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Samenvatting

Voor de toetsing van de veiligheid van waterkeringen in Nederland zijn waarden
van windsnelheid en zeewaterstand voor terugkeertijden tot enkele miljoenen jaren
nodig. Dit is een uitdaging, gegeven dat reeksen van betrouwbare wind metingen
niet verder teruggaan dan ongeveer 70 jaar.

Momenteel worden verschillende ideeën om dit probleem op te lossen verkend.
Eén idee is om het data volume te vergroten door gebruik te maken van omvang-
rijke datasets van simulaties door numerieke weermodellen; zie van den Brink (2018).
Echter, zelfs met gebruik van grote datasets zoals het archief van ECMWF ensem-
ble seizoensvoorspellingen blijft er een groot verschil in terugkeerperiode dat moet
worden overbrugd. Een ander idee is het gebruik van modellen van de staarten
van verdelingsfuncties die specifiek ontworpen zijn voor extrapolatie over een breed
terugkeerperiode-bereik: de Gegeneraliseerde Weibull (GW) staart en de breder
toepasbare log-Gegeneraliseerde Weibull (log-GW) staart, met de Weibull staart als
bijzonder geval van beide.

Voor deze modellen alsmede voor twee klassieke staart-modellen, de Gegenerali-
seerde Pareto (GP) staart en de exponentiële staart, vergelijken we schattingen van
de staart van de kansverdeling van windsnelheid bepaald uit 72-jaar reeksen getrok-
ken uit de ECMWF System-4 ensemble seizoensvoorspellingen. De gebruikte data
zijn voor een lokatie in de centrale Noordzee. Eén check beschouwt de statistiek
van de hoogste waarde in een 72-jaar reeks zoals voorgesteld in van den Brink and
Können (2008). Daarnaast bekijken we voor ieder van de modellen de nauwkeu-
righeid van schattingen van de 107-jaar windsnelheid op basis van 72-jaar reeksen,
met als referentie schattingen op basis van de volledige dataset. Gebaseerd op deze
resultaten is vervolgens de bias geschat in the extrapolaties op basis van de volledige
dataset en op basis van een 72-jaar reeks. Dezelfde analyse is uitgevoerd op de meer
recente SEAS5 seizoensvoorspellingen, alsmede op de jaarmaxima van windsnelheid
uit een groot aantal runs over 1981-2009 met het klimaatmodel Speedy.

De verschillende datasets geven sterk verschillende resultaten. Met name wijkt de
distributiefunctie van de SEAS5 windsnelheid aanzienlijk af van die van de System-4
windsnelheid: de SEAS5 windsnelheid is gemiddeld lager, maar met een zwaardere
staart, resulterend in veel hogere schattingen van terugkeerwaarden van windsnel-
heid. Bovendien is de staart van SEAS5 windsnelheid minder regulier dan de staart
van System-4 data, waardoor schattingsfouten aanzienlijk groter zijn. Dit vraagt
om nader onderzoek van de oorzaken van dit verschil: potentiële bias geassocieerd
met de modelformulering lijkt de onzekerheid te domineren.

Vergelijking van schattingen op basis van verschillende modellen van de staart
van de windsnelheidsverdeling toont dat de klassieke GP staart, de exponentiële
staart en de 1-parameter Weibull staart een aanzienlijke bias kunnen hebben, af-
hankelijk van de beschouwde dataset. De GW staart voldoet overall het beste; de
1-parameter Weibull staart kan betere schattingen opleveren indien deze stabiel zijn
als functie van de drempel.

Alles bij elkaar genomen wijzen de resultaten er op dat schatting van de wind-
snelheid voor een terugkeertijd tot 107 jaar op basis van grote model-gegenereerde
datasets zoals System-4 en SEAS5 goed te doen is (met RMS fout kleiner dan 2
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m/s), afgezien van de gevonden systematische verschillen tussen deze datasets.
De resultaten van de huidige studie kunnen nu al van nut zijn om de terugkeer-

waarden van windsnelheid die momenteel gebruikt worden in de toetsing van pri-
maire waterkeringen te evalueren en zo mogelijk te verbeteren. Aanbevolen wordt
om op de GW staart gebaseerde schattingen uit meetgegevens op verschillende lo-
caties te vergelijken met schattingen gebaseerd op de GP en exponentiële staarten,
waarbij met name de onzekerheid van de schattingen wordt onderzocht. De analyse
van onzekerheid zou ook het effect van variabiliteit over tijdschalen van meerdere
jaren moeten omvatten, waar tot nu toe vrijwel geen aandacht aan is besteed.

Dit onderzoek is uitgevoerd voor Rijkswaterstaat en het KNMI MSO project
“Towards future climate proof statistical methods for KNMI products on extremes”.
Wij danken Marcel Bottema en Pieter van Gelder voor de reviews van dit document.

Summary

To assess the reliability of flood protection in the Netherlands, return values of
wind speed and coastal water level for return periods up to several million years are
needed. This is a major challenge, given that records of reliable wind measurements
do not go back further than about 70 years.

Several ideas are currently explored to tackle this problem. One idea is to in-
crease data volume by utilizing large datasets of simulations by numerical weather
prediction models; see van den Brink (2018). However, even large datasets such
as the archived ECMWF seasonal ensemble forecasts leave a considerable gap in
return period to be overcome. Another idea is to use models of the tails of distri-
bution functions which are specifically designed for extrapolation over a wide range
of return periods: the Generalized Weibull (GW) tail and the more widely applica-
ble log-Generalized Weibull (log-GW) tail, with the 1-parameter Weibull tail as a
special case of both.

For these models and for two classical tail models, the Generalized Pareto (GP)
tail and the exponential tail, we compared estimates of the tail of the wind speed
distribution derived from subsets of the ECMWF System-4 seasonal ensemble fore-
cast wind speeds for a location in the central North Sea. One check concerns the
statistics of maxima over subsamples as proposed in van den Brink and Können
(2008)In addition, we checked the accuracy of each of these models in estimating
the 107-year wind speed from 72-year subsets of the data, using estimates from the
full dataset as reference. Based on the results of this check, estimates of worst case
bias in extrapolations were made for extrapolations from the full data set as well as
from a 72 year subset. These analyses were repeated on the more recent SEAS5 sea-
sonal forecast data as well as on annual maxima of wind speed from a large number
of runs over 1981-2009 of the climate model Speedy.

The three datasets give starkly different results. In particular the wind speed
distribution of SEAS5 differs considerably from distribution of System-4 wind speed:
wind speeds are lower overall, but the tail is heavier, resulting in much higher
estimates of return values. Moreover, the SEAS5 tail is less regular than the System-
4 tail, resulting in larger estimation errors. This calls for a further investigation of
the cause of this difference: the uncertainty appears to be dominated by potential
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bias related to the model formulation.
Comparison of estimates based on different models of the tail reveals that the

classical GP tail, the exponential tail and the 1-parameter Weibull can be severely bi-
ased, depending on the dataset. Overall, the GW tail performs best; the 1-parameter
Weibull tail can give better estimates if these are stable as a function of threshold.

Taken together, the results indicate that accurate estimation of the wind speed
for a return period up to 107 year from large model datasets such as System-4
and SEAS5 is feasible (with RMS error below 2 m/s), provided that systematic
differences between these datasets can be resolved.

The outcomes of the present study can already be helpful to assess and possibly
improve the return values of wind speed currently in use to assess flood safety in the
Netherlands. It is recommended that GW-tail based estimates from measurements
at different sites are compared to estimates based on the GP and exponential tails,
addressing in particular the uncertainty of estimates. The analysis of uncertainty
should also address the effects of interannual variability, which has been largely
ignored until now.

This research was carried out for Rijkswaterstaat and the KNMI MSO project
“Towards future climate proof statistical methods for KNMI products on extremes”.
We thank Marcel Bottema and Pieter van Gelder for their reviews of this document.
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Part I. Report

1 Introduction

To approximate the annual probabilities of failure of selected stretches of dike (“di-
jktrajecten”) in the Netherlands, extreme value statistics of load variables such as
wind speed and water level are needed for return periods up to several million years.

Estimates of wind speed for such high return periods derived from available
measurement data are likely to be very uncertain, as the period covered by reliable
wind measurements in the Netherlands is less than 70 years. As an alternative,
van den Brink (2018) proposed to use datasets generated by numerical weather
prediction models, which may be much larger. An important potential resource
is the archive of ECMWF seasonal ensemble forecast data. The latest generation
of seasonal forecast data is SEAS5; we also consider System-4 data as these have
already been studied quite extensively, see van den Brink (2018). Including the
reforecasts, each dataset contains at each grid point effectively between 5000 and
6000 years of weather data representative of the climate over approximately the past
30 years. In addition, an even larger dataset representing over 300,000 years was
recently created using the low-dimensional climate model Speedy (Molteni, 2003;
Kucharski et al, 2006).

The large sizes of these datasets will likely make it easier to estimate return
values for very large return periods. However, the results will be affected by model
bias, which will need to be assessed and if possible, corrected. Furthermore, to
do this for a return period of more than a million years from a dataset of order
5000 years, extrapolation over several orders of magnitude of return period is still
required. This report investigates how we can do the extrapolation, and what level
of accuracy can be achieved.

For the extreme value statistics of load variables like wind which are currently
prescribed for assessment the reliability of primary flood defense in WBI-2017, dif-
ferent models of the tail are used for different load variables; see Chbab (2017).
For wind en coastal water level, these models fit within the framework of classical
extreme value theory: the Generalized Extreme Value distribution for maxima over
random samples (in practice, often annual maxima), the Generalized Pareto (GP)
distribution for peaks-over-thresholds, and sub-classes of these families of limiting
distribution functions. An effort was made to avoid overestimation of the uncer-
tainty. For coastal water level, use was made of information from a study of coastal
water levels simulated from the System-4 seasonal forecast data for thus purpose.
For wind speed, the exponential tail was fitted to measured wind data, which gives
likely conservative, but rather precise estimates, and reasonable assumptions were
made to bound the uncertainty resulting from lack of knowledge of the true shape
parameter of the GP tail.

By now, an alternative to classical extreme value theory is available which is
specifically formulated for the purpose of extrapolation over a wide range of return
periods without having to make restrictive assumptions. For univariate probability
distributions, this is the log-Generalized Weibull (log-GW) tail model, with the
Generalized Weibull (GW) tail as optional model for light tails; see de Valk (2016a).



2 Statistical background, models and estimation 10

Simulations in de Valk & Cai (2018) indicate that bias in estimates of very high
quantiles can be reduced considerably. In an application to coastal water level data
from Hoek van Holland, the uncertainty in estimates of the 10, 000 year water level
derived from a fitted log-GW model was much lower than of estimates from a fitted
GP model.

The present study compares uncertainties in estimates of the 107-year wind speed
based on different models of the tail. The large sets of wind data from the System-4
and SEAS5 seasonal forecast archives and the Speedy runs serve as a testbed for
comparing the different models. At the same time, we try to assess what level of
bias and standard error of these estimates is achievable with datasets of the size of a
typical time series of wind measurements, and with datasets as large as the seasonal
forecast data.

2 Statistical background, models and estimation

Annual maxima, return periods, return values and quantiles The of a load
variable such as wind speed is linked to its of exceedance, usually defined as the
reciprocal of the annual probability of exceedance. Suppose that a regularly sampled
wind speed record contains n values X1, ..., Xn in a year, then the annual maximum
is

Xmax,n := max(X1, ..., Xn)

and the return value xR of wind speed for the return period R satisfies

P(Xmax,n > xR) = 1/R. (1)

Suppose for a moment that X1, X2, ... form a stationary sequence, so all Xi have
the same distribution function F . Then under a rather weak assumption on the
serial dependence, it can be shown that for any sequence z1, z2, ... such that

n(1− F (zn))→ τ

for some τ > 0,

P(Xmax,n ≤ zn)→ e−τα

for some number α ∈ (0, 1], called the extremal index Leadbetter et al (1983).
For large n (say one or multiple years), this gives the approximation

P(Xmax,n > zn) ≈ 1− e−τα ≈ 1− e−αn(1−F (zn)). (2)

.
If furthermore τ is small, then 1− e−τα ≈ τα and therefore,

P(Xmax,n > zn) ≈ τα ≈ αn(1− F (zn)).

Therefore, if the return period R is large, we have (see (1))

1− F (xR) ≈ (Rαn)−1. (3)
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Defining the upper quantile Q(p) of the instantaneous distribution function F
for a probability p as

Q(p) := F−1(1− p) (4)

(so assuming that F is continuous, P(X > Q(p)) = 1 − F (Q(p)) = p), combining
(3) and (4) gives

xR ≈ Q(pR) (5)

with
pR := (Rαn)−1. (6)

It can be shown that the expressions above do not change when the wind speed
statistics depend on the season; effectively, F is replaced by its annual average.

The approximation (5) relates the return value for a return period R to a quantile
of the mean instantaneous distribution function F at a probability pR. It allows us
derive return values from an estimate of the tail of F based on all wind speed data
exceeding some threshold. This requires an estimate of the extremal index α. The
estimator of α from Ferro & Segers (2003) was applied to the 6-hourly System-4
seasonal forecast wind speed data. With increasing threshold, the estimates tend to
1, the same value as for an independent sequence. Therefore, α = 1 has been used
in all subsequent analyses.

Models of the tail of a distribution function In the present study, four models of
the upper tail of a distribution function F are considered. They are all “tail limits”:
approximations which are assumed to become more accurate with increasing wind
speed.

Two models are classical: the Generalized Pareto (GP) tail limit, and the expo-
nential tail limit, which is a special instance of the GP limit. The GP tail limit is
de Haan & Ferreira (2006)

lim
p↓0

1− F (Q(p) + xa(p))

p
= (1 + γx)−1/γ (7)

for some positive function a (the local scale parameter), and some real number γ
which we will refer to as the shape parameter1. The term Q(p) in the argument of
F can be regarded as a local offset.

In essence, this model is nonparametric: the mathematical form of the right-
hand side of (7) is not specified, but can be derived (see de Haan & Ferreira, 2006)2.

1 In statistics, is known as the extreme value index.
2 In Dillingh et al (1993 ) and in later reports referring to Dillingh et al (1993 ), a distinction

is made between a nonparametric (VVM-c or VVM-0) model, and a parametric GP model for the
tail above some high threshold. Modern treatments such as de Haan & Ferreira (2006) make clear
that when applied above a high threshold, estimators based on parametric approximation (such as
the maximum likelihood estimator (MLE) or the method of moments) may have similar properties
as nonparametric methods, under similar assumptions. The reason is that the GP tail limit is in
essence a nonparametric model. It should be kept in mind, however, that as the GP tail is only an
approximation, the MLE does not have the same properties as when the tail would be described
exactly by a GP distribution above the threshold.
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It leads directly to the approximation

1− F (z) ≈ p

(
1 + γ

(
z −Q(p)

a(p)

))−1/γ
(8)

for large z.
The exponential tail limit is the limiting case of (7) when γ → 0: then its

right-hand side becomes e−x, and for large z, (8) becomes

1− F (z) ≈ pe(Q(p)−z)/a(p).

The other three models are nonclassical. They are designed to approximate a
ratio of logarithms of probabilities instead of a ratio of probabilities as in (7) (see
de Valk (2016a,b)). This makes it possible to approximate the distribution function
over a wide range of probabilities, although the approximation is a crude one. The
first one is the Generalized Weibull (GW) tail limit:

lim
p↓0

log (1− F (Q(p) + xf(p)))

log p
= (1 + ρx)1/ρ, (9)

for some positive function f (the local scale parameter), with ρ the shape parameter.
Note that (9) has a similar form as (7), but probabilities have been replaced by their
logarithms. For large z, it leads to the approximation

1− F (z) ≈ p(1+ρ(
z−Q(p)
f(p) ))

1/ρ

.

A closely related model is the log-GW tail limit, which assumes that the loga-
rithm of the random variable concerned satisfies a GW tail limit. This gives

lim
p↓0

log
(
1− F (Q(p)exg(p)

)
log p

= (1 + θx)1/θ (10)

for some positive function g (the local scale parameter), with θ the shape parameter.
For large z, it leads to the approximation

1− F (z) ≈ p(1+θ(
log z−logQ(p)

g(p) ))
1/θ

.

For random variables which are positive with probability greater than 0, the log-
GW model is more widely applicable than the GW model. The GW model applies
to relatively light tails, not much heavier than an exponential tail. The log-GW
model applies also to fat tails such as tails satisfying a GP tail limit with γ > 0
(power-law distributions). The Weibull tail limit is a special case of the log-GW tail
limit, obtained by setting θ = 0 in (10). This gives

lim
p↓0

log
(
1− F (Q(p)exg(p)

)
log p

= exp(x) (11)

and for large z, the (1-parameter) Weibull tail approximation

1− F (z) ≈ p(z/Q(p))1/g(p) = exp
(
(z/Q(p))1/g(p) log p

)
.
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If ρ > 0 in the GW tail limit (9), then it is equivalent to a Weibull tail limit
(11) with scale g satisfying that limp↓0 g(p) = ρ; setting f = Qρ in (9) gives (11)
with g(p) = ρ. The functional form of the 1-parameter Weibull tail as defined here
is compatible with (but more restrictive than) the conditional 2-parameter Weibull
distribution of exceedances of a threshold which is frequently used by offshore engi-
neers for extreme value analysis.

The functional forms of all the basic tail limits (the right-hand sides of (7), (9),
(10)) are not imposed; they are simply the only possible limits (the exponential and
1-parameter Weibull tail limits being special cases). It should be noted that the ap-
proximations indicated by ≈ above for the GW and log-GW (incl. Weibull) models
are of a different nature than the approximations for the GP (incl. exponential)
model: the GW and log-GW models provide a crude approximation applicable over
a wide range of probabilities, whereas the GP offers a more accurate approximation
applicable over a narrow range of probabilities.

For wind speed, there are reasons to expect that all tail limits listed above apply.
For many years, it has been common knowledge that empirical distribution functions
of midlatitude wind speed are well approximated by a Weibull distribution; see e.g.
Justus et al (1976). The Weibull distribution satisfies the Weibull tail limit (11)
with constant scale g, and therefore, also the log-GW tail limit (10) with θ = 0, and
the GW tail limit (9) with ρ = g. Furthermore, the Weibull satisfies the classical
GP tail limit (7) with γ = 0 (the exponential tail limit). There is of course no
reason to assume that the Weibull distribution would fit the tail section of the wind
speed distribution as closely as its bulk section. However, outside the known regions
affected by tropical cyclones and squalls, neither would one expect the tail section
to deviate much from the bulk section. In fact, there is ample empirical evidence
that a Weibull tail can provide a good approximation of the tail of the wind speed
distribution; see e.g. Cook (1982); Harris (2005); van den Brink and Können (2008,
2011).

Approximations of return values Approximations of return values of wind speed
(defined by (1)) for a large return period R follow from the formulas above. For the
GP model, the approximation is (see (5), (4) and (6)):

xR ≈ Q(pR) ≈ Q(p) + a(p)
1

γ

(( p
pR

)γ
− 1

)
. (12)

In the special case of the exponential model (γ = 0), this reduces to

xR ≈ Q(p) + a(p) log
( p
pR

)
. (13)

For the GW model, the approximation of the return value is

xR ≈ Q(p) + f(p)
1

ρ

(( log pR
log p

)ρ
− 1

)
, (14)

and for the log-GW model, it is

xR ≈ Q(p)e
g(p) 1

θ

( log pR
log p

)θ
−1


, (15)
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which in the special case of θ = 0 (1-parameter Weibull model) reduces to

xR ≈ Q(p)
( log pR

log p

)g(p)
. (16)

Estimators Estimators of return values from a sample of data X1, ..., Xn employ
the approximation formulas (12)-(15), with p = k/n (1 ≤ k ≤ n) and Q(p) replaced
by its estimate Xn−k+1:n, the k−th highest value from X1, ..., Xn.

Estimation of the scale parameter (a(p), f(p) or g(p)) and the shape parameter
(γ, ρ or θ) in these formulas is less simple. For the GP model; the maximum likeli-
hood estimator (MLE) was chosen see e.g. Section 3.4 of de Haan & Ferreira (2006)
for the background. For the log-GW and GW models, a refinement of the method
described in de Valk & Cai (2018) was used; see Appendix B. The exponential model
was treated as a special case of the GW model, so the same estimator was used with
GW shape parameter fixed at 1. The 1-parameter Weibull tail was treated as a
special case of the log-GW tail with shape parameter fixed at 0; the scale estimator
for this tail is almost identical to the estimator denoted by θ̂(2) in Gardes and Girard
(2016).

Code of the estimators in the R language is contained in the package EVTools,
which can be found on https://github.com/ceesfdevalk/EVTools.

One aspect of these estimators which is important for understanding the data
analysis in the next chapters is the choice of thresholds. Each estimator for a scale
or shape parameter operates on the highest k values in the data sample, i.e., on
Xn−k+1:n, ..., Xn,n, for some choice of k < n. Choosing a small value of k reduces
bias, whereas a large value of k reduces variance. The estimators for the GW and log-
GW tails use a larger value of k for the shape parameter than for the scale parameter;
this is needed to ensure consistency without imposing restrictive assumptions (see
also Appendix B). For the GP tail (estimated by maximum likelihood), this is not
needed, but there is also no reason to think that estimation with different thresholds
for scale and shape would not work in this case. Therefore, we compare estimates
with different thresholds for scale and shape for all tail models, and we compare
estimates with the same thresholds for scale and shape for all tail models. In this
way, we do not confuse the effects of the choice of tail model with the effects of
threshold choice.

3 Analysis of System-4 data

3.1 System-4 data and preprocessing

ECMWF computed System-4 forecast ensembles starting at the first day of every
month in 1981-2016, with each forecast run over 7 months. Of every forecast, we
retained only the last 6 months in order to minimize the effect of the initialization,
ensuring that dependence among the ensemble members is sufficiently reduced. In
the reforecast data, ensemble size is 15, except when starting in Feb, May, Aug and
Nov; then the ensemble size is 50. In the forecast data (starting from 2011), the
ensemble size is always 50, but the additional ensemble members were skipped in
order to ensure that all years are equally represented. The time step is 6 hours.

https://github.com/ceesfdevalk/EVTools
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Further information about the System-4 data can be found in Molteni et al (2011);
see van den Brink and de Goederen (2017) for a statistical application.

For the present study, System-4 data of wind at 10m above the surface were
selected for the location 55N, 3E in the central North Sea; this choice reduces possible
effects of land-sea boundaries on the tail of the distribution function of wind speed.

Subsamples of the data were generated by combining ensemble members with
the same label and with starting dates at regular 6-month intervals. This resulted
in 160 subsamples covering 36 years each. Pairs of these were combined, resulting
in 80 subsamples, each covering 72 years: slightly longer than the longest quality-
controlled measurement record of wind in the Netherlands.

3.2 Statistics of the highest wind speed in a subsample

The first check of the extrapolation skills of the tail models of Section 2 is taken
from van den Brink and Können (2008, 2011). With a chosen model, we fit the
tail of each of the 80 subsamples of the seasonal wind speed forecasts (see Section
3.1). For a given subsample, this tail fit allows us to transform the wind speed
data monotonically to make their tail distribution standard exponential. If the tail
fit matches the true tail closely, then true distribution function of the transformed
wind speed should be close to the standard exponential distribution even at the
very far end of the tail. Therefore, Z, the highest transformed wind speed from the
subsample (the "outlier”), should be approximately Gumbel distributed:

P(Z ≤ x) ≈ e−nαe
−x
,

with α the extremal index and n the number of data points in the subsample.
This follows directly from eq. (2). Equivalently, the distribution function of Y :=
Z − log(nα) (from now on referred to as the transformed wind speed maximum)
should be close to a standard Gumbel distribution:

P(Y ≤ x) ≈ e−e
−x
. (17)

Since we have 80 subsamples, we can check whether the approximation (17)
is true: the values of Y from each of the 80 subsamples, say Y1, ..., Y80, can be
sorted to obtain the order statistics Y1:80 ≤ ... ≤ Y80:80. According to (17), the plot
of Yi:80 against − log(− log(i/81)) (the Gumbel probability scale) for i = 1, ..., 80
should approximate the diagonal. Furthermore, assuming Y has a standard Gumbel
distribution and that Y1, ..., Y80 are independent, pointwise confidence bounds can
be derived from e.g. Czörgő & Révész (1978).



3 Analysis of System-4 data 16

Fig. 1: Gumbel plots of transformed wind speed maxima over 80 subsamples of the System-4 data.
Dashed: standard Gumbel line; dotted: 90% confidence bounds. Transformations are based
on tail fits: GP (red), exponential (magenta), GW (blue), log-GW (black), GW with shape
parameter equal to 0.5 (cyan), and 1-parameter Weibull tail (light blue). Top/bottom:
same/different thresholds for scale and shape estimation.

The accuracy of the approximation provides a measure of the quality of the
extrapolation: on each subsample, the tail model is fitted on a certain number of
wind speed values (the highest l wind speeds, say), but the test only concerns the
highest wind speed of each subsample, so we test the extrapolation from a probability
p = l/n (with n the size of the subsample) to a probability 1/n.

The deviation of Yi:80 against − log(− log(i/81)) from the diagonal is a measure
of deviation from the classical tail limit for maxima (which is equivalent to the GP
tail limit). As it does not go beyond this classical limit, a small deviation from the
diagonal for a particular tail model does not guarantee that this model is suitable
for extrapolation over orders of magnitude in frequency.

Figure 1 shows the plots of Yi:80 against − log(− log(i/81)) with Y1, ..., Y80 esti-
mated using l = 72, 360 and 1800 wind speed values, which correspond to thresholds
exceeded during fractions of time p of 0.00068, 0.0034 and 0.017, respectively, or ex-
ceeded with return periods of 1, 0.2 and 0.04 year.

The top panels show results of tail fits using the same thresholds as above for
shape parameter estimation (see the end of Section 2). Overall, the curves for the
fitted GW, log-GW and 1-parameter Weibull tails approximate the diagonal quite
closely. Also shown is a curve for a GW model shape parameter ρ fixed to 0.5, a
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value matching reasonably well to estimates of ρ over a range of thresholds. It is
close to the other curves. The same applies to the GP tail. However, the curves
for the exponential tail deviate much further from the 1:1 line with increasing F ;
the exponential tail is apparently too heavy to approximate the tail of the System-4
wind speed.

The bottom panels show results of tail fits using higher thresholds for shape
parameter estimation. The results agree largely with those in the top panels, with
the exception of curves for the GP tail, which now deviate further from the 1:1 line
for the lower return periods. The larger error is likely due to bias in the shape
parameter estimates at these lower thresholds.

For the 1-parameter Weibull tail, these findings are in line with the results of
a similar outlier check on local Weibull fits to ERA-40 reanalysis wind speed data
in van den Brink and Können (2008) and van den Brink and Können (2011). As
the 1-parameter Weibull tail is a special case of the log-GW tail and furthermore,
equivalent to a GW tail with positive shape parameter, it is not surprising that the
results for the latter tail models are similar to those for the 1-parameter Weibull
tail.

3.3 Extrapolation of wind speed return values from
subsamples

A second check compares estimates of the return value xR for a large return period
R from the subsamples with a reference estimate of xR obtained from the entire
sample, with both estimates based on the same tail model.

For R, we could choose a return period smaller than the length of time covered
by the full dataset, so well below 5000 years, to ensure that the reference estimates
are accurate. But this would have the same limitation as the check on maxima
over subsamples in Section 3.2: it remains well within the scope of the classical
extreme value limit (i.e., (7) with the ratio on the left-hand side bounded away from
0), whereas what we really want to know is how the different models of the tail
perform in extrapolation over several orders of magnitude in return period, which
goes beyond the classical tail limit. Therefore, we focus on large return periods; we
report the case R = 107 year, which is an upper bound to the range of return periods
we are interested in. Results for smaller R, e.g. R = 1000 years are similar to those
for R = 107 year, mainly differing in the absolute magnitudes of the deviations
between estimates from subsamples and estimates from the full sample.

Estimates of xR for R = 107 year were computed from the 80 subsamples of size
n = 105192 (each covering 72 years). These were derived from the tail approxima-
tions (12)-(15) with all or most parameters estimated from the highest l values in
the subsample3, with l ranging from 10 to 6000 and with sample fraction p = l/n in
(12)-(15) ranging from about 10−4 to about 0.05. These estimates were compared
to reference estimates of xR derived from the entire dataset using the same tail ap-
proximation; so estimates of xR from the subsamples based on the exponential tail,
for example, are compared to reference estimates of xR from the full sample which

3 Only for the GW and log-GW models, the shape parameter is estimated from a larger number
of values; see Appendix B.
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Fig. 2: Tails estimated from subsamples (black dotted curves) from the 3.2% highest values in each
subsample (p = 0.032) of the System-4 data for four tail models (top left to bottom right):
GP, exponential, GW and GW with fixed shape parameter ρ = 0.5. Mean estimate of of
xR with error bar at a return period of R = 107 years in black. Black dots: order statistics
of the full sample. Blue: tail estimated from the p = 0.032 highest values of the full sample.
Red: same, for p = 0.032/80 = 4 ·10−4. Estimates made with different thresholds for shape
and scale.
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Fig. 2: Continued: same for the log-GW tail (left) and 1-parameter Weibull tail (right).

are also based on the exponential tail. Figure 2 shows the estimates for a single
value of the sample fraction p: for each of the GP, exponential, GW, log-GW and
1-parameter Weibull tail models, it shows the tails estimated from the subsamples
(dotted lines), and for a frequency of 10−7 /year (corresponding to R = 107 year),
it shows the mean 〈x̂R〉 of the estimates of xR from the subsamples and the interval
〈x̂R〉 ± σR, with σR the sample standard error of the estimates.

In addition, each panel in Figure 2 shows two reference estimates of the tail
from the entire sample. The blue curve is the tail estimated using the same values
of the sample fraction p as for the estimates from the subsamples (so n and l are
both larger by a factor of 80). Because p is the same in both cases, the subsample-
based estimates and the reference estimates should have the same bias, so the results
should merely reflect the additional variance of the estimates from the subsamples.
Indeed, at a frequency of 10−7 /year, the blue curve almost coincides with the mean
〈xR〉 of the estimates from the subsamples except for the GP tail (for the latter,
estimates from the subsamples are highly variable).

The red curves in Figure 2 represent reference estimates from the complete
dataset derived with a value of p which is 80 times smaller than the value used
for the estimates from the subsamples (so the value of l used for the reference
estimates and the subsample-based estimates is the same). As the ratio p/pR in
(12)-(15) is now a factor of 80 larger for the subsample-based estimates than for the
reference estimate, we are really testing how well the different tail models extrapo-
late4. The statistics of the deviations of the dotted (subsample-based) curves from
the red curves based on the full sample at a frequency of 10−7 year (R = 107 year)
are summarized in Figure 3 for the full range of p. This is the figure we will now
describe in detail.

4 Note that the variability of the red curves is higher than the variability of the blue curves, as
the red curves are based on an 80 times smaller number of order statistics.
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Fig. 3: RMS difference (left) and mean difference (right) between subsample-based estimates of the
return value xR of wind speed and a reference estimate from the entire System-4 dataset
as function of the sample fraction p used in the subsample-based estimation. Top/bottom:
same/different thresholds for scale and shape. Tail models: GP (red), exponential (ma-
genta), GW (blue), log-GW (black), GW with shape parameter 0.5 (cyan), 1-parameter
Weibull (light blue). R = 107 years.

The top panels show the root-mean square (RMS) and mean difference between
the subsample-based estimates of xR and the reference estimate of xR from the
complete dataset as a function of p, for estimates using the same thresholds for
scale and shape. Over the entire range of p, the mean difference is smallest in
magnitude for the 1-parameter Weibull tail and the GW tail with fixed shape. It is
somewhat larger for the GW and log-GW tails with estimated shape; the values are
noisy (due to noise in the shape estimates: they are based on the same threshold as
used for scale estimation). The mean difference is much larger in magnitude for the
GP tail and in particular, for the exponential tail. These findings are also reflected
in the RMS differences on the left-hand side, in particular for higher values of p
where the mean difference is generally larger than the standard deviation. For low
values of p, the RMS for the exponential tail is lower than for the GW, log-GW and
GP tails, as the exponential has a fixed shape parameter, whereas the estimates of
the shape of GW, log-GW and GP tails are highly variable, being estimated with
the same threshold as used for the scale.

The bottom panels show results obtained with shape estimated with a lower
threshold than scale (results for the exponential, 1-parameter Weibull, and GW
with fixed shape are identical to those in the top panels, as these models have no
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shape parameter to be estimated). The patterns are overall similar, but at low p,
estimates based on the GW, log-GW and GP tails are much more precise, and the
mean difference for GP is now somewhat larger in magnitude. For the 1-parameter
Weibull, GW and log-GW models, the highest sample fraction still gives about
the lowest RMS difference, indicating that bias is nowhere dominant for these tail
models.

Both the estimates from the full sample and from the subsamples are biased and
imprecise. This is why we did not speak of bias and RMS error, but used the terms
"mean difference" and "RMS difference" in the discussion of the differences between
full-sample and subsample estimates.

However, bias and RMS error of the estimates are what we are really after. Fortu-
nately, there is a way to estimate these from the results just obtained.
We can make a crude order-of-magnitude estimate of the size of the bias in an
estimate x̂R,s of xR from a 72-year subsample. Let x̂R,f be the estimate from the
full sample. Using an asymptotic expression of bias in the high quantile estimator,
we can approximate the ratio

E(x̂R,s − xR)

E(x̂R,s − x̂R,f )
; (18)

the method is described in Appendix A for each of the tail models considered.
The ratio (18) is positive, and depends on the shape parameter of a second-order
extension of the tail model. Letting that parameter tend to 0 from below (which
corresponds to reducing the speed of convergence to the tail limit) maximizes (18),
so this gives a worst-case approximation of this ratio.
The denominator in (18) is estimated by the mean difference displayed in Figure
3 (bottom right). Multiplying it by the worst-case ratio (18) gives a worst-case
estimate of E(x̂R,s − xR), the bias in the estimate x̂R,s from a subsample.
The standard deviation σR,s of the error in the estimate x̂R,s of xR from a subsample
can be estimated directly from the estimates of x̂R,s. To derive the standard devi-
ation σR,f of the error in the estimate of xR from the full sample, we multiply the
estimate of σR,s by an approximation of σR,f/σR,s derived from known large-sample
limits. Then the RMS error of quantile estimates from subsamples and from the
full dataset can be derived straightforwardly from the estimates of their bias and
standard deviation.

The estimates of bias in the return values estimated from the full set of System-4
wind speed data are shown in Figure 4 (blue). It should be stressed that these bias
estimates are derived independently for each of the tail models (GP, EXP, GW,
log-GW, 1-parameter Weibull). The exponential tail was regarded as a special case
of the GW tail in developing the second-order model. The bias estimates in Figure
4 are based on tail estimates using different thresholds for shape and scale (i.e., the
results in the bottom panels of Figure 3).

For the 1-parameter Weibull, GW and log-GW tails, the estimated bias is very
small. Curiously, the magnitude of this bias estimate for the GW tail with estimated
shape parameter is smaller than for the GW tail with fixed shape, even though the
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Fig. 4: Estimates of worst-case bias in the estimates of the return value xR of wind speed from
the full System-4 dataset (blue) and from a 72-year subsample (black) for estimates based
on the (top left to bottom right) GP tail, exponential tail, GW tail, GW with fixed shape
parameter 0.5, log-GW tail and 1-parameter Weibull tail. Dashed lines: standard errors of
estimates of the return value (same colour codes). Return period R = 107 years. Thresholds
for shape and scale are different.

mean differences in Figure 3 (bottom right) are similar in magnitude. The reason is
that estimation of the shape parameter results in partial cancellation of the bias in
estimates of high quantiles; see Appendix A. The estimated bias is much larger for
the GP and exponential tails, also in comparison with the standard errors (dashed).

To summarize, disregarding potential systematic errors in the System-4 forecast
model and errors due to the 6-hourly sampling, it appears to be feasible to estimate
the 107 year wind speed accurately with valid confidence bounds by applying a GW,
log-GW or 1-parameter Weibull tail fit to the full set of System-4 ensemble forecast
wind speed data.

In the same manner, using the bound on (18), we can estimate the worst-case bias
in x̂R,s obtained from a subsample; see Figure 4 (black). The values are considerably
larger in this case. However, for the GW, log-GW and 1-parameter Weibull tails,
the estimated bias remains below 2 m/s over most of the range of p. Similar values
can be expected for estimates from the longest records of wind measurements in
the Netherlands, as these are of about the same size as the subsamples from the
ensemble forecast wind speeds considered here.
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Fig. 5: Estimates of 107 year wind speed from the complete System-4 dataset as function of the
sample fraction used in the estimation. Tail models: GP (red), exponential (magenta), GW
(blue), GW with fixed shape (cyan), log-GW (black), and 1-parameter Weibull (light blue).
Left/right: same/different thresholds for scale and shape.

3.4 Estimates of the 107 year wind speed from the complete
dataset

Estimates of the 107 year wind speed from the complete dataset are shown in Figure
5. The estimates based on the GW tail with fixed shape and the 1-parameter Weibull
tail are very stable as a function of sample fraction p. Those based on the GW and
log-GW models tend to increase somewhat with decreasing p (i.e., with increasing
wind speed threshold). The estimates based on the GP tail vary more with p and
are lower. For the exponential tail, the estimates are higher, and show a steep trend
as a function of p; this model is clearly not suitable for the System-4 data.

The estimates based on different thresholds for shape and scale are displayed with
confidence intervals in Figure 6. For the exponential tail, the confidence interval is
evidently not valid; the large trend in the estimates as a function of p indicates that
bias dominates the error.

3.5 Consistency of return values of water level and wind
speed

A potential application of the large seasonal ensemble forecast datasets of ECMWF
is the estimation of return values of high-tide water level along the coast of the
Netherlands for very large return periods (van den Brink, 2018). One way to do
this is to simulate water levels directly from the wind and pressure forecast data,
and then estimate the tails of the local water level simulations. Another approach
proposed in Caires et al. (2016) is to estimate the local extreme value statistics of
the wind over an area covering the North Sea from the seasonal ensemble forecast
data, and use these statistics to scale up the wind fields (and possibly pressure
fields) to generate a database representing more extreme conditions then present in
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Fig. 6: Same as Figure 5 with 90% confidence bounds: Tails (top left to bottom right): GP,
exponential, GW, GW with fixed shape ρ = 0.8, log-GW, 1-parameter Weibull. Estimates
using different thresholds for scale and shape.

the original data. Subsequently, these can be used to simulate extreme water levels
directly.

Ideally, both approaches would produce approximately the same extreme water
level statistics. Whether this is so may depend on the model chosen to extrapo-
late the local tails of the distribution functions of wind speed and/or water level.
The effect of this choice can be assessed within a simplified setting, using a simple
approximation of the relationship between wind speed and high-tide water level.
We used the following equilibrium relationship between high-tide water level ζ and
near-surface wind component from north-west uNW :

ζ = c(u2NW/g) + ζa (19)

with g the gravitational acceleration (9.81 m/s2), ζa the astronomical high water
level, and c a dimensionless constant. We took c = 0.06 and ζa = 1.1 m as in De
Valk and Zitman (1999). These values are somewhat arbitrary; therefore, the water
level values obtained from this model are not necessarily realistic. For the present
purpose, this is no problem; it is sufficient that the wind-water level relationship is
qualitatively similar to more accurate models.

Figure 7 shows the high-tide water levels derived from the estimates of the 107

year north-westerly wind speed by (19) in black, and the 107 year high-tide water
level estimated from high-tide water level data derived from data of north-westerly
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wind speed by (19) in blue. Ideally, these curves are identical. For the GW tail fits,
they are almost identical. For the log-GW and 1-parameter Weibull tail fits, they
differ much more at the higher sample fractions. The same is observed for the GP
tail fits, which are much more variable and uncertain. The difference between the
two types of estimates is by far the largest for the exponential tail.

This result agrees with expectation. Applying the exponential tail to both wind
speed and water level is inconsistent with (19). The somewhat more flexible GP
model can adapt better to the the data than the exponential model, as it allows for
different values of the shape parameter for water level and wind speed.

The exponential tail is a special case of the GP tail, namely a GP tail with shape
parameter γ = 0 (see (7)). However, that the estimates of GP tails for wind speed
and simulated high-tide water level appear to be more consistent with the model
(19) than exponential tail estimates, should not be seen as evidence that the true
values of the GP shape parameters of wind speed and simulated water level are
unequal.
In fact, it can be show that when γ ≤ 0 for the tail of wind speed (which it is, as
the estimated tails are lighter than an exponential tail), then the tail of water level
simulated by (19) from wind speed must have the same value of γ as the tail of wind
speed.
There is a better explanation why GP tail estimates appears to be more consistent
with (19) than exponential tail estimates: convergence to the proper (common) GP
tail limit of wind speed and simulated water level is incomplete, and GP tails with
different values of γ for wind speed and water level may (for a given dataset of fixed
size) provide a better approximation of the tails than GP tails with the common
true value of γ, even though the functional relationship between wind speed and
water level inferred from the fitted GP tails does not match (19) exactly.
For example, if the NW wind speed has a Weibull tail with shape parameter ρ =
1/2 (i.e., F (x) = 1 − exp(−(x/a)2) for some a > 0), then the water level has an
exponential tail according to (19). The latter is a GP tail with γ = 0; the former
has an exponential tail as its classical GP tail limit, so γ = 0 for both. However,
a Weibull tail can be closely approximated over a fairly wide range of probabilities
by a GP tail with a well chosen value of γ, which can be derived analytically from
the Weibull shape parameter; this was shown in van den Brink and Können (2011)
and Furrer and Katz (2008). Applying such a GP approximation to the Weibull tail
of wind speed, we end up with closely matching GP approximations of the tails of
both water level and wind speed, which should also match (19) reasonably well.

If ρ > 0 as in the estimates, then the GW tail limit (9) implies a Weibull tail
limit, so (14) reduces to (16) with g(p) = ρ; this formula remains valid (with a
different value of ρ) after a power transformation. The same applies to the log-GW
tail (as the 1-parameter Weibull tail is a special case of it). So these three tails should
be able to accommodate the first term of the transformation (19). The GW tail is
invariant under a shift, so it should also accommodate the second term ζa accounting
for the astronomical tide in (19) as well. In contrast, the 1-parameter Weibull and
log-GW tails are not shift-invariant, which likely explains the larger effect of the
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transformation on the estimates based on these two tails. If this is correct, then
these two tails are more suitable for an analysis of surge level, represented by (19)
with ζa = 0.

Fig. 7: Estimates of 107 year high-tide water level from fitted GP (top left), exponential (top right),
GW (bottom left), log-GW (bottom centre) and 1-parameter Weibull (bottom right) tails
derived from System-4 data. Black: tails of NW wind component fitted and transformed by
(19) to water level. Blue: water level tails fitted on data obtained using (19). Thresholds
for shape and scale estimation are different.

4 Analysis of SEAS5 data

4.1 The SEAS5 dataset

The archive of SEAS5 data is similar to that of System-4: seasonal reforecasts have
been computed starting at the first day of every month in 1981-2016, each forecast
run over at least 7 months. The ensemble size is 25. In addition, the operational
forecasts are available for 2017; from these, we used 25 ensemble members of each
forecast. The time step is a 6 hours. Further information about the SEAS5 data can
be found in Implementation of Seasonal Forecast SEAS5 and SEAS5 User Guide.

Data of wind at 10m height at the location 55N, 3E were retrieved from the
SEAS5 archive. Subsamples of the data were generated by combining ensemble
members with the same label and with starting dates at regular 6-month intervals.
This resulted in 150 subsamples covering 37 years each. Pairs of these were com-

https://confluence.ecmwf.int/display/FCST/Implementation+of+Seasonal+Forecast+SEAS5
https://www.ecmwf.int/sites/default/files/medialibrary/2017-10/System5_guide.pdf
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Fig. 8: Empirical frequencies of exceedance of wind speed from System-4 (blue) and SEAS5 (black).

bined, resulting in 75 subsamples, each covering 74 years; approximately the same
volume as for System-4.

A comparison of the empirical tails of the distribution functions of System-4 and
SEAS5 wind speeds is shown in Figure 8. Each frequency of exceedance in this plot
is derived from the fraction of time of exceedance 1 − F by multiplying it by αn;
see eq. (3).

For SEAS5, the tail is overall lower, but its plot has lower curvature than the
tail plot for System-4. As a result, the curves cross at a wind speed of about 28
m/s, above which SEAS5 wind speeds are higher. This discrepancy is worrying: at
least one of the two datasets gives biased wind speeds, not just at very high wind
speeds but also in the lower range. We will discuss the effects of this difference on
the extrapolation of the tail in the following sections.

4.2 Statistics of the highest wind speed in a subsample

The results of the check of tail models based on the maxima of wind speed over the
subsamples (see Section 3.2) are shown in Figure 9. As in the case of System-4 data,
a GW model with a fixed shape parameter ρ was included among the models to be
tested; in this case, a value of 0.8 was chosen, based on estimates from the full set
of SEAS5 data. Results are similar to those obtained with System-4 data, except
that:

• the exponential tail is performing better than on System-4 data at relatively
low thresholds;

• a GW model with fixed GW shape parameter of 0.8 is performing at least as
good or better than all other models.

• the 1-parameter Weibull tail performs poorly on SEAS5 data, where its per-
formance on System-4 data is very good.

The first point is the result of the SEAS5 tail being heavier than the System-4 tail
(see Figure (8)); however, the second point shows that the exponential tail (which
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s

Fig. 9: Gumbel plots of transformed wind speed maxima over 80 subsamples of the SEAS5 data.
Dashed: standard Gumbel line; dotted: 90% confidence bounds. Transformations are based
on tail fits: GP (red), exponential (magenta), GW (blue), log-GW (black), GW with shape
parameter equal to 0.8 (cyan), and 1-parameter Weibull tail (light blue). Top/bottom:
same/different thresholds for scale and shape estimation.
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is a GW model with GW shape parameter equal to 1) is not necessarily the model
of choice in this case; better models exist among the GW tails.

Comparing results for GW, log-GW and GP tails based on the same thresholds
for shape and scale estimation (top) with results based on a lower threshold for
shape (bottom), the latter are clearly worse than the former. This is most likely
due to lack of regularity of the tail of the SEAS5 data; see Section 4.4.

Again, results indicate that the classical GP tail limit applies with γ = 0 (the
exponential tail), since for the higher thresholds, all models perform satisfactorily,
including the exponential tail.

4.3 Extrapolation from subsamples

Referring to Section 3.3 for the background of the analysis of extrapolation from
subsamples, we proceed with a discussion of differences between the results from
the SEAS5 and System-4 datasets.

Figure 10 shows differences between return value estimates from subsamples and
reference estimates from the entire dataset based on sample fractions 75 times lower
than for the estimates from subsamples. Compared to Figure 3 for System-4 data,
we observe the following differences.

• For the exponential tail, the magnitude of the mean difference is reduced
considerably: this is to be expected, as the tail of SEAS5 data is heavier.

• For SEAS5 data, RMS differences are larger than for System-4 data for all
tail models except the exponential. The same holds for the magnitude of the
mean difference. This indicates again that the SEAS5 tail is less regular than
the System-4 tail.

• The GP tail shows the largest differences (both in terms of RMS and mean)
of all tail models.

• AGW tail with fixed shape parameter equal to 0.8 has consistently the smallest
mean difference and RMS of all tail models. This implies that the exponential
tail (a GW tail with shape parameter equal to 1) is not the best model for the
SEAS5 tail. However, the more flexible tails with estimated shape parameter
(GP, GW and log-GW tails) are apparently sensitive to irregularity of the tail.

Extrapolations of these differences to estimates of worst-case bias in the estimates
of return values (see Section 3.3) are shown in Figure 11.

• For the GP tail, estimated bias is very large.

• For the exponential tail, estimated bias is comparable in magnitude to the
bias for the GW and log-GW tails over a large range of sample fractions. For
estimates from the full sample (blue curves), bias remains largely below 2 m/s
for these models. Bias for the 1-parameter Weibull tail is somewhat larger.

• For the GW tail with fixed shape parameter equal to 0.8, bias is much lower
than for the other tails, including the GW tail with estimated shape; it even
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remains below 2 m/s for estimates from subsamples (black curves) over a wide
range of sample fractions. Apparently, estimation of the shape parameter
contributes considerably to the bias in this case, due to irregularity of the
SEAS5 tail (see also Section 6).

Fig. 10: RMS difference (left) and mean difference (right) between subsample-based estimates of
the return value xR of wind speed and a reference estimate from the entire SEAS5 dataset
as function of the sample fraction p used in the subsample-based estimation. Upper/lower:
same/different thresholds for scale and shape. Tail models: GP (red), exponential (ma-
genta), GW (blue), log-GW (black), GW with shape parameter 0.8 (cyan), 1-parameter
Weibull (light blue). R = 107 years.

4.4 Estimates of the 107 year wind speed from the complete
dataset

For all tail models, the estimates of return values from the full set of SEAS5 data
vary considerably as a function of the sample fraction; see Figure 12. This shows
again that the tail of the full SEAS5 dataset is irregular; compare the much more
stable estimates from System-4 data in Figure 5. It explains the rather large bias
for almost all tail models found in the previous section: all models assume some
notion of regularity of the tail.

Estimates based on different thresholds for shape and scale are generally much
more stable as functions of sample fraction; for sample fractions in the range 10−5
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Fig. 11: Estimates of worst-case bias in the estimates of the return value xR of wind speed from
the full SEAS5 dataset (blue) and from a 72-year subsample (black) for estimates based on
the (top left to bottom right) GP tail, exponential tail, GW tail, GW tail with fixed shape
parameter ρ = 0.8, log-GW tail and 1-parameter Weibull tail. Dashed lines: standard
errors of estimates of the return value (same colour codes). Return period R = 107 years.
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Fig. 12: Estimates of 107 year wind speed from the complete SEAS5 dataset. Tails: GP (red),
exponential (magenta), GW (blue), GW with fixed shape ρ = 0.8 (cyan), log-GW (black)
and 1-parameter Weibull (light blue). Left/right: same/different thresholds for scale and
shape.

to 5 · 10−4 , the estimates based on the GW, log-GW, exponential and GP tails are
all fairly stable and not very different from each other.

Fig. 13: As Figure 12, with 90% confidence bounds (dashed). Tails (top left to bottom right): GP,
exponential, GW, GW with fixed shape ρ = 0.8, log-GW, 1-parameter Weibull. Estimates
using different thresholds for scale and shape.
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In line with Figure 8, the estimates of the return value of wind speed from the
full set of SEAS5 data are much higher than the estimates from the full set of
System-4 data; compare Figure 12 to Figure 5. This is not only a matter of scale:
the GW shape parameter estimates are much higher for SEAS5 than for System-4
(not shown).

4.5 Consistency of return values of water level and wind
speed

The results from SEAS5 are similar to those obtained from System-4 data; compare
Figure 7 to Figure 14.

Fig. 14: Estimates of 107 year high-tide water level from fitted GP (top left), exponential (top
right), GW (bottom left), log-GW (bottom centre) and 1-parameter Weibull (bottom
right) tails derived from SEAS5 data. Black: tails of NW wind component fitted and
transformed by (19) to water level. Blue: water level tails fitted on data obtained using
(19). Thresholds for shape and scale estimation are different.
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5 Analysis of Speedy annual wind speed maxima

5.1 The Speedy dataset

Speedy is a low-resolution climate model covering the globe; see Molteni (2003);
Kucharski et al (2006). A total of 12816 Speedy runs were made covering the years
1980-2009 with observed sea surface temperatures and initialized at rest, using a
spin-up over 1 years. Only the annual maxima of near-surface wind speed were
saved; the total number of wind speed maxima is 384480. We considered data at
the same location as for the analysis of seasonal forecast data.

These Speedy data were used to test the performance of estimation of the 107

year wind speed from a dataset covering approximately 5700 years, approximating
the lengths of the System-4 and SEAS5 dataset. To this end, 67 subsamples of
the Speedy wind speed maxima were extracted form the data-set, each subsample
covering 5700 years (similar to the total length of the System-4 and SEAS5 data).
On these subsamples, the same checks were performed as previously applied to the
System-4 and SEAS5 data. A difference with the latter checks is that from the
Speedy data, we only used the annual maxima.

We fitted the same tail models as before: GW, log-GW, 1-parameter Weibull,
exponential and GP. As an alternative, we could have used tail models specifically
aimed for use on block-maxima, e.g. the Generalized Extreme Value (GEV) in-
stead of the GP tail, the Gumbel instead of the exponential, etc. However, when
estimating from a reasonably small fraction of the data (say from values above the
100-year return value), it does not matter much whether such an adjustment for
block-maxima is made. This is illustrated by Figure 15, showing a Gumbel tail (of
let’s say the distribution function of annual maxima) and its approximation by an
exponential tail.

Fig. 15: Gumbel tail (full) and its exponential approximation (dashed).

5.2 Statistics of the highest wind speed in a subsample

The results of the comparison of tail models based on the maxima of wind speed
over the subsamples (see Section 3.2) are shown in Figure 16. The pattern is not
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very different from the results for System-4 and SEAS5 data, but for Speedy data,
the GW and log-GW tails appear to fit particularly well in comparison to the 1-
parameter Weibull, exponential and GP tails.

Fig. 16: Gumbel plots of transformed wind speed maxima over 67 subsamples of the Speedy data.
Dashed: standard Gumbel line; dotted: 90% confidence bounds. Transformations are
based on tail fits: GP (red), exponential (magenta), GW (blue), log-GW (black), GW
with shape parameter equal to 0.5 (cyan), and 1-parameter Weibull tail (light blue).
Top/bottom: same/different thresholds for scale and shape estimation.

5.3 Extrapolation from subsamples

Both the top and bottom panels of Figure 17 show that random error is much smaller
than with System-4 or SEAS5 data (Figures 3 and 10); note the different vertical
scales of the plots. This is expected, as subsamples from the Speedy data cover
5700 years, to be compared with 72 and 74 years for subsamples from the System-4
and SEAS5 data. For estimates for very high sample fractions close to 1, the mean
difference is large for all models, which is likely the result of using tail models not
specifically adapted to block maxima (see Section 5.1).

• For the exponential tail, the mean difference is very large; this is related to
the rather light tail of the Speedy data. For the GP and 1-parameter Weibull
tails, large values of the mean difference are obtained.
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Fig. 17: RMS difference (left) and mean difference (right) between subsample-based estimates of
the return value xR of wind speed and a reference estimate from the entire Speedy dataset
as function of the sample fraction p used in the subsample-based estimation. Upper/lower:
same/different thresholds for scale and shape. Tail models: GP (red), exponential (ma-
genta), GW (blue), log-GW (black), GW with shape parameter 0.5 (cyan), 1-parameter
Weibull (light blue). R = 107 years.

• For the GW and log-GW tails with fitted shape parameter, the mean difference
is small and the RMS is low for the larger sample fractions: for these, it makes
little difference whether the shape parameter is estimated, or fixed at the value
of 0.5. The decrease of RMS with sample fraction observed over almost the
entire range of sample fractions indicates that bias is low for this models.

Extrapolations of these results to estimates of worst-case bias in the estimates of
return values are shown in Figure 18. In this case, we need to focus on the black lines
representing worst-case bias from 5700 year subsamples. Note again that vertical
scales are different from those in the plots for System-4 and SEAS5 data.

• For the GP and 1-parameter Weibull tails, bias is large, and of similar order
of magnitude as the large standard error.

• For the exponential tail, bias is very large, in particular when compared to the
low standard error. Confidence bounds based on the standard error are not
valid for this model.
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Fig. 18: Estimates of worst-case bias in the estimates of the return value xR of wind speed from the
full Speedy dataset (blue) and from a 5700-year subsample (black) for estimates based on
the (top left to bottom right) GP tail, exponential tail, GW tail, GW tail with fixed shape
parameter ρ = 0.5, log-GW tail and 1-parameter Weibull tail. Dashed lines: standard
errors of estimates of the return value (same colour codes). Return period R = 107 years.

• For the GW and log-GW tails, bias is small: it remains mostly below 1 m/s.
Also the ratio of bias to standard error remains acceptable for most sample
fractions, in particular for the GW tail.

5.4 Estimates of the 107 year wind speed from the complete
dataset

Of all four tail models, the GW and log-GW tails produce the most stable estimates
of the return value of wind speed from the full set of Speedy annual wind speed
maxima; see Figure 19. Estimates based on the GP and 1-parameter Weibull tails
are more variable, but mostly in the same range. For the exponential tail, the
estimates vary strongly with threshold.
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Fig. 19: Estimates of 107 year wind speed from the complete Speedy dataset. Tails: GP (red),
exponential (magenta), GW (blue), GW with fixed shape ρ = 0.5 (cyan), log-GW (black)
and 1-parameter Weibull (light blue). Left/right: same/different thresholds for scale and
shape.

Fig. 20: As Figure 19, with 90% confidence bounds (dashed). Tails (top left to bottom right): GP,
exponential, GW, GW with fixed shape ρ = 0.5, log-GW, 1-parameter Weibull. Estimates
using different thresholds for scale and shape.
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6 Discussion

Consequences of tail model and sample size The present comparison of esti-
mates of wind speed with a very large return period obtained using different models
of the tail of the distribution function of wind speed provides valuable insight about
the impact of the size of the available dataset and of the choice of model of the tail.

Tables 1-4 summarize median values of worst-case bias (see Section 3.3 and
Appendix A) and standard deviation of estimates of the 107 year wind speed over
selected ranges of thresholds, with sample fractions p as indicated5. Note that
for Speedy, the dataset covers a much longer period of time and consists of annual
maxima, so the p range has an entirely different meaning than for the other datasets.
For estimates based on different thresholds for shape and scale (Tables 3 and 4),
lower sample fractions p were used than for estimates based on identical thresholds
for shape and scale (Tables 1 and 2), because the smallest errors tend occur at lower
p.

A drawback of such summaries is that the error magnitudes listed are not the
best achievable magnitudes for an individual data-set and tail. Therefore, we discuss
general tendencies rather than individual numbers.

Table 4 shows that for estimation of the 107 year wind speed, really accurate
estimates with RMS error of around 1 m/s require an unusually large dataset such
as provided by the ECMWF seasonal ensemble forecast archives. With SEAS5, this
may not be achievable. With approximately 70 years of data, an RMS error of about
2-3 m/s appears to be feasible with the best performing models on System-4 data.
With SEAS5 data, having a less regular tail, this may not be feasible due to bias.

Overall, the best performing model is the GW (Generalized Weibull) tail. Esti-
mates based on the GP (Generalized Pareto) model have consistently higher bias,
and are almost all cases also more variable. Estimates based on an exponential tail
are strongly biased on two of the three datasets; evidently, this one-parameter tail
model lacks flexibility. As a result, confidence intervals based on standard errors
of the exponential tail fit are not reliable. It is not unlikely that the same applies
to the confidence intervals for wind speed in WBI-2017; see Chbab, 2017). The
1-parameter Weibull tail suffers from a similar lack of flexibility, but it performs
considerably better than the exponential tail on two out of three datasets; the RMS
values in tables 2 and 4 are quite good. Estimates with the GW tail are never much
worse than with other tails; for two of the three datasets, they are among the best.
Furthermore, GW tail fits preserve a typical wind-surge relationship much better
than other tails.

The choice of a model of the tail cannot solve all problems in extrapolation: the
tail of the SEAS5 data lacks regularity (see e.g. Figure 12), leading to considerable
bias in estimates for all tail models except the GW tail with shape parameter fixed
to 0.8, a crude “eyeball” estimate from the full sample of SEAS5 data. The latter
exception is good news for the use of datasets of the size of the SEAS5 data, since a
reasonable guess of the shape can be made based on these data. However, if much
shorter records of measurement data are used and the tail is as irregular as the

5 The medians are taken over thresholds exceeded by sample fractions p equidistant on a loga-
rithmic scale.
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Dataset length
[yr]

p range GP EXP GW GW ρ
fixed

log-
GW

Wbl

System-4 72 0.005-0.05 4.3(4.3) 14(1.7) 0.6(4.2) 1.5(1.1) 0.7(5.3) 0.4(1.5)

SEAS5 74 0.005-0.05 3.3(7.5) 4.5(1.6) 1.3(5.4) 0.4(1.3) 1.4(7.8) 6.6(1.4)

Speedy 5700 0.05-0.5 3.3(3.0) 9.3(1.8) 0.6(2.9) 0.6(1.1) 0.6(3.5) 2.5(1.0)

System-4 5760 (0.7-7.0)·10−4 1.6(1.7) 5.8(0.5) 0.1(1.7) 0.6(0.4) 0.1(2.0) 0.1(0.5)

SEAS5 5550 (0.7-7.0)·10−4 1.3(2.5) 1.9(0.6) 0.3(2.3) 0.2(0.5) 0.3(2.8) 2.2(0.6)

Speedy 381900 (0.7-7.0)·10−3 0.8(0.9) 2.6(0.3) 0.1(0.9) 0.2(0.2) 0.1(0.9) 0.5(0.2)

Tab. 1: Worst-case bias and standard deviation (in brackets) of estimates of the 10−7 year wind
speed from (sub)samples of three datasets of different lengths, for five different tail models:
values are medians over the indicated range of sample fraction p, in m/s. Estimates using
identical thresholds for scale and shape.

Dataset length
[yr]

p range GP EXP GW GW ρ
fixed

log-
GW

Wbl

System-4 72 0.005-0.05 6.8(33) 14(49) 4.2(37) 2.0(38) 5.3(36) 1.6(37)

SEAS5 74 0.005-0.05 9.5(37) 4.8(46) 6.0(40) 1.5(41) 8.1(41) 6.7(35)

Speedy 5700 0.05-0.5 4.3(36) 9.5(46) 3.0(39) 1.3(39) 3.5(39) 2.7(35)

System-4 5760 (0.7-7.0)·10−4 2.7(36) 5.8(41) 1.7(37) 0.8(37) 2.0(37) 0.5(37)

SEAS5 5550 (0.7-7.0)·10−4 3.6(40) 2.0(43) 2.4(40) 0.7(41) 2.8(41) 2.3(39)

Speedy 381900 (0.7-7.0)·10−3 1.2(39) 2.6(40) 0.9(39) 0.3(38) 0.9(39) 0.6(37)

Tab. 2: Worst-case root-mean square error and mean value (in brackets) of estimates of the 10−7

year wind speed from (sub)samples of three datasets of different lengths, for five different
tail models: values are medians over the indicated range of sample fraction p, in m/s.
Estimates using identical thresholds for scale and shape.
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Dataset length
[yr]

p range GP EXP GW GW ρ
fixed

log-
GW

Wbl

System-4 72 0.001-0.01 4.7(3.6) 8.7(2.2) 0.4(2.6) 1.1(1.6) 0.5(3.3) 0.5(2.0)

SEAS5 74 0.001-0.01 9.8(5.8) 2.1(2.2) 4.3(3.3) 1.1(1.9) 3.7(4.6) 5.5(2.1)

Speedy 5700 0.01-0.1 2.2(3.0) 4.4(1.6) 0.6(2.0) 0.4(1.1) 0.5(2.3) 1.8(1.0)

System-4 5760 (1.4-14)·10−5 1.6(1.2) 3.6(0.8) 0.1(0.9) 0.4(0.7) 0.1(1.0) 0.2(0.8)

SEAS5 5550 (1.4-14)·10−5 3.6(2.3) 0.9(1.1) 1.0(1.4) 0.5(1.0) 0.9(1.9) 2.0(1.2)

Speedy 381900 (1.5-15)·10−4 0.4(0.7) 1.3(0.5) 0.1(0.5) 0.1(0.4) 0.1(0.5) 0.4(0.4)

Tab. 3: Worst-case bias and standard deviation (in brackets) of estimates of the 10−7 year wind
speed from (sub)samples of three datasets of different lengths, for five different tail models:
values are medians over the indicated range of sample fraction p, in m/s. Estimates using
different thresholds for scale and shape.

Dataset length
[yr]

p-range GP EXP GW GW ρ
fixed

log-
GW

Wbl

System-4 72 0.001-0.01 5.8(32) 8.9(45) 2.7(37) 1.9(38) 3.3(36) 2.0(37)

SEAS5 74 0.001-0.01 11(36) 3.1(44) 5.3(39) 2.3(41) 6.0(40) 6.0(36)

Speedy 5700 0.01-0.1 3.7(36) 4.6(43) 2.1(39) 1.3(39) 2.4(39) 2.1(37)

System-4 5760 (1.4-14)·10−5 1.9(35) 3.7(40) 0.9(37) 0.8(37) 1.0(37) 0.8(37)

SEAS5 5550 (1.4-14)·10−5 4.3(41) 1.7(43) 1.8(42) 1.1(41) 2.1(43) 2.3(40)

Speedy 381900 (1.5-15)·10−4 0.8(38) 1.4(40) 0.5(38) 0.4(38) 0.5(38) 0.6(38)

Tab. 4: Worst-case root-mean square error and mean value (in brackets) of estimates of the 10−7

year wind speed from (sub)samples of three datasets of different lengths, for five different
tail models: values are medians over the indicated range of sample fraction p, in m/s.
Estimates using different thresholds for scale and shape.

SEAS5 tail, poor estimates are expected. Therefore, verification of the regularity
of the tail is essential, in particular when relatively short data records are used to
make estimates for high return periods.

In the latter case, verification of regularity is inherently more difficult than if
a long data record is available. However, it may be done implicitly by applying a
proper method (well-supported by theory) for choosing a threshold for estimation of
the shape parameter: in the case of low regularity, a high threshold (small sample
fraction) is chosen, and the variance of the estimator will be high. By this mecha-
nism, low regularity is automatically reflected in high estimates of uncertainty.

Applicability of GW tail For wind, GW-based estimates of return values are
generally lower than estimates based on the exponential tail, which are positively
biased for the datasets analyzed on the present study. The variance is generally
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higher for a GW tail than for an exponential or 1-parameter Weibull tail, but if the
shape is estimated at a lower threshold than the scale, then the variance is not much
higher.

For the GW, log-GW tail and GP tails estimated with a lower threshold for
shape than for scale, the threshold for shape was determined automatically from
the threshold for scale (see Section B). This is likely to contribute to the relatively
large bias in GW-based estimates of the 107 year wind speed from SEAS5 data: the
tail of the SEAS5 is irregular, so a low threshold for the shape (exceeded by a large
fraction of the sample) leads to large bias.

In such a case, choosing the threshold for the shape based on a plot of the
shape estimate as function of threshold (before estimating the scale parameter and
return values) would be better than automatic selection of the threshold. A method
exists for threshold selection based on the sizes of fluctuations in estimates, using
theoretical results from de Valk & Cai (2018) and an approach similar to Drees
& Kauffman (1998) and Boucheron & Thomas (2015). The consistently low bias
estimates for GW tails with fixed shape indicate that this approach could give better
results than obtained on this study: for each data-set, the fixed shape was in fact
chosen after inspecting plots of the threshold-dependence of the shape estimates and
of the values of a fluctuation size metric.

The results of the present study indicate that the GW tail could provide more
reliable confidence intervals for estimates of return values of wind speed than those
currently employed in flood safety assessment (Chbab, 2017). The return value
estimates presently used (see Chbab (2017), Section 5.4) are based on exponential
tail fits, i.e., a GP tail (7) with γ = 0 (or equivalently, a GW tail (9) with ρ =
1). The present study shows that confidence intervals based on this model are
likely too narrow, and not realistic. Because the exponential tail tends to give a
positive bias in return values, the underestimation of uncertainty may not lead to
underestimation of risk. Fitting a GW tail instead of an exponential tail is expected
to produce less conservative estimates with somewhat wider confidence intervals
(both more realistic); an analysis of wind measurements may show which effect is
more dominant.

The GW tail may also be applicable to other random load variables. For wave pa-
rameters, there is already much experience with fitting of a conditional 2-parameter
Weibull distribution to peaks over thresholds, starting with De Ronde et al (1995);
the GW tail generalizes this and provides a rigorous framework for statistical infer-
ence, with better estimators of return values and their uncertainty, and methods to
assess regularity of the tail and to select a threshold.

For coastal high water level, benefits of the log-GW tail were demonstrated in
de Valk & Cai (2018) in a small case study comparing log-GW to GP estimates (the
latter implemented as the VVM-0 method presented in Dillingh et al (1993 )). In
particular, confidence intervals and fluctuations in estimates were found to be much
smaller for the log-GW tail. Because the tails of high water level along the Dutch
coast are close to exponential tails, the GW tail would most likely perform at least
as well as the log-GW tail. The same may apply to shallow inland waters if wind
has a large impact on the water level.

For precipitation in the Netherlands, GW and log-GW tails appear to provide
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accurate approximations of the tails of rainfall for durations from 10 min up to 9
days. This would extend to river discharge, if not for anomalies in the river discharge
tail due to the water level-dependent water storage capacity upstream. The GRADE
model (Hegnauer et al, 2014) represents these anomalies explicitly, so it is expected
to produce better results than the fit of a regular tail. Possibly, a GW tail might be
useful to extrapolate to very large return periods for which GRADE estimates are
not available, if needed.

Applicability of the 1-parameter Weibull tail and the exponential tail The
1-parameter Weibull tail is less flexible than the (two-parameter) GW tail, but
the performance in terms of RMS in tables 2 and 4 is quite good, due to the low
variance of return value estimates. Its weakness is bias; but bias can be detected,
e.g. from the threshold dependence of estimates of its parameter and of return
values. Therefore, if estimates based on the 1-parameter Weibull tail are stable as
a function of threshold, this tail may be preferred over the more variable estimates
based on the GW tail. However, one should be cautious about the use of confidence
intervals for return values based on the 1-parameter Weibull tail, as variability tends
to be smaller than bias for this tail.

These remarks apply also to the exponential tail, being a one-parameter model.
However, in the present study, stability of parameter or return value estimates based
on the exponential tail was not observed.

Temporal variability An important issue not discussed in this report is the tem-
poral variability of estimates. Preliminary results of an analysis of data of potential
wind speed at Schiphol (not yet reported) indicate that variability on long (multi-
year) time scales affects all tail quantiles by the same time-varying factor. This
factor appears to scale with the root-mean square wind speed. Variability on these
long time scales (e.g. Franzke et al, 2015) is not accounted for in current estimates
of return values of wind speed and their confidence intervals in Chbab (2017), but it
can be a major source of uncertainty. It is different in seasonal forecast data such as
System-4 and SEAS5 than in measurements, if only because the seasonal forecasts
run for less than a year. It would be valuable to develop a reliable method to assess
uncertainty due to variability on long time-scales, and to properly account for it in
estimates derived from measurements as well as in estimates derived from seasonal
forecast data.

Seasonal forecast and climate model data The large size of the difference be-
tween the estimates of the 107 year wind speed from the System-4 and SEAS5
seasonal forecast archives is intriguing, but also worrying: with such a large differ-
ence between the estimates from two generations of the seasonal forecast model, one
may wonder whether these forecast models are mature enough to be used for the
purpose of estimating extreme value statistics. It raises a difficult question: how do
we decide if a weather prediction model is good enough for this purpose?

On the other hand, the problem may not be as big as it seems. Simulated near-
surface wind speed is sensitive to the details of the formulation of air-sea interaction
in the model, but simulated surface stress may be less sensitive. It is known that the
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formulation of air-sea interaction in the two model generations is different. However,
stress of System-4 is not archived, so we cannot make a direct comparison of stress.
Furthermore, stress is not going to solve the problem of low regularity of the SEAS5
tail; a preliminary check showed similar irregularities in estimates of shape parameter
and return values of stress as were found for wind speed in the present study.

One way to compare the models independently of their air-sea interaction formu-
lations is to use their data as forcing of a HARMONIE mesoscale weather prediction
model, for which wind profiles over sea and land have been extensively validated.
In this manner, we might produce reliable wind data while benefitting from the
large size of the seasonal forecast archives. However, this would require a massive
computational effort. It would be more feasible to perform a limited number of
HARMONIE runs, use these to learn more about the nature of bias in the System-4
and SEAS5 stress and wind speed data, and based on these insights, calibrate the
seasonal forecast data.

7 Conclusions and recommendations

Conclusions

1. Accurate estimates of the wind speed with a very high return period, with
root-mean square error in the order of 1-2 m/s, require a large dataset such
as the ECMWF seasonal ensemble forecasts, which effectively cover 5000-6000
years. However, the value of such a dataset for this purpose depends critically
on the size of bias in high wind speeds simulated by the forecast model.

2. Overall, the Generalized Weibull (GW) tail comes out as best for the purpose
of estimating wind speed with very high return periods.

(a) Estimates based on the Generalized Pareto (GP) tail have too high vari-
ance, and for some datasets, relatively large bias.

(b) The exponential tail is positively biased; it gives the largest bias of all tails
on two out of three datasets. This indicates that the estimates based on
the exponential tail currently in use for flood safety assessment (Chbab,
2017) are conservative. Furthermore, confidence intervals of exponential
tail fits are too narrow.

(c) Estimates based on the GW tail are in no case much more biased than
estimates based on other tails, and in two of the three datasets, bias for
the GW tail is much lower. GW tail fits preserve a typical wind-surge
relationship better than other tails. 1-parameter Weibull tails are less
flexible, but may be preferable if estimates are very stable with varying
threshold, indicating low bias.

3. The tails of wind speed of the previous System-4 and the current SEAS5
generations of the ECMWF seasonal forecasts for the position 3E, 55N in the
central North Sea are very different: the tail of SEAS5 data is heavier (closer
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to an exponential tail), but also less regular. This indicates that for high
return periods, estimates of return values of wind speed from at least one of
these models are seriously biased.

4. Ultimately, the achievable accuracy of estimates of return values is limited
by the regularity of the tail. The regularity of the tail can in principle be
accounted for by applying a well-established method for choosing thresholds.
This is essential for obtaining the best possible estimates with realistic con-
fidence intervals, but it is not certain that a proper method for choosing the
threshold is the solution to all problems caused by irregular tails.

Recommendations

1. In order to use seasonal forecast data to determine wind speeds for very high
return periods, it is necessary to find out what causes the observed differences
between the tails of wind speed from the System-4 and SEAS5 datasets, and
find a way to resolve these differences. Running the HARMONIE model forced
by boundary conditions from System-4 and SEAS5 for a number of storms may
provide much additional insight.

2. In the present study, the quantification of bias relies on the assumption of
"second-order regularity" of the tails (see Appendix A). Further analysis should
be carried out to check whether this assumption is justified and/or to provide
an independent check of the conclusions without relying on this assumption.

3. The outcomes of the present study may already be helpful to assess and pos-
sibly improve the return values of wind speed currently in use to assess flood
safety in the Netherlands (Chbab, 2017). The following steps are proposed.

(a) Testing of the GW tail on wind measurements from different sites and
over different periods in order to assess trends (see also (d) below), and
comparison against estimates based on the GP and exponential tails. The
1-parameter Weibull tail may also be included in this comparison.

(b) This should involve checking of tail regularity and a careful choice of
threshold
i. by checking the stability of estimates of the shape parameter and of

return values as functions of the sample fraction used to compute the
estimates;

ii. (preferred) by a rigorous statistical analysis of fluctuations in the
estimates, which helps to distinguish bias from noise.

(c) Uncertainty assessment of wind speed for high return periods: compare
the current practice (uncertainty is derived from the variance of the ex-
ponential tail fits; see Chbab (2017)) to the following alternatives:
i. use the GW tail for return values and confidence intervals;
ii. use the exponential tail for return values and the GW tail (or a

plausible restriction of the GW model, e.g. with shape parameter
ρ ≤ 1) to estimates confidence intervals.



7 Conclusions and recommendations 46

(d) Include interannual variability (see Section 6) in the uncertainty analysis:

i. How strong is the effect of interannual variability on uncertainty?
ii. Can uncertainty be assessed reliably in the presence of interannual

variability?
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Part II. Appendix

A Assessment of bias in quantile estimates

This section explains the method for approximating the ratio (18) , i.e.

E(x̂R,s − xR)

E(x̂R,s − x̂R,f )

with xR the return value for return period R, x̂R,s its estimate from a subsample,
and x̂R,f its estimate from the full sample.

First note that by (5), xR ≈ Q(pR) with pR given by (6). Therefore, the estimates
x̂R,s and x̂R,f are really estimates of the quantile Q(pR) for a fraction of time pR.
Denote the estimate of Q(pR) from a subsample by Q̂2(pR), and the estimate from
the full sample by Q̂1(pR). Then

E(x̂R,s − xR)

E(x̂R,s − x̂R,f )
≈ E(Q̂2(pR)−Q(pR))

E(Q̂2(pR)− Q̂1(pR))
. (20)

The quantile estimates Q̂2(pR), and Q̂1(pR) for the different types of tails are
just the quantile approximations (12), (13), (14), (15) and (16) in Chapter 1, with
all their parameters replaced by estimates. In fact, the expectations EQ̂2(pR) and
EQ̂1(pR) of these quantile estimates look like the quantile approximations in Chapter
1, but contain additional terms representing

1. the deviation between Q and its approximation (a second-order approxima-
tion)

2. if a shape parameter is estimated: a term representing the effect of shape
estimation on the expectation of the quantile estimate.

As in (12), (13), (14), (15) and (16), EQ̂2(pR) and EQ̂1(pR) are functions of pR
and of a threshold probability larger than pR. This threshold probability is larger
for the estimate Q̂2(pR) from a subsample than for the estimate Q̂1(pR) from the
full sample.

In the following sections, approximations are given of the ratio on the right-
hand side of (20), which are determined by the type of tail considered, and by the
threshold probabilities for the estimates Q̂1(pR) and Q̂2(pR). These approximations
take the form of limits obtained by letting pR tend to zero. For simplicity, the
symbol pR will be replaced by the generic symbol p.

A.1 GW tail

The second-order model for the log-GW tail limit (10), (15) as proposed in de Valk
& Cai (2018) (eq. (6) and (9)-(12)) can be translated straightforwardly to the GW
case. Using the terminology of Section 2, define

q(y) := Q(e−y)
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and for every real number α,

hα(λ) :=
1

α
(λα − 1), λ > 0,

to be interpreted as log λ if α = 0.
Assume that (a) q is absolutely continuous with derivative q′ and (b) q′ is regulary

varying (de Haan & Ferreira, 2006): for some positive function ϕ,

lim
y↑∞

q′(yλ)

q′(y)
= ϕ(λ), λ > 0.

Define
f(p) := (− log p)q′(− log p);

then the assumption above implies that for some real number ρ,

lim
p↓0

f(pλ)

f(p)
= λ lim

y↑∞

q′(yλ)

q′(y)
= λρ, λ > 0, (21)

and by integration, we obtain the GW tail limit (14).
Now we strengthen (21) with the following second-order regularity assumption

(cf. (9) in de Valk & Cai (2018) for the log-GW tail limit): for some non-constant
function Ω and some function η satisfying that limp↓0 η(p) = 0,

λ−ρ f(p
λ)

f(p)
− 1

η(p)
= (1 + o(1))Ω(λ) (22)

locally uniformly in λ > 0. This implies that (de Valk & Cai, 2018, Section 2)

lim
p↓0

η(pλ)

η(p)
= λδ(1 + o(1)), λ > 0 (23)

and furthermore, Ω(λ) = hδ(λ) for some δ ≤ 0, and

Q(pλ)−Q(p)

f(p)
= hρ(λ) + (1 + o(1))η(p)Ψρ,δ(λ) (24)

locally uniformly in λ > 0, with

Ψρ,δ(λ) :=
1

δ
(hρ+δ(λ)− hρ(λ))

(for δ = 0 to be interpreted as its limit as δ ↑ 0 ).
Let Q̂i(p) be the estimator of the quantile Q(p) with threshold at an order

statistic exceeded by a fraction p1/λi of the sample (see Appendix B), so the threshold
is approximately Q(p1/λi). By analogy to the log-GW case, we obtain the following
approximations of its expectation EQ̂i(p) from Theorem 3 in de Valk & Cai (2018):

EQ̂i(p) = Q(p1/λi)+f(p1/λi)(hρ(λi)+(1+o(1))Ψρ,0(λi)η(p1/λi)) p ∈ (0, 1), i ∈ {1, 2}.
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From (24):

Q(p) = Q(p1/λi) + f(p1/λi)(hρ(λi) + (1 + o(1))Ψρ,δ(λi)η(p1/λi)),

and combined with the previous,

EQ̂i(p)−Q(p) = f(p1/λi)η(p1/λi)(Ψρ,0(λi)−Ψρ,δ(λi) + o(1)). (25)

This expression shows that the error term

f(p1/λi)Ψρ,δ(λi)η(p1/λi)

in the second-order approximation of Q(p) is partially cancelled by the term

f(p1/λi)Ψρ,0(λi)η(p1/λi),

which represents bias in EQ̂i(p) due to bias in the shape parameter estimator.
Suppose that δ < 0. By (25), (21) and (23), we obtain

EQ̂2(p)−Q(p)

EQ̂1(p)−Q(p)
= (1 + o(1))(λ1/λ2)

ρ+δΨρ,0(λ2)−Ψρ,δ(λ2)

Ψρ,0(λ1)−Ψρ,δ(λ1)

and therefore, the ratio (20) can be approximated for small p by the limit

lim
p↓0

EQ̂1(p)−Q(p)

EQ̂2(p)− EQ̂1(p)
=
(

(λ1/λ2)
ρ+δΨρ,0(λ2)−Ψρ,δ(λ2)

Ψρ,0(λ1)−Ψρ,δ(λ1)
− 1
)−1

. (26)

The ratio (26) increases with increasing δ < 0. It is undetermined if δ = 0,
because the numerator and denominator both vanish in that case. Therefore, we
consider the limit of the right-hand side of (26) as δ ↑0 as an upper bound, which
should be good enough for a crude assessment of worst-case bias.

A.2 log-GW tail

For the log-GW tail limit (10), the second-order model is

λ−θ g(p
λ)

g(p)
− 1

η(p)
= (1 + o(1))hδ(λ)

and
logQ(pλ)− logQ(p)

g(p)
= hθ(λ) + (1 + o(1))η(p)Ψθ,δ(λ)

for some δ ≤ 0 (compare (22) and below).
In this case, assuming again that δ < 0, we obtain in a similar manner,

lim
p↓0

E log Q̂1(p)− logQ(p)

E log Q̂2(p)− E log Q̂1(p)
=
(

(λ1/λ2)
θ+δΨθ,0(λ2)−Ψθ,δ(λ2)

Ψθ,0(λ1)−Ψθ,δ(λ1)
− 1
)−1

. (27)

with θ the log-GW shape parameter as in (10) and δ the second-order shape param-
eter for the log-GW tail limit.

Furthermore, assuming that g in (10) is of bounded increase (which is the case
if a GW tail limit applies, for example), then (26) with ρ replaced by θ ≤ 0 holds.
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A.3 Exponential tail

The exponential tail is a special case of the GW tail (a GW tail with ρ = 1) as well
as of the GP tail (a GP tail with γ = 0). Based on the same second-order model as
in Section A.1 and assuming that δ < 0, we obtain

lim
p↓0

EQ̂1(p)−Q(p)

EQ̂2(p)− EQ̂1(p)
=
(

(λ1/λ2)
1+δΨ1,δ(λ2)

Ψ1,δ(λ1)
− 1
)−1

. (28)

The difference with (26) in the case ρ = 1 is due to the fact that ρ is not estimated
when fitting the exponential tail, so there is no partial cancellation of bias.

A.4 1-parameter Weibull tail

The 1-parameter Weibull tail is a special case of the log-GW tail (with θ = 0). Based
on a second-order model for the log-GW tail (similar to the second-order model for
the GW tail in Section A.1) and assuming that δ < 0, we obtain (as g in (10) is of
bounded increase; see Subsection A.2):

lim
p↓0

EQ̂1(p)−Q(p)

EQ̂2(p)− EQ̂1(p)
= lim

p↓0

E log Q̂1(p)− logQ(p)

E log Q̂2(p)− E log Q̂1(p)
=
(

(λ1/λ2)
δΨ0,δ(λ2)

Ψ0,δ(λ1)
− 1
)−1

.

(29)
As in the case of the exponential tail, there is no partial cancellation of bias

because the shape is not estimated.

A.5 GP tail

Finally, a similar analysis can be made for the GP tail under the assumption that
the GP tail limit applies. From the second-order model for the GP tail limit (7) as
in de Haan & Ferreira (2006) (e.g. Section 2.3):

Q(p) = Q(pξi) + a(pξi)(hγ(ξi) + (1 + o(1))Ψγ,δ(ξi)η(pξi)), ξi > 0.

with a and γ the scale and shape parameter of the GP tail limit, respectively.
A major difference with the previous models is that Q(p) is extrapolated from

Q(pξi) instead of from Q(p1/λi). Setting pξi = p1/λi (i.e., extrapolating from the
same thresholds), we obtain ξi = p1/λi−1. Even for moderate λi > 1, ξi can be a
very large number if p is very small, which is the case we are interested in.

From de Haan & Ferreira (2006) (in particular: eq. (3.4.6), (3.4.7) and the proof
of Theorem 4.3.1), assuming that the second-order parameter of the GP tail limit δ
is negative, we can obtain the following error approximations for the estimator of a
high quantile based on the MLE estimator of the scale and shape parameters of the
GP tail limit:

EQ̂i(p)−Q(p) (30)

= a(pξi)η(pξi)

(
Ψγ,0(ξi)(1 + γ)− hγ(ξi)δ

(1− δ)(1 + γ − δ)
(1 + o(1))−Ψγ,δ(ξi)(1 + o(1))

)
.
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Using the regular variation of a and η, this gives

EQ̂2(p)−Q(p)

EQ̂1(p)−Q(p)

= (1 + o(1))(ξ1/ξ2)
γ+δΨγ,0(ξ2)(1 + γ)− hγ(ξ2)δ −Ψγ,δ(ξ2)(1− δ)(1 + γ − δ) + o(1)

Ψγ,0(ξ1)(1 + γ)− hγ(ξ1)δ −Ψγ,δ(ξ1)(1− δ)(1 + γ − δ) + o(1)

and therefore,

lim
p↓0

EQ̂1(p)−Q(p)

EQ̂2(p)− EQ̂1(p)
(31)

=

(
(ξ1/ξ2)

γ+δΨγ,0(ξ2)(1 + γ)− hγ(ξ2)δ −Ψγ,δ(ξ2)(1− δ)(1 + γ − δ)
Ψγ,0(ξ1)(1 + γ)− hγ(ξ1)δ −Ψγ,δ(ξ1)(1− δ)(1 + γ − δ)

− 1

)−1
.

In our application to the estimation of the 107-year wind speed, ξ1 and ξ2 are
very large numbers. As long as δ < 0, this would not invalidate the analysis above.
Again, for this expression, we only consider the limit upon δ ↑ 0, as a plausible worst
case.
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B Estimators for the log-GW and GW tails

Starting point for estimation of the log-GW and GW tails was the estimator for
the log-GW tail (10) proposed in de Valk & Cai (2018), because the large-sample
behaviour of this estimator has been thoroughly analyzed. The estimator is based
on a second-order tail regularity assumption as in Section A.1. It uses different
thresholds for estimation of the scale and shape parameter, which is necessary to
obtain consistency without assumptions on rate of convergence to the tail limit. The
threshold for the shape parameter is lower (and is therefore exceeded by a larger
number of order statistics) than the threshold for the scale parameter.

In the present study, we used a variant of this estimator. In the notation of de
Valk & Cai (2018), the estimator θ̂kn,n of the shape parameter θ in eq. (19) of de
Valk & Cai (2018) has been modified by replacing γ̂Hi,n by(

ϑi+1,n
1
i

i∑
j=1

hθ̂kn,n(ϑj,n/ϑi+1,n)

)−1
γ̂Hi,n.

This modification is a result of replacing the first approximation of g(ϑi+1,n) by
the second approximation in (17) of de Valk & Cai (2018). It leads to an equation
to be solved for θ̂kn,n. It can be shown that this estimator has the same asymptotic
statistics as the original estimator of de Valk & Cai (2018).

Given the threshold for the scale parameter, the parameter σ > 0 of the estimator
controls the threshold for the shape parameter; see eq. (30) in de Valk & Cai (2018).
A lower value of σ gives a lower threshold for the shape, exceeded by a larger number
of order statistics. This reduces the variance of the shape estimator and the quantile
estimator, but it may increase bias. In the examples in de Valk & Cai (2018), σ = 1
was used. The present study used σ = 2: this gives a somewhat higher variance of
quantile estimates, but it reduces bias when convergence to a tail limit is slow, as
appears to be the case of SEAS5 data (see Section 4.4).

For the GW tail, the same estimator can be used after replacing the data by
their exponents. Because the estimator for the log-GW tail above is an operator on
logarithms of the data, this amount to skipping a logarithmic transformation.

In addition, a modified maximum likelihood estimator (MLE) for the GW and
log-GW tails was implemented and tested. The modification involves estimating the
scale and shape parameter at different thresholds just as in de Valk & Cai (2018): the
MLE’s are computed at both thresholds, and then the scale estimator at the higher
threshold is retained, while the shape parameter estimator at the lower threshold is
retained. Experiments with this modified MLE for the GW and log-GW tails showed
that estimates are almost identical to those of the modified de Valk & Cai (2018)
estimator described above. Therefore, it is a good guess that the asymptotics of this
modified MLE are the same as for the modified de Valk & Cai (2018) estimator. In
the present study, only the latter was used, because its computation is much faster
and its asymptotics are known. The modified MLE has the advantage that it readily
extends to models with the tail depending on covariates such as time, location and
wind direction.
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