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Abstract

The status of CY43 HARMONIE-AROME 4D-Var is presented. Central to the HARMONIE-AROME
4D-Var implementation is the multi-incremental approach and the current setup comprises two outer loops at
six and three times the main forecast grid resolution of 2.5 km. This setup is flexible though, as is the length
of the observation window. Results will be given for 4D-Var in comparison to 3D-Var for three domains,
centered around Scandinavia, the Iberian Peninsula and the Netherlands. The starting point here is that both
3D-Var and 4D-Var are using identical observations types. Generally speaking it can be concluded that 4D-
Var forecasts are superior. The paper also gives an extensive list of opportunities from which particularly
HARMONIE-AROME 4D-Var can benefit. For example, increasing the observation set, improving the
treatment of observations during the observation window and new algorithmic avenues.

1 Introduction

1.1 General

The development of HARMONIE-AROME 4D-Var has been a long running data assimilation project of the
HIRLAM consortium. After its first working version back in 2008 (CY38h1.2) the 4D-Var suite has matured
over the years and has now reached a level that it can be considered for operational use.

At the core of the HARMONIE-AROME 4D-Var implementation is the use of the multi-incremental variational
approach (Courtier et al., 1994). Hereby the nonlinearities of the forecast model and the observation opera-
tors are better handled through a sequence of iterative re-linearizations (Trémolet, 2004). By solving a series
(i=1,...,N) of minimizations, each minimization producing an analysis increment dx;, the final increment dx is
obtained through setting dz = ZiN:1 dx;. For the i-th minimization or i-th loop, the corresponding cost function
J; reads as

i o= JP+J?
= (0% G )BT (0 (e — x) (1)
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Figure 1: Illustration of the HARMONIE-AROME 4D-Var graphical workflow and the underlying script system, using two outer loops.

where ¥ is the model background state valid at time ¢y, B is the background error covariance matrix and
the subscript k denotes time t;, = to + kAt within the assimilation window, di = y — H(My(z?)) are the
innovations (observation minus background) where y;, denotes the observation vector at time ¢, My(.) de-
notes integration of the nonlinear model from time ¢, to time ¢ and H(.) is the nonlinear observation operator,

¢ and H}, denote the corresponding tangent linear (TL) model and TL observation operator respectively,
linearized around the nonlinear trajectory M, (z;). In the first loop the model background state, 2?, is typically
used as the first-guess 2! = z for the minimization. Eq. 1 is then minimized to yield 6z, with i = 1. Follow-
ing this, the first-guess state is updated with z'*! = 2% 4+ §z* ready to be used in the next loop.

In recent years HARMONIE-AROME 4D-Var has undergone several enhancements such as the possibility to
assimilate an increased number of observation types (see Section 1.2), the use of spectral specific humidity and
the use of a 3-hour observation window instead of 2-hour. The need for spectral specific humidity turned out
to be essential in ensuring the tangent and adjoint models pass the so-called adjoint test ( [TLx, y]=[x,ADy]
for arbitrary model field perturbations x and y and with [.] the inner product used for deriving the adjoint
model AD), a prerequisite for a well-defined minimization problem. Recently the 2-hour observation window
version has been adapted to a 3-hour observations window. This in conjunction with the already 3-hourly
cycling frequency ensures all observations from satellite overpasses are available for assimilation. The current
HARMONIE-AROME 4D-Var further comprises two loops at 6 and 3 times the main forecast grid resolution
of 2.5 km. This flexible setup allows for a minimization that is computationally affordable and with 10 and
15 iterations respectively most of the reduction in the gradient norm and cost function can be achieved (see
Section 2.1). During the minimization use is made of the linear physics package developed for the ARPEGE
and ALADIN models. It is comprised of linearized versions of some key physical processes. See Section 2.2 for
a comparison between linear and nonlinear model evolution of increments in HARMONIE-AROME. Finally it
is worth noting that a carefully designed scripting system together with the ecFlow graphical workflow package
enables users to work with HARMONIE-AROME 4D-Var in a controlled manner, which is illustrated in Fig. 1
for a two outer loops set-up. At the end of each 4DVminim task the high resolution first-guess is modified by
the computed low resolution analysis increment. After complementing with some extra model fields, using the
Blendhr task, the trajectory run, 4DVtraj, propagates the analysis from the beginning of the observation window
forward in time to produce the initial state for the high resolution forecast and updates the minimisation statistics
in the ODB.

1.2 Observation usage

HARMONIE-AROME 4D-Var has been prepared to handle conventional (in-sifu measurement) observation
types (Table 1) as well as non-conventional types of observations (Table 2), including remote-sensing measure-
ments. In the case of a 2-hour observation window for producing a forecast model initial state at hour H H
observations from H { — 60 min to 4 H + 59 min are used. This will be changed to using observations from
HH — 60 min to HH + 60 min, which is more appropriate. In the case of a 3-hour observation window
for producing a forecast model initial state at hour H H observations from HH — 120 min to HH + 59 min
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are used. Observations are sorted into seven and ten time-slots (for the 2-hour and 3-hour setup repsectively),
sub-dividing the observation window in 10 min intervals at the beginning and the end and 20 min otherwise.

With respect to conventional observation usage z refers to geopotential height at mean sea level, t2m tempera-
ture at the height of two metres, rh2m relative humidity at the height of two metres, %10, v10 wind-components
at 10 m, u, v wind-components, ¢ temperature and q specific humidity. By default hourly SYNOP observations
are used. There is also an option to apply a temporal thinning to use only the SYNOP observations valid at
main analysis time. The reason for applying this temporal thinning is to avoid serially correlated observation
errors that are presently not accounted for. These serially correlated observation errors can be caused by sys-
tematic observation errors at a particular station. In future HARMONIE-AROME 4D-Var versions a procedure
for handling of these correlations (Jirvinen ef al., 1999) will be considered.

Table 1: Usage of conventional types of in-situ measurements in 4D-Var.

Observation type | Variable
SYNOP z

SHIP z,ul0, v10
DRIBU zZ,u, Vv
AMDAR u, v, t
PILOT u, v
TEMP u,v,t,q

For non-conventional observation usage as ztd refers to zenith total delay and std to slant total delay. RADAR
observations are used with a temporal resolution of 1 h. The reason for not using RADAR observations with an
even higher temporal resolution is again to avoid spurious effects of serially correlated observation errors not
accounted for. Pre-processed RADAR observations of rh are derived by applying a 1-D Bayesian approach fol-
lowing strategies described by Caumont et al. (2010) and Wattrelot et al. (2014) using an observation handling
in accordance with Ridal and Dahlbom (2017). It should be mentioned that SEVIRI radiances were assimi-
lated in an earlier HARMONIE-AROME version (CY40) using hourly SEVIRI radiances in GRIB format. No
problems are foreseen to introduce assimilation of these SEVIRI radiances also into the in the current (CY43)
HARMONIE-AROME 4D-Var version. Observation types not yet tested in HARMONIE-AROME 4D-Var that
are prepared for in HARMONIE-AROME 3D-Var are Global Navigation Satellite System (GNSS) Radio Oc-
cultations (RO) and Atmospheric Motion Vectors (AMYV), radiances from the ATMS radiances and AMDAR
humidity observations. No problems are foreseen with introduction of these remaining observation types into
HARMONIE-AROME 4D-Var.

As in HARMONIE-AROME 3D-Var a Variational Bias Correction (VARBC) based on ideas of Dee (2005)
is applied to handle systematic errors for satellite radiances and Ground-Based (G-B) GNSS ztds. Randria-
mampianina et al. (2011) studied VARBC configurations in the context of limited-area radiance assimilation.
Following G-B GNSS ztd HARMONIE-AROME 3D-Var handling (Sanchez Arriola et al., 2016; Lindskog
et al., 2017) one single VARBC predictor is applied by default. The use of multiple outer-loop iterations in
HARMONIE-AROME 4D-Var imply a special handling of propagation of VARBC predictor coefficients in
between different outer loops.
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Table 2: Usage of of non-conventional types of observations in 4D-Var.

Observation type Observed quantity
MODE-S derived w and derived t
G-B GNSS ztd, std

ASCAT derived surface w
RADAR derived rh, radial wind

AMSU-A, MHS, MWHS-2
IASI, SEVIRI

microwave radiance
infrared radiance

When it comes to specification of observation errors, identification of radiances contaminated by clouds, spatial
thinning procedures and quality control there are no significant differences between HARMONIE-AROME 3D-
Var and 4D-Var.

2 Demonstration of functionality

In this section HARMONIE-AROME 4D-Var functionality is briefly presented with a description of the cost
function evolution, results from single observations tests and the consequences of enlarging the observation
window from 2 hours to 3 hours.

2.1 Cost function evolution

4D-VAR cost-function 20200419 00 UTC

== Jbloop 1l
= |b loop 2
\ == Joloop 1
A —— Jo loop 2

1 \
4000 \

3000 A ~
\\
\\
\\_
2000 /\\__

1000 +

6000

5000 4

Cost

—1000 T T T T T T
0 5 10 15 20 25

Number of simulations

Figure 2: HARMONIE-AROME 4D-Var Jb and Jo parts of cost function for minimisation over MetCoOp domain for the 0000 UTC April 19, 2020
analysis using two loops at 6 and 3 times of the main forecast grid resolution of 2.5 km. For the first loop 10 iterations was used and for the second 15
(one iteration results in one or more simulations).

Figure 2 shows an example of the cost function, J, evolution during a HARMONIE-AROME 4D-Var min-
imization. The example is from the assimilation over a Nordic area using conventional as well as several
non-conventional types of observations and a horizontal grid-distance of 2.5 km. Two outer loop iterations
were used in the minimization of the cost function. Minimization in the first outer loop was applied at 15 km
using a maximum of 10 iterations (15 simulations) and the minimization in the second outer loop was applied
at 7.5 km using a a maximum of 15 iterations (20 simulations). Clearly the cost function values are mainly
reduced in the first lower resolution loop, where larger scales in the background field are adjusted towards
observations. The reduction of the cost function continues in the second, higher resolution loop, re-linearised
around an updated nonlinear trajectory (see Eq. 1). It can be seen that at the end of the second outer loop the
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cost function does not change much so that the minimization has reached a satisfactory level of convergence.
For both loops a preconditioning of the minimization using the square-root of the background-error covariance
matrix was applied (Courtier et al., 1998; Gustafsson et al., 2001). There is ongoing work aiming at applying a
preconditioning by normalisation of the second outer loop using the Hessian of the cost function (Akkraoui et
al., 2012).

2.2 Single observations and linear vs nonlinear evolution

In order to further test the functionality of 4D-Var a single observation experiment was carried out for the 2-
hour assimilation window 4D-Var. A specific humidity observation at 850 hPa from a radiosonde valid at the
middle of the observation window was assimilated. Figure 3 shows the resulting increment at the beginning of
the window at 850 hPa for this particular observation (no other observations were used in the data assimilation)
and its linear evolution during the length of the observation window. The red dot in the middle panel indicates
the location of the observation. In Fig. 4 the linear (top panel) and nonlinear evolution (bottom panel) of
the increment in terms of specific humidity is presented at analysis time by means of a zonal cross-section
through the observation location. The nonlinear evolution is given by the difference between two full physics
HARMONIE-AROME runs starting from the first-guess and the first-guess modified by the increment. Clearly
the propagated analysis produced by the trajectory run 4DVtraj (see Fig. 1) preserves the increment information
to a large extent.

NAR R LR AT
' {:-t: = ‘:_E, I = o
: ",_gf%s{\’\'- e
i | AT
| e . f [ 5)(\5 \._'. i
LA LN )
AT B
1 A ;3 4 !
=" (M_L: L

Figure 3: Linear evolution of the increment obtained from a 4D-Var single observations experiment. The 4D-Var observation window is 2 hours and the
single observation, valid for the middle of the observation window, is for specific humidity at 850 hPa for a location denoted by a red dot. Panels show
the increment at the beginning of the observation window (left), after 1 hour (middle) and after 2 hours (right).

Figure 4: Cross section for specific humidity of the non-linear (top panel) and tangent linear evolution (bottom panel) of the increment shown in Fig. 3.
The evolution is for 1 hour, which is the middle of the observation window (analysis time)
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2.3 2-hour vs. 3-hour assimilation window

One of the recent enhancements of HARMONIE-AROME 4D-Var configuration was to apply a 3-hour assim-
ilation window instead of 2-hour. The advantage of this configuration is shown for wind observations from
ASCAT instruments on-board Metop satellites. Each day, these satellites overpass the Iberian domain between
09 UTC - 11 UTC and 21 UTC - 23 UTC. For the 2-hour window configuration, ASCAT winds between 10
UTC - 11 UTC and 22 UTC - 23 UTC are not considered. Fig 5 illustrates this point for 01 March 2020 at 12
UTC analysis. Although both configurations used observations from the two Metops available (Metop-B and
Metop-C), for the 2-hour configuration, in contrast with the 3-hour one, only observations acquired between 11
UTC and 12 UTC were used in assimilation at 12 UTC analysis.

age

4D-VAR 2h window: Observation Usage AD-VAR 3h window: Observation Us:
mMe=scall, Varnanm scalt, vamames=u10m

db=ccma, DTG=2020-03-01 12 UTC, obnar ame=ulom db=ccma, DTG=2020-03-01 12 UTC,

*ond
- . spfee P
®foefocemes

Figure 5: For 1 March 2020 ASCAT winds use in 4D-Var 2-hour window assimilation window (left) and 4D-Var 3-hour window (right) configurations,
at analysis time 1200 UTC

3 Cooperation on three domains

3.1 Description of domains

An extensive evaluation of HARMONIE-AROME 4D-Var has been carried out for 3D-Var and 4D-Var by per-
forming parallel data assimilation experiments over three different modelling domains centered around Iberian
Peninsula (Iberia), the Netherlands (Netherlands) and Scandinavia (MetCoOp), respectively. The domains are
illustrated in Fig 6. One advantage of running over a number of domains with different climates and character-
istics is that this provides a more robust test of 4D-Var with respect to the typical local typical meteorological
situations. It also prepares for a smoother local implementation in a pre-operational environment.

3.2 Experimental design

The evaluation of 4D-Var was partly through case studies investigating various aspects of HARMONIE-AROME
4D-Var, as demonstrated Section 2. We have also carried out a large amount of parallel experiments comparing
4D-Var with 3D-Var and also comparing various 4D-Var configurations over longer periods. Examples of such
extended 4D-Var configuration comparisons are 2-hour vs. 3-hour observation window, impact of applying
a Large Scale Mixing (LSM) of host model information into background state, utilisation of hourly SYNOP
observations vs. utilisation at main analysis hour only, impact of applying the successive outer loop iterations at
15 km and 7.5 km vs. 15 km and 15 km, and assimilation of screen level rh2m and {2m observations. Here we
will only briefly mention about some of these results but focus on three experiments comparing 4D-Var with
3D-Var. To make the comparison clearer LSM was not applied to either 4D-Var or 3D-Var in these experiments.
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. METCOOP

NETHERLANDS

Figure 6: Domains used for the evaluation of HARMONIE-AROME 4D-Var.

The experiments were designed to use the same kind of observation in both the 4D-Var and the associated 3D-
Var experiment. There were, however, some differences in configurations between the three different parallel
experiments carried out. Each of the parallel 4D-Var vs 3D-Var experiments were carried out for a one-month
period during 2020, covering three different seasons, and with 4D-Var configurations as summarized in Table 3.
Before the start of each experiments a 10-day warm up-period was applied to spin-up surface fields and update
VARBC-coefficients. The VARBC-coefficient files at the beginning of the warm-up period were taken from
operational archive.

Table 3: Configuration of 4D-/3D-Var experiments carried out for 2020.

Conf Iberia Netherlands MetCoOp

Period 07 Feb-07 Mar | 14 Jun-14 Jul 20 Mar-20 Apr

Obs win (h) 3 3 2

Loop res (km) | 15,7.5 15,7.5 15,7.5

Conv ob all all all

Non-conv ob ascat mode-s ehs, ascat | amsu-a,mhs,iasi,ztd

4 Verification scores

Results from extended experiments carried out over the three domains reveal that 4D-Var produce forecasts that
in general have better quality than the ones produced with 3D-Var.

For the experiment carried out over the MetCoOp domain 4D-Var produced clearly better atmospheric wind
and humidity forecasts, as illustrated in Fig. 7. Temperature scores were rather neutral (not shown). The reason
for the improved wind and humidity scores is most likely an improved use of wind and in particular satellite
humidity-related observations taking the correct time of the observations into account and using the tangent-
linear and adjoint of the forecast model within the minimization process. One problem with 4D-Var settings
identified and solved while evaluating the coordinated experiments was that relaxation towards ECMWF host
model information at the uppermost vertical levels was not applied in 4D-Var experiment, only in 3D-Var. This
explains the worse 4D-Var forecasts at the uppermost levels seen in the left panel of Fig. 7.

Slightly worse scores for MetCoOp 4D-Var as compared to 3D-Var were obtained for short-range MSLP fore-
casts and standard deviation of forecasts of variables at two metre. This is illustrated in Fig. 8 for MSLP and
rh2m forecasts. The reason for worse MSLP short-range forecasts is likely spurious wrap-around of surface
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Figure 7: Verification statistics for MetCoOp domain, in terms of bias (BIAS) and standard deviation (STDV), of +06 to +36 h forecasts against
radiosonde observations of wind speed (left, unit: m/s) and specific humidity (right, unit: g/kg) averaged over all observations within the domain and
over the one month period. Scores are shown as function of vertical level and black full curves are for 3D-Var while green full curves represent 4D-Var.
Grey dashed curve illustrates the number of observations used in the verification.

pressure analysis increments from one side of the domain to the opposite that can occur due to the use of
bi-periodic spectral transforms in combination with large spatial surface pressure correlation length scales, a
narrow extension zone with a relatively narrow redzone (in our case 150 km) and uneven distribution of surface
pressure observations. The wrap-around problem is more pronounced in 4D-Var than in 3D-Var, because in
4D-Var the center of analysis increments may be projected significantly upstream of observation locations and
well into the redzone area. This issue will be addressed in future versions by applying a wider extension zone.
In addition there is a need for a revised blacklisting of z observations in MetCoOp 4D-Var as well as in 3D-Var.
When it comes to relative humidity it can be seen that 4D-Var has slightly larger standard deviations than 3D-
Var, in particular at short forecast ranges. However the bias is considerably smaller in 4D-Var. Regarding the
standard deviations at two metre level, there is however room for improvement. With the Iberia experience in
mind it is hoped that introduction of rh2m and t2m observations in 4D-Var as well as 3D-Var data assimilation
will accomplish this.

Selection: ALL using 704 stations
Mslp Period: 20200320-20200419
Hours: 00,06,12,18

Selection: ALL using 887 stations
Rh2m Period: 20200320-20200419
Hours: 00,06,12,18

1.2 90000 14

200000

STDV 3DVAR —e— STDV 3DVAR —w—
L STDV 4DVAR 80000 12 STDV 4DVAR —s—
Bl
180000
BIAS 4DVAR —w—
70000 10 ‘CASES
08 60000 8
» 160000 o
H H
© H H
£ o6 50000 & @ 6 S
= o o
40000 = a 140000 =
0.4
30000 2
0z 120000
20000 0
0 10000 2 100000
0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36

Forecast length Forecast length

Figure 8: Verification statistics for METCOOP domain, in terms of bias (BIAS) and standard deviation (STDV) as function of forecast range for
verification against radiosonde observations of M SLP (left, unit: hPa) and rh2m (right, unit: K) averaged over all observations within the domain
and over the one month period. Black full curves are for 3D-Var while green full curves represent 4D-Var. Grey dashed curve illustrates the number of
observations used in the verification.

Also for the experiments performed over Iberia, better wind forecasts were obtained with 4D-Var, as it is il-
lustrated in terms of speed and direction in Fig. 9. In fact, comparing statistics for 3D-Var (black) and 4D-Var
(green), improved scores are found for 4D-Var. In Iberia, apart from conventional observations, only ASCAT
wind observations were used. A likely cause for the improved 4D-Var forecast scores is the 4D-Var ability to
use these observations at the correct observation time.
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Figure 9: Verification statistics for the Iberian domain, in terms of bias (BIAS) and standard deviation (STDV) as function of forecast range for
verification against radiosonde observations of wind speed (left, in m/s) and wind direction (right, in degrees) averaged over all observations within
the domain From 07 Feb 2020 to 03 Mar 2020 period. Black full curves are for 3D-Var while green full curves represent 4D-Var (here the 3-hour
configuration). Grey dashed curve illustrates the number of observations used in the verification.

For the Netherlands domain the performance for M S L P improves with 4D-Var as compared to 3D-Var. This
is most noticeable by a reduction of the bias, whereas the impact on standard deviation remains neutral, as is
illustrated in Fig 10. The M SLP forecasts do not seem to suffer from wrap-around issues as observed for
the MetCoOp domain. With respect to screening level data the quality of ¢2m forecasts improves as well, in
particular for the bias. This is however not the case for g2m. Especially for the short range the 4D-Var forecasts
are slightly worse both in terms of standard deviation as well as for bias, see Fig 10. Inclusion of rh2m and
t2m observation in the future observation set may alleviate this.
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Figure 10: Verification statistics for the NETHERLANDS domain, in terms of bias (BIAS) and standard deviation (STDV) as function of forecast range
for verification against radiosonde observations of M SLP (left, unit: hPa) and g2m (right, unit: g/kg) averaged over all observations within the
domain and over the one month period. Purple full curves are for 3D-Var while green full curves represent 4D-Var. Grey dashed curve illustrates the
number of observations used in the verification.

The large set of Mode-S EHS aircraft observations clearly has a positive impact on wind forecast performance
in 4D-Var as shown in Fig 11. Note that in 3D-Var Mode-S EHS data is used only in a 30 minute interval
around analysis time. Consequently roughly six times more Mode-S EHS observations are used in 4D-Var than
in 3D-Var and at the appropriate observations time. In Fig. 11 scores for wind direction are shown indicating a
decreased standard deviation and improved bias for 4D-Var. And although no additional humidity observations
are assimilated other than from radiosondes, there is also a small improvement for 4D-Var specific humidity
profiles as illustrated in Fig 11. This positive impact on humidity and associated parameters like cloud cover,
fog and precipitation when using aircraft wind data has also been observed in earlier HARMONIE-AROME
4D-Var experiments and described in Gustafsson et al. (2018).

Additional sensitivity experiments carried out over the Iberian as well as over Netherlands domains revealed a
benefit from using a using a 3-hour observation window as compared to using a 2-hour window. In addition,
a positive impact from LSM, particularly for specific humidity was seen. This positive impact might decrease
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Figure 11: Verification statistics for the Netherlands domain, in terms of bias (BIAS) and standard deviation (STDV), of +06 to +36 h forecasts against
radiosonde observations of wind direction (left, unit: m/s) and specific humidity (right, unit: g/kg) averaged over all observations within the domain
and over the one month period. Scores are shown as function of vertical level and purple full curves are for 3D-Var while green full curves represent
4D-Var. Grey dashed curve illustrates the number of observations used in the verification.

when introducing assimilation of satellite-based radiances sensitive to atmospheric moisture, such as the MHS
instrument. Finally a benefit of assimilating rh2m and ¢2m observations in HARMONIE-AROME 4D-Var
experiments, in addition to their use in the surface analysis, has been demonstrated for Iberia.

5 Outlook

There are several ways in which HARMONIE-AROME 4D-Var can be further extended and improved. The
various observation types which have not been explored yet provide an obvious route. We plan to extend the
observation set with (not extensive) RADAR (both reflectivity and radial winds), AMDAR (humidity), GNSS
STD, SEVIRI, AMV, MWHS-2, MHS, ATMS and on a longer term CRiS and MTG IRS.

Already mentioned are the introduction of a Hessian preconditioning to further speed up the minimization of
the second outer loop, exploring the representation of serially correlated observation errors and adoption of a
wider extension zone. Research versions with application of a wider extension zone (order of 50-100 grid-
points) exists and will be further exploited. The larger extension zone framework requires more computer
memory in minimization and also some transforms of domains (using the software tools GL or FULLPOS)
in between 4D-Var and the surface analysis and forecast steps. It should be mentioned that the wider extension
zone developments can be applied also in the context of 3D-Var. There have also been some early trials with
weak constraint digital filter initialisation by introducing an additional Jc term to the cost function, penalising
the divergent part of the flow-field. Longer term plans also include introduction of ECMWF simplified physics
package and combining it with HARMONIE-AROME non-linear physics.

To benefit from high-quality large scale information provided by the ECMWF host model a spectral LSM might
be applied to the background state (Miiller et al., 2017) in HARMONIE-AROME 3D-Var before upper-air data
assimilation. Such a facility has also been introduced to 4D-Var, where the LSM is applied to the background
state, valid at the beginning of the assimilation time-window and a positve impact have been seen over the
Iberia. On the longer term one can as well think of introducing large scale host model information by intro-
duction of additional constraints during the minimization of the cost function, as was done by Dahlgren and
Gustafsson (2012). Another benefit from the large scale is the use of the optional relaxation to the ECMWF
host model in the upper air levels (see 3D-Var experiment in Fig. 7.).

Based on ideas from HIRLAM 4D-Var (Gustafsson et al., 2012) we are in the processes of enhancing HARMONIE-
AROME 4D-VAR with an optional control of lateral boundary conditions. Some first results of controlling not
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only the initial state but also the lateral boundary conditions (at the beginning of the observation window) are
illustrated in in Fig. 12. Shown are surface pressure analysis increments for one particular cycle without and
with control of lateral boundary conditions. One can see that introduction of control of lateral boundary condi-
tions control effects the initial state analysis increments in particular close to the lateral boundaries, but also in
the inner part of the domain.

Figure 12: Two hour tangent-linear model development of surface pressure (unit: Pa) without (left) and with control of lateral boundary conditions.
The propagation is for one particular assimilation experiment using one outer loop and 15 km assimilation grid distance and propagation of increments
when convergence is reached.

One basic weakness of the default version of HARMONIE-AROME 4D-Var is the assumption of a perfect
forecast model over the observation window — the forecast model is applied as a strong optimisation constraint.
However, there exist possibilities to partly compensate for this weakness of 4D-Var. For example ECMWF
has developed a method for controlling model errors during the data assimilation (Trémolet, 2006). This was
in particular demonstrated beneficial in the stratosphere (Lindskog et al., 2009), where it is now applied op-
erationally at ECMWE. Related, the set-up of HARMONIE-AROME 4D-Var can also be used to determine a
tendency increment that minimizes the cost function as given by Eq. 1 (Barkmeijer et al., 2003). Then, instead
of evaluating M} dz we are interested in M f*, where f* is the tendency increment valid for loop 4. In the
current HARMONIE-AROME implementation the tendency increment does not change during the observation
window, but is spatially varying both vertically and horizontally. In the case of opting for the tendency incre-
ment approach during the first outer loop, the subsequent nonlinear forecasts will apply a tendency increment
for the appropriate lead time. For the forecast starting at analysis time this means that the tendency increment
perturbation will not be active anymore after 1 hour into the forecast. Note that the part of the cost function as-
sociated with J, remains constant during the minimization with respect to a tendency increment. In Fig. 13 the
same single observation of specific humidity at 850 hPa valid for 12 UTC (middle of the observation window in
this case) is used to determine the tendency increment. This tendency increment is plotted in the top left panel
for specific humidity and differs for the analysis increment in the bottom left panel. It is slightly elongated and
more located to the East. The middle panel slows the response of the linear model after applying this tendency
increment for 1 hour. The maximum is located at the observation position and in fact J, is zero. This linear
response can be compared with the linearly evolved analysis increment as represented in the bottom row. The
right panel shows the response at the end of the observation window.
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Figure 13: Top row. Tendency increment for the same single observation as used in Fig. 3 and its response after 1 hour (middle panel) and 2 hours (right
panel) tangent linear integration. Bottom row. Identical to Fig. 3: the linear evolution of the analysis increment.

The main strengths of the 4D-Var scheme demonstrated so far comes from the possibility to assimilate ob-
servations at the proper observation time and from the flow-dependency of the analysis error structures due to
tangent-linear and adjoint forecast model involved in the minimization process over a time window. The 4D-Var
scheme will be further extended with the Hybrid EnVar functionality that allows for flow-dependent background
error statistics. The Hybrid EnVar scheme based on an augmented control variable approach (Lorenc, 2003;
Gustafsson et al., 2014) has already been implemented in the HARMONIE-AROME forecasting system. It
combines a full rank climatological background error covariance with ensemble-based flow-dependent evolu-
tion of the “error-of-the-day” uncertainty. The study to identify the best-choice initial conditions perturbations
that are able adequately sample the “error-of-the-day” uncertainty for convective scale processes is on-going.
On a longer time perspective we intend to apply a localisation including also hydrometeors (Destouches et al.,
2020) as developed for AROME 4D-Ens-Var and to enrich 4D-Var with a quasi-continuous overlapping win-
dow framework. We hope that nowcasting and very short range forecasting applications that are essential for
modelling of convective scale processes will greatly benefit from this.

One particular challenge associated with initialisation of convective scale processes is different predictability
time scales for different observed quantities. Temperature, wind and humidity profiles determine environmental
conditions and have longer predictability time scales than for example cloud observations that bring in essential
small scale details. An efficient data assimilation scheme on convective scales requires a long enough assimila-
tion window to allow different model variables to influence each other and a short enough assimilation window
to assure that controlled variables remain predictable over the window. The flexibility of HARMONIE-AROME
4D-Var and Hybrid EnVAR implementations allows to meet both requirements, which looks contradictory at
first glance. An attractive feature of the Hybrid EnVar framework in the 4DVAR context is that the ensemble
spans a space of non-linear model trajectories throughout that assimilation window. This provides flexibility to
control some variables such as hydrometeors away from the start of the assimilation window.

Another idea is to develop for HARMONIE-AROME 4D-Var a tool to estimate the Forecast Sensitivity to Ob-
servation Impact (FSOI) with respect to short-range HARMONIE-AROME forecasts.
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6 Conclusions

After several years of developments HARMONIE-AROME 4D-Var has now matured and is now at a stage
where it can be considered for operational use. An added value as compared to 3D-Var has been demonstrated in
terms of verification scores and there is ample opportunity for further improvement and applications of 4D-Var.
In an operational framework it needs to be demonstrated that the benefit of 4D-Var remains when compared with
a 3D-Var using LSM. In addition, computational aspects needs to be considered. The use of lower-resolution
analysis increments, few iterations in the minimization of the cost function and only save the physics trajectory
typically once every 30 minutes facilitate operational implementation. Some local optimization with regards to
available computer capacity and observation cut-off will be needed.
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