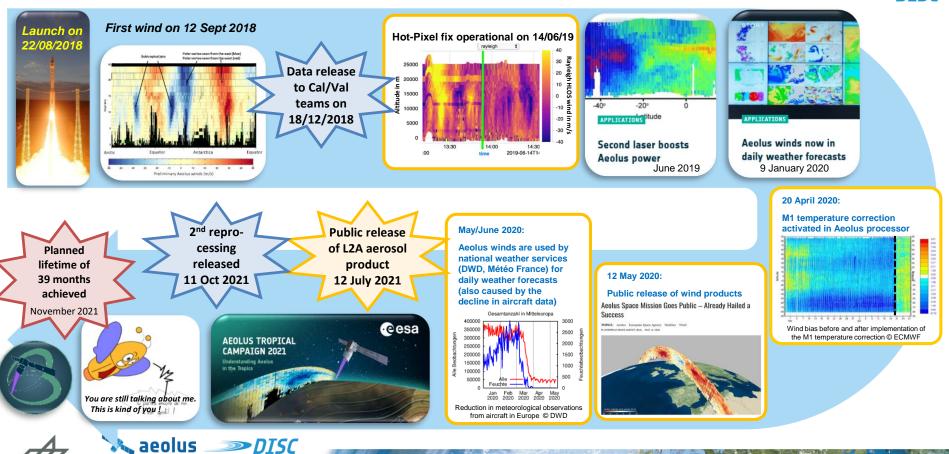

- DISC established in 2019 from teams cooperating since 2003 on Aeolus algorithms, processors, impact experiments, campaigns
- 14 international partners with about 40 scientists and engineers coordinated by DLR
- Broad range of experts for laser, lidar, retrieval algorithms, software development, calibration, validation, and NWP monitoring and impact assessment cover all aspects of Aeolus
- DISC funded by ESA with strong links to all ESA entities (ESTEC, ESRIN, ESOC) and space industry (Airbus, Leonardo)



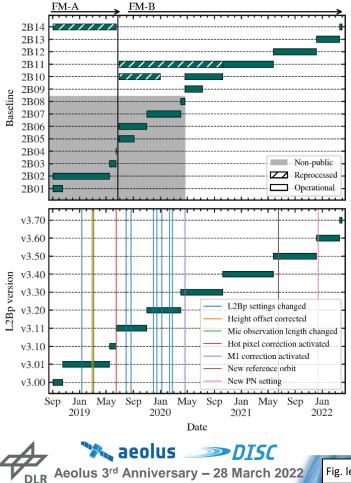

Aeolus DISC Tasks and Contributions to this Workshop

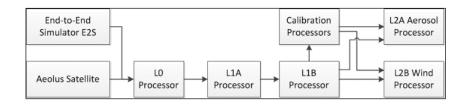
Outline of the talk

- Aeolus/DISC highlights since launch
- Baselines and reprocessing
- ALADIN performance
 - Signal evolution and random errors
 - Sources of bias and corrections
- Summary and Conclusion



atitude / deg

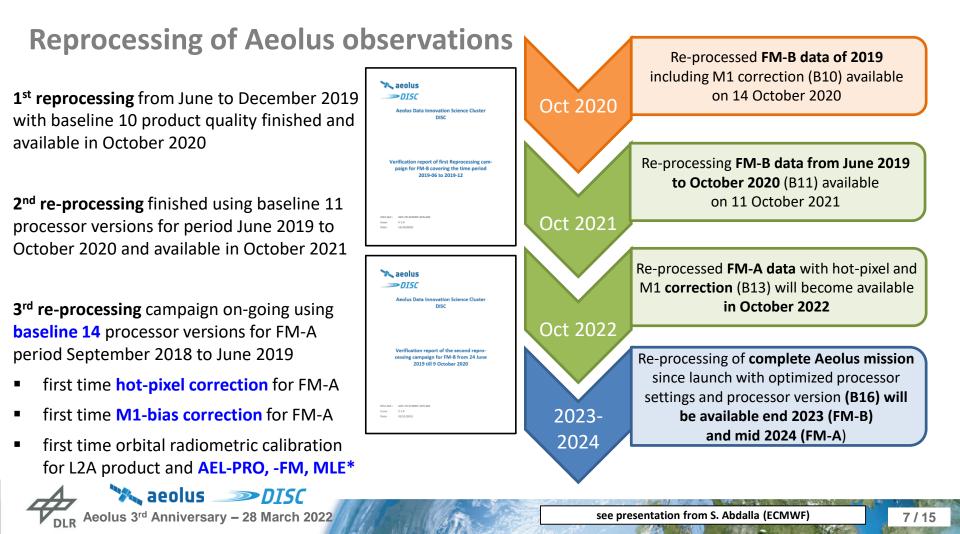

Aeolus and DISC highlights during first 3.5 years in orbit



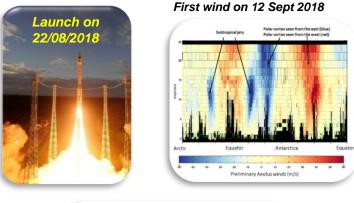
Aeolus 3rd Anniversary – 28 March 2022

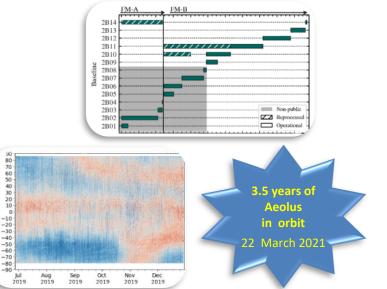
5/15

Frequent update of operational processors by DISC



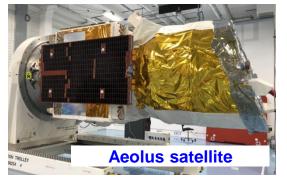
- success of Aeolus as an Earth Explorer mission is its operational assimilation of wind product by several NWP centers
- near-real time data production by ESA-PDGS and frequent update of full chain of operational processors
- major operational processor deliveries from DISC to ESA-PDGS every 6 months, which results in new product quality and product content - called baselines
- update to baseline B14 planned for March 29, 2022

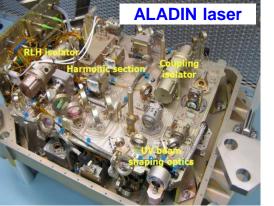

E2S, L0/L1A/L1B and L2A operational processor by **D. Huber (DoRIT)** L2B operational processor by **J. de Kloe (KNMI)** calibration processors at ACMF and codadef by **S&T and ABB** processor handover and anomaly management by **Serco**

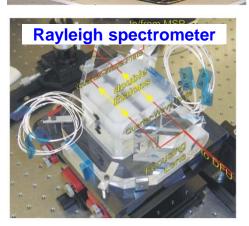

Fig. left by A. Geiß (LMU)

Outline of the talk

- Aeolus/DISC highlights since launch
- Baselines and reprocessing
- **ALADIN** performance
 - Signal evolution and random errors
 - Sources of bias and corrections
- Summary and Conclusion



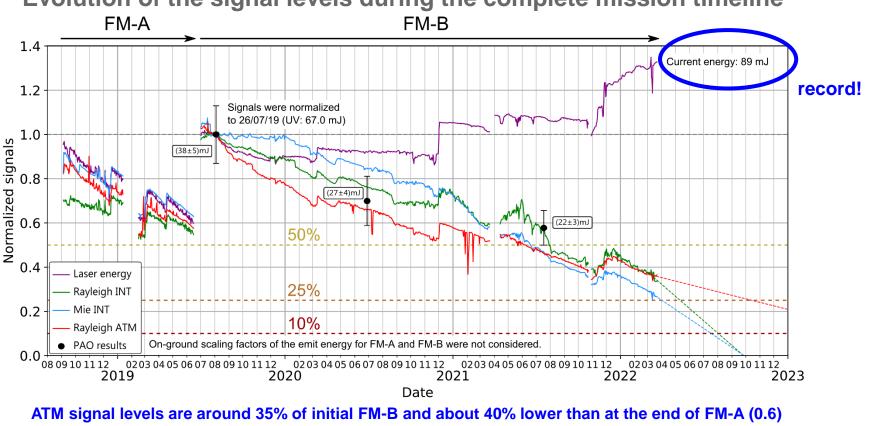



atitude / deg

-90

ALADIN – the first wind lidar in space

A2D optical receiver

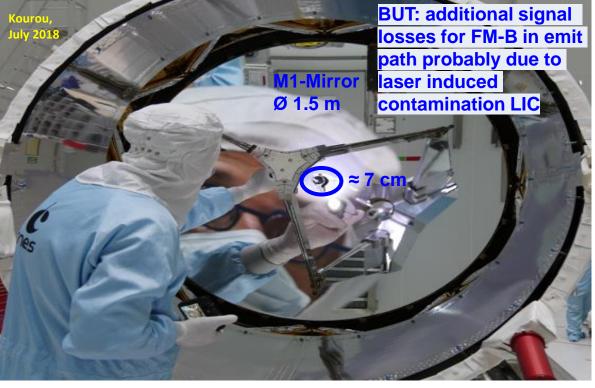

- **First European lida**r in space after 20 years of development challenges
- First wind lidar and first HSRL in space - worldwide unique mission
- **Highest power-aperture** product for a lidar in space (40 mJ - 85 mJ / \emptyset 1.5 m)
- First high-power, ultraviolet (UV) laser in space (@ 354.8 nm) with stringent requirements on frequency stability
- **Doppler wind lidar** principle straightforward but incredibly small effect

Doppler Equation: $\Delta f = 2 f_0 \frac{\mathbf{V}_{LOS}}{c}$

relative Doppler shift $\Delta f/f_0 \approx 10^{-8}$ 1 m/s (LOS)⇔ 5.64 MHz ⇔ 2.37 fm size H-atom 50 pm, H-nucleus 1.2 fm

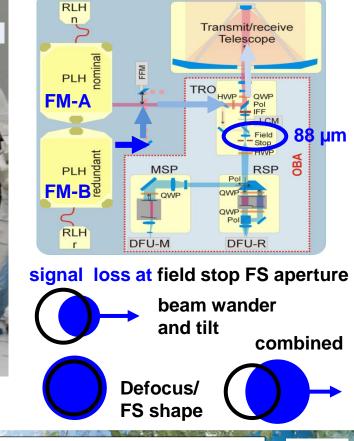
Reitebuch et al. (2009), JAOT; Reitebuch (2012), Springer; Reitebuch/Hardesty (2022), Springer

Evolution of the signal levels during the complete mission timeline


=> extrapolation to 25% (ATM) by October 2022 and to 10% (INT, ATM) by August 2022

aeolus *DISC* Aeolus 3rd Anniversary – 28 March 2022

Figure by O. Lux (DLR), see poster by K. Schmidt (DLR) on Rayleigh and U. Marksteiner (DLR) on Mie


What causes the signal loss for ALADIN?

N? FOV 18 μrad 7 m @ 400 km

from Aeolus blog https://aeolusweb.wordpress.com/

11/15

What influences the wind random error?

- 1. Laser emit energy and optical signal transmission in laser emission and receive path for atmospheric signal
- 2. Solar background noise mainly for Rayleigh winds
 - ⇒ Impact higher than expected due to lower atmospheric signal
 - Seasonal variation of solar background by factor 18: Rayleigh random errors increased from 7-8 m/s to >15 m/s in summer months for polar regions and stratosphere

solar background Rayleigh data age (average over 465 observations) runnins 28 km 28-14.01.2019 M-A switch off 16.06.201 witch from FM-A to FM-B 1.2×10 22.03.202 switch to survival mode Rayleigh solar background useful signals [ACCD counts] 13.04.202 $I F \Delta$ 22.10.202 switch to survival mode 1.0×10 L2B wind 8,0×10 random error for 1 orbit 6,0×10 on Nov 11, 2021 $4,0 \times 10$ -15.4 12.5 40.5 Lat: -69.9 -43.2 68.2 82.0 55.2 27.4 -0.7 -28.6 -56.0 -79.8 $2,0 \times 10$ -96.1 -102.7 -108.3 -113.7 -123.8 101.1 70.9 63.5 58.4 52.7 43.0 -5.3 -106.0 L2B HLOS wind error estimate (m/s) (missing values=-1) Mean=9.08 Std.dev.=19.30 Count=10324 16.50 06-05-2021 18-11-2018 17-05-2019 13-11-2019 11-05-2020 07-11-2020 02-11-2021 01-05-2022 20 m/s 6 m/s Aeolus 3rd Anniversary – 28 March 2022 Figures by K. Schmidt (DLR) and M. Rennie (ECMWF), see also poster by K. Schmidt 12/15

Orbital variation of Rayleigh solar background noise

6×10⁵

[structure] 4×10

5 2×10

IX10

03-01 00:00:00

ayleigh 3×10 March 1, 2019

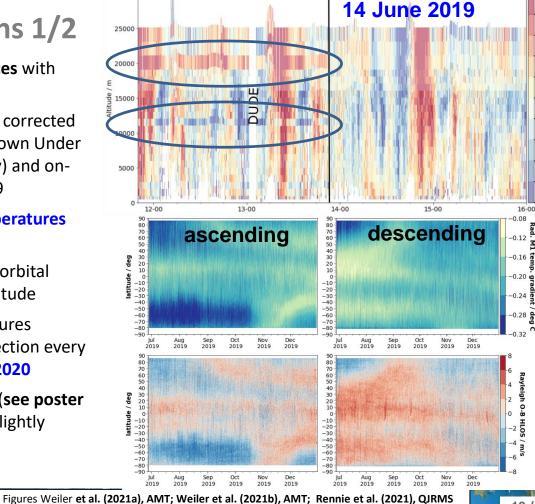
03-01 02:24:00

03-01 04:48:00

date and time in 2019 (MM-DD HH:MM:SS)

03-01 07:12:00

Aeolus bias and corrections 1/2


combination of several unexpected error sources with different temporal characteristics:

- higher dark current rates for "hot pixels"=> corrected with special instrument operation DUDE (Down Under Dark Experiment, 4 per day, today 8 per day) and onground correction in L1B since 14 June 2019
- 2. variations of the **M1 telescope mirror temperatures** (mean and gradient along mirror)
 - ⇒ Rayleigh and Mie bias as a function of orbital phase (argument of latitude) and longitude
 - ⇒ use correlation between M1 temperatures and ECMWF model bias (O-B) for correction every 12/24 h; implemented since 20 April 2020
 - ⇒ on-going study to use ground-returns (see poster
 F. Weiler): NWP model independent, slightly
 lower performance of 10%

≫DTSC

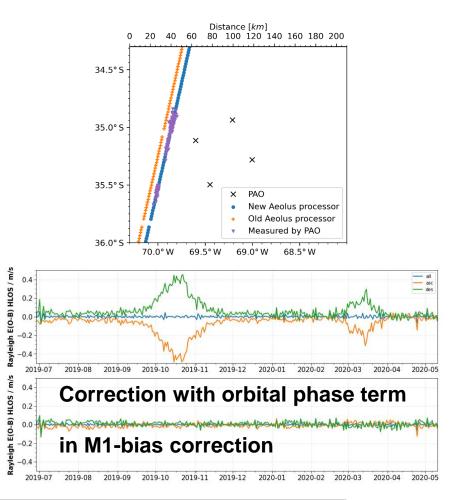
aeolus

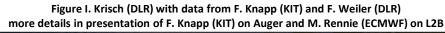
Aeolus 3rd Anniversary – 28 March 2022

details on ACCD noise (poster N. Masoumzadeh) and HP detection (F. Weiler)

13/15

30000

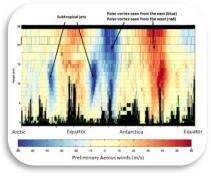

Aeolus bias and corrections 2/2

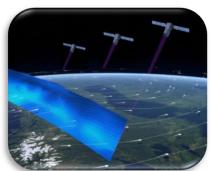

Other unexpected error sources

- Error in the on-board software in calculation of residual projection of the satellite ground speed on the line-ofsight => corrected with L1b V7.09.1 (baseline B11 from 8 October 2020)
- Slow drifts in the illumination of the Rayleigh/Mie spectrometers causing a slowly drifting constant bias => corrected with M1-bias correction
- Geolocation error for longitude by 0.075° (≈ 8 km at equator) discovered with help of Auger observatory; is corrected in L1B V7.12 (baseline 14)
- 6. Enhanced bias of up to 0.4 m/s in October and March due to Aeolus orbit on terminator with permanent twilight => harmonic orbital variation of bias; is corrected as part of M1-bias correction for B14

Aeolus 3rd Anniversary – 28 March 2022

DTSC




Summary and Conclusion

- First European lidar and first wind lidar in space in operation for 3.5 years: lifetime objective was achieved.
- Mission objective to demonstrate wind lidar technology including operation of a laser in the ultraviolet spectral region was achieved.
- Mission objective to demonstrate positive impact for numerical weather prediction was achieved: ECMWF, DWD, Météo-France, UK Met Office and NCMRWF are using Aeolus wind products in operation and show positive impact; positive impact is demonstrated in various other global models, e.g. ECCC, NOAA.
- Aeolus demonstrates the high-spectral resolution lidar approach for retrieval of aerosol optical properties for the first time in orbit
- Aeolus DISC contributions were key to achieve mission objectives.
- Aeolus paves the way for the future lidars from Europe (EarthCARE and Merlin) and a European operational follow-on wind lidar mission in 2030+.
 Aeolus 3rd Anniversary – 28 March 2022

