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1 INTRODUCTION 

The MERCI proposal was submitted to ESA/ESTEC by the Royal Netherlands 
Meteorological Institute (KNMI), following ESA′s Statement of Work (SoW) FS/0304/PI/pi, 
version 1.1, titled: ″The Impact of Measurement Errors and their Correlation on the Atmospheric 
Dynamics Mission (ADM-Aeolus)″, associated with RfQ 3-9992/01/NL/MM.  

A team consisting of KNMI, DNMI, LMD, MISU, and SMHI has been assembled, supported 
by experts from Météo-France (MF) and by Michael Vaughan. 

This Task 2 report describes the contributions of KNMI and MISU. 

1.1 Reference documents 
The following documents are referenced: 

1 MERCI proposal to ESA 

2 Task 1a report 

3 Task 1b report 

1.2 Accuracy Requirements 
The World Meteorological Organisation (WMO) published documents on the capabilities of 

the current Global Observing System (GOS) and the requirements for improving meteorological 
analyses (WMO, 1996, 1998, 2000).  It is stated in these documents that for wind profile data 
temporal and spatial coverage is lacking in the current GOS and GCOS. Requirements are given 
for quality and quality which have lead to the requirements set for the ADM (see ESA, 1999). 
However, these WMO publications do not provide a clear guidance on the spatial error 
characteristics, whereas, from experience in the application of particularly passive sensor 
satellite observations in numerical meteorological analysis, it is well-known that the spatial error 
characteristics can be of crucial importance. With this in mind a strict error correlation 
requirement has been set for ADM of 0.01 (ESA, 1999).  

The potential users of DWL observations are dealing with error correlation for existing 
observing systems e.g. radiosondes or radar wind profilers. The main requirement is related to 
the accuracy on the knowledge (a priori) of the measurement error covariance matrix that is used 
in the analysis equations for assigning the appropriate weight to observations. A priori means 
before using the observations in the meteorological state analysis, i.e., before any observation 
system is used, its error characteristics are determined as accurately as possible by comparison to 
the meteorological model and to other observation systems. In this way, error properties are 
determined that are often unknown to the instrument experts but essential a priori knowledge for 
the use of the observations (e.g., Stoffelen, 1998, chapters II, III, IV, and Appendix A).  In 
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addition, users can perform calibration if biases are fixed (and unknown), or vary in a known 
way (with undetermined amplitude), for example as a function of orbit phase.  

The horizontal line-of-sight (HLOS) wind observation bias or systematic error is also 
included in the error covariance matrix formalism but is specified to be small (presently bias < 
0.1 m/s; see ESA, 1999). The variances of the random errors (the square of the HLOS wind 
observation accuracy) are represented by the diagonal terms of the error covariance matrices. 
The HLOS wind observation accuracy is specified to be better than 1 m/s between 0 and 2 km 
and better than 2 m/s between 2 and 16 km (cf. Annex A of SoW). 

No requirement to limit correlated errors over altitude bins has been formulated yet but the 
wind observation error must meet the overall requirements under strongly varying signals from 
one bin to the next, as the atmospheric model prescribed to verify the instrument performance 
does include for example a high cirrus cloud. The frequency and distribution of occurrence of 
such cases needs to be investigated further to estimate their relevance on performance. 

1.2.1 Error Correlation 
To study temporal and by consequence spatial correlation of error the following definitions 

are used. Suppose we have a data base defining the true atmospheric state denoted by vector t. t 
contains profiles of relevant atmospheric variables, such as the west-east and north-south wind 
components u and v, cloud liquid water content CLW, aerosol loading, etc..  For example, t 
contains realistic distributions of coherent wind structures.  ALADIN can be characterised by a 
vector l, containing instrument variables such as laser energy E, wavelength λ, telescope 
diameter D, receiver bandwidth B, etc..  An ALADIN observation fi of the LOS wind ti can then 
be characterised by 

iii tf δ+=  (1) 

where 

( lt,ii )δδ =  (2) 

is the error of the observation depending on the atmospheric state and the instrument. For two 
observations i and j we define error covariance by 

( )( ) jijjiiij tftfO δδ=−−=  (3) 

and error correlation by 

jjii

ij
ij OO

O
=ρ  (4) 

For example, suppose a receiver gain bias of 10% by α = 0.1 and 
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such that after assuming that the expected "true" error variabilities δi
t and δj

t , for example 
mainly determined by photon count statistics, are of the same size and uncorrelated as well as 
assuming uniform wind variability, i.e., Oii = Ojj we get 

( ) ji
t

tt
t
ii

ji
ij ≠

++
=       ,

11 222 δα

ρ  (6) 

Note that this correlated error has the spatial structure of the wind field itself through 〈titj〉, i.e., 
the structure of the wind field as sampled by the instrument, and is thus flow dependent. 
Obviously, many other types of error equations exist and we propose here to formulate the most 
relevant ones for ADM. 

It must be strange for an external reader that the first task envisaged here is called "definition 
of the term error correlation". The term is perfectly defined above, but what we are really after is 
the definition of the probability space; in other words, the question is 

ON WHAT TYPES OF MEASUREMENT SAMPLES MUST THIS ERROR CORRELATION 
BE COMPUTED? 

Having stated in the requirements that the ADM winds should not be substantially affected 
by any error correlation, it is obvious that  
1. If the samples used to estimate this correlation are too big (such as involving all the data over 

the whole globe, all seasons, then all air masses, strong jets as well as calm winds, etc...), 
then the above-quoted requirement is likely not stringent enough; but 

2. If the samples used to estimate this correlation are too small (such as only the wind 
measurements obtained in a jet core exceeding 100m/s in 3h on one given day), then this 
correlation requirement is too stringent. 

The second phase of this task includes the definition of some meteorological data samples on 
which the spatial correlation requirement must apply. We propose here to quantify error 
correlation requirements for wind profiles on given atmospheric data sets t. 

What should be definitely avoided are errors that are very dependent on the flow or the air-
mass. These would lead to non-negligible error correlation on measurement samples covering 
typically atmospheric volumes 1000km x 1000km x 5km (orders of magnitudes). If we have for 
example a jet-stream whose size is around 2000km x 300km x 1km, and if all the wind 
measurements in this jet are underestimated by a few m/s when the flow is higher than 30m/s, 
this is quite unacceptable. This is the typical "old" cloud motion wind observation problem. On 
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the other hand, if the same problem occurs only above 100m/s, leading to 3 ALADIN 
measurements (close to each other) to have the same observational error of -2m/s (-2% then), 
then this is quite acceptable even if it may lead to a 100% error correlation when computed on 
such small sample size.  

Calibration problems can be very detrimental. For example, using ERS scatterometer wind 
data, ECMWF at some point changed their boundary layer winds such that ERS was biased 10% 
low. Then they noticed negative impacts from the ERS winds. After taking away this 10% 
difference the ERS wind impacts became positive again. In case of the ERS scatterometer we can 
take away these 10% because the instrument is (very) stable in time. If the number (10%) would 
vary along an orbit in an unpredictable way then we are really lost and are exposed to negative 
impacts all the time! See also equation (6). 

The ERS calibration problem above is an example of a flow-dependent error. Similarly for 
ALADIN, if the true component wind distribution has a standard deviation of 20 m/s, then a 
receiver gain bias of 10% results in an expected 2 m/s uncertainty. It appears as a spatially 
coherent error since the atmospheric flow itself is correlated on scales of several hundreds of km 
horizontally and typically a km vertically. As mentioned, such errors really can destroy the 
capability to measure realistic atmospheric wind variability.  

However, note that in equation (6) 〈titj〉 is only non-zero if the locations i and j are closeby; 
over a global set of winds 〈titj〉 ≅ 0 and no apparent calibration problem will be noted over such 
a data set, even though the instrument may be useless. 

We propose to perform parametric instrument simulations to understand how the ALADIN 
measurements and their processing would react on various types of air-masses and atmospheric 
flows.  In other words, we will effectively vary the instrument vector l for a to be determined 
relevant set of atmospheric scenarios t, in order to assess compatibility with the wind profile 
observation error structure requirements. This will allow ESA to refine the ALADIN instrument 
requirements on temporal error correlation. 

 

1.2.3 Observations and Measurements and their Errors 
In the case of ALADIN up to 50 pulses are accumulated on the detector for each 

measurement and are down-linked. These determine the wind measurement signal and noise 
characteristics for a particular altitude bin resolved by range-gating. These Doppler shift 
measurements will then be integrated by an on-ground processing scheme to result in a wind 
observation over 50 km. This means, that, on average, 10 or more measurements are combined 
on-ground to obtain one observation. Two subsequent wind observations are separated by 200 
km in accordance with the observational requirements as summarised in Table A.1 of Annex A 
of the RfQ SoW. 

Figure 1 provides an example of such sampling using the LITE UV backscatter lidar. It is 
clear that due to the ADM sampling information on relevant atmospheric properties is lost. It is 
worthwhile to investigate the associated error properties of the DWL profile measurements and 
observations.  
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The backscatter over the altitude range of interest (26 km) from an individual laser pulse is 

received within 200 µs. Two adjacent range gates of this pulse are about 3 µs apart. Over these 
time scales, the thermal environment is assumed to be stable. Also pointing variations of the 
spacecraft are expected to be negligible. Thus the only effects leading to an error correlation in a 
backscatter signal result from effects in the receiver chain. On the Rayleigh and Mie receiver 
chains the signal is accumulated in each altitude bin over a period of up to 0.5 s.  

During the on-board accumulation, time errors in sampling the backscattered light can lead to 
error correlation between various altitude bins. This effect can be controlled by instrument 
design. In particular, the orbit altitude can vary during a wind observation by over 100 m, which 
could lead to some correlation of wind errors over adjacent altitude bins. In a common wind 
shear case of 4 m/s per km, this would lead to an error correlation of 0.4 m/s between 
neighbouring height levels. Note that such error is flow (shear) dependent. As such, this altitude 
variation must be compensated for by ADM. RMS geometric height assignment is required to be 
below 50 m (see Annex A of RfQ SoW).  

The receiver chain may exhibit radiometric and spectral impurities or uncertainties that could 
give rise to spatially correlated measurement error when these artefacts appear over periods 
longer than 10 µs (vertical) or 0.5 s (horizontal). 

Longer-term correlation resulting from temperature drifts induces zero-wind bias and gain 
errors. This bias has been tentatively specified to stay below 0.1 m/s over the time between two 
zero-wind calibrations. Gain stability has not been specified yet, and gain drifts have so far only 
been considered as a term in the overall velocity accuracy budget. We note that gain drifts affect 
the observation of the vertical wind shear (variability) in the same way as they affect the wind 
itself (from equation 5). Wind shear is one of the major causes of instability in the atmosphere. It 
may be clear that a systematically wrong observation of shear could cause the lidar data to 
detrimentally affect atmospheric analysis. We therefore propose to specifically address wind 
shear observation performance in this study. 

Gain stability is the parameter that industry understands very well, and that the users can 
translate into an uncertainty of measuring certain particular wind variabilities, such as jets. In 
fact, we just need gain prediction accuracy within the total HLOS error of 2-3 m/s up to 100 m/s. 
At 100 m/s we may for instance allow half the error to be systematic (gain). The gain knowledge 
should then be about 1%. We propose to further study these numbers.  
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Figure 1: LITE UV backscatter measurements at full resolution (left) and at a resolution 
compatible with the ADM (right) measurements over a period of about 10 s. Cloud and aerosol 
structure that modulate the ADM signal are clearly lost by the ADM sampling giving rise to 
uncertainty in the interpretation, e.g., signal height assignment. 

 

1.2.4 Atmosphere 
The atmospheric frequency response is a convolution of the backscatter profile and the LOS 

speed of the air mass over a range gate. Atmospheric stratification will result in a mean signal 
height different from the geometric mean height. This difference or error can be correlated 
between neighbouring measurements when an aerosol or cloud layer extends over more than one 
range gate (e.g., see figure 1). Similarly, during the on-board accumulation, a change of the 
altitude of scattering layers can lead to error correlation between neighbouring altitude bins.  

Another effect obvious from figure 1 is the change of height of aerosol layers from one 
measurement to its neighbour. If wind variability patterns are associated to these changes in 
aerosol stratification then errors in height assignment of such neighbouring measurements may 
be correlated horizontally, but at the same time vertically. Note that both mentioned height 
assignment problems are probably most acute for the Mie channel return, but that it could also 
cause problems in the Rayleigh channel due to associated variations in the transmission profile.  
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These effects are dependent on the meteorological scene and the magnitude and frequency of 

occurrence need to be assessed in more detail using numerical performance simulations in this 
study. In a preliminary assessment Lorenc et al (1992) concluded that the spatial wind variability 
over vertical scales of 1 km and smaller is generally much less than the spatial wind variability 
over horizontal scales smaller than 50 km. This would indicate that vertical stratification 
problems are of less relevance than the atmospheric variability in the horizontal.  

In for example clear air turbulence or orographic wave activity more extreme atmospheric 
variabilities are expected (Lorenc et al, 1992), but it is anticipated that such cases can be 
identified in the DWL measurements and quality control rejection may be applied. This 
hypothesis needs to be checked carefully. 

Coherent structure in atmospheric variability may be particularly pronounced in the presence 
of clouds. At the same time, our knowledge about the circulation in cloudy regions is generally 
the most limited and any observation is welcome to improve our knowledge. Investigation of the 
detailed microphysical structures around clouds is clearly beyond the scope of this study. What 
we propose is to investigate the consequences of the increased signal variability in scenes with 
clouds in terms of reduced accuracy and anticipated error structure. 

1.3 Evaluation of Tasks 1a and 1b 
Task 1a briefly describes the potential errors and its correlation related to the platform, 

instrument, and atmospheric conditions, of the ADM observations. Possible scenarii of error are 
summarised. These will be further considered here. 

Task 1b provides an overview of the experience and practise in the NWP community with 
respect to detrimental effects with respect to observation error and error correlation. An equation 
is provided to analyse the effects of unknown observation error. Error correlation in the vertical 
on the km scale and horizontal error correlation on the synoptic scale seem most damaging. 
Meteorological cases that are critical to forecast due to a lack of observations are provided for 
reference. Conclusions are: 

• Much experience exists with respect to correlated observations, and in particular errors 
on the synoptic scale in the horizontal and km-scale in the vertical are known to be 
detrimental; these detrimental effects of correlated data are supported by theoretical 
computations; 

• If the nature of the bias is known, bias correction or data thinning are effective means to 
limit detrimental effects; 

• So-called randomly correlated observation errors are most damaging; theoretical 
evidence shows that due to such errors information on atmospheric spatial structures is 
lost; 

• Critical cases present usually air masses with strong space and time variations, where the 
model forecasts are very sensitive to the initial state (analysis). A lists of such cases has 
been provided. 
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In task 2, we take the suggested scenarios from Task 1a and the analysis of Task 1b in order 

to design a parametric simulation and analysis tool for studying the possible detrimental effects 
of errors on the ADM-Aeolus mission objective of providing accurate wind field analyses. 
Suitable data bases are constructed in order to investigate several error scenarii. 

2 Performance Analysis Tool and Data Bases 

2.1 Performance Analysis Tool 
Task 2a of the Measurement ERror Correlation Impact (MERCI) study includes the 

definition of a simulation tool to simulate realistic horizontal line-of-sight (HLOS) wind 
observation errors and a scheme to analyse observation error structures (correlations). In Task 3 
this scheme is implemented, tested, and these structures are further analysed to assess their 
possible detrimental effects on meteorological analyses. 

Part of the LIdar Performance Analysis Simulation (LIPAS) tool developed at KNMI 
(Veldman, 1999), that simulates the performance of the ADM phase-A Doppler wind lidar 
(DWL), will serve as the basis for simulating observation error structures. The main components 
of LIPAS are shortly outlined in the next section. Limitations of LIPAS and modifications are 
discussed in section 1.3. A scheme to analyse observation errors as produced by the updated 
LIPAS tool is discussed in section 1.4. 

2.1.1 LIPAS 
The LIdar Performance Analysis Simulation (LIPAS) tool has been developed by KNMI and 

NLR (National Aerospace Laboratory) to simulate the expected performance of a DWL attached 
on the International Space Station. KNMI participation included all aspects of the phase-A DWL 
(ESA, 1999), i.e. emission of laser light, interaction of emitted laser with atmospheric particles, 
detection of the backscattered light and post-processing to retrieve HLOS wind components. The 
software was written in FORTRAN77 and can be executed independently from the advanced 
simulation tool developed at NLR.   

The simulator includes realistic atmospheric conditions, including winds, clouds and 
humidity from the ECMWF OSSE database nature run (Stoffelen, 1994) and temperature and air 
density profiles from a climatological database. Aerosol (cloud) backscatter and extinction at 
0.355 micron laser wavelength are derived from statistics of aerosol backscatter at 10.6 micron, 
as obtained from measurement extensive campaigns in the Atlantic around 1990, and by using a 
backscatter scaling law (Vaughan, 1998). LIPAS will be extended to incorporate additional 
atmospheric databases as provided by the user. 

LIPAS includes the lidar concept as proposed in Phase-A. It includes the Mie multi-channel 
technique to retrieve HLOS wind velocities from detected light backscattered from aerosols and 
the Double-edge technique to retrieve winds from molecular returns. Signal accumulation over a 
distance of 3.5 km (i.e. 0.5 seconds or 50 shots) has been implemented. A single observation is 
retrieved from 14 accumulations. For non-cloudy profiles the accumulations are simply 
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averaged. In cloudy scenes, a number of accumulations contain cloud, depending on cloud cover 
and by using a random number generator. These accumulations are processed separately. LIPAS 
includes the ECMWF cloud overlap model to simulate cloud cover in adjacent atmospheric 
layers. 

The output of LIPAS is a profile of HLOS winds and random error characteristics, ranging 
from the surface up to 20 km altitude with 1 km resolution. The random error is a superposition 
of instrument and representativeness errors that are both modeled as Gaussian distributions. 
Instrument errors are closely related to the SNR of the detected signal on the instrument receiver 
and processing steps to retrieve the frequency shift and HLOS wind velocity component. A fixed 
profile of representativeness errors as a function of pressure level (Lorenc, 1992) has been 
implemented in LIPAS. 

2.1.2 LIPAS update 
LIPAS ignores horizontal aerosol backscatter variability within an observation. Moreover, a 

uniform aerosol distribution within a range gate is assumed. LIPAS is updated to include aerosol 
backscatter variations both in the horizontal and vertical. Results from the LITE4ADM project, 
running parallel with MERCI at KNMI, and aiming at aerosol backscatter retrieval from the 
LITE database will be used to study effects of spatial aerosol variability. 

HLOS wind profile resolution has been constrained to 1 km. LIPAS will be updated to 
become more flexible for user-specified resolutions. 

The error formulation of Task 1a, Eq. (1.13) will be adopted in LIPAS. Initially, we will 
focus on some of the proposed error scenarios, i.e. i) the simple velocity dependent bias, linear 
and quadratic, to study gain biases, ii) the simple orbit bias, assuming a higher harmonic orbit 
variation and iii) vertical shifts of the complete profile due to errors in the range gate 
localisation. 

2.1.3 Wind Representativeness Errors  
The updated LIPAS must be able to analyse HLOS wind error structures for typical 

meteorological cases. The input will be a characterization of the atmospheric conditions as a 
sample of profiles of wind, temperature, specific humidity, cloud cover, cloud liquid water/ice 
content and aerosol backscatter. These profiles are provided at a user specified resolution and 
interpolated inside LIPAS to ADM resolution. Next, LIPAS simulates sampling of the 
atmosphere by the ADM-DWL. For each sample input, the output of LIPAS will be a “true” 
HLOS wind profile, from the “true” input wind profile, and a HLOS wind profile including 
additional errors. The sample of true and measured HLOS wind profiles are archived and will 
serve as input for task 3 to identify structures (correlations) in the error statistics.  

The next subsection provides a theoretical discussion on HLOS wind observation error as 
implemented in LIPAS. As an example it describes the computation of error correlations from 
LIPAS output by means of a statistical analysis in case of aerosol stratification. 
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2.1.3.1 HLOS wind observation error 

We consider the wind inside a grid box, the wind at laser shot location and the wind as 
observed by a lidar 

 
1. True wind in grid box 
 
WT = (uT,vT,wT) : true 3-D wind in grid box 
 

),,( TTTT wvuW =  : mean wind vector in grid box 
 

 ∫=
box grid

),,(1 dVzyxu
V

u TT  

 ∫=
box grid

),,(1 dVzyxv
V

v TT  

 ∫=
box grid

),,(1 dVzyxw
V

w TT  

 
For the mean true HLOS wind component, wT

HLOS in the grid box we then have 
 

)cos()sin(HLOS ψψ TT
T vuw −−=  (7) 

 
with ψ the azimuth angle, i.e. the angle (clockwise) between the laser beam direction  and the 
geographical North. The ADM lidar aims at measuring this meteorological wind parameter. 
 
2. True wind at laser shot location 
 
WL = (uL,vL,wL) : true local 3-D wind at shot location 
 
The measured LOS wind component by the instrument, wL

LOS, is the projection of the true local 
wind vector on the laser beam direction. This component may be split in two parts. 
 

[ )sin()cos()sin(
hLOS θψψ LL

L vuw −−= ]  :  the projection of the horizontal wind along the laser 
LOS 

)cos(
vLOS θL

L ww =  : the projection of the vertical wind component along 
the laser LOS 

 
with θ  the local incidence angle. 
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LLL www
vh LOSLOSLOS +=  : measured LOS wind component 

 
The projection of the measured LOS wind component onto the horizontal plane provides the 
horizontal line-of-sight wind component, wL

HLOS : 
 

[ ]
)sin(

)cos()sin()cos()sin(
)/sin(LOSHLOS

θ
θθψψ

θ

LLL

LL

wvu
ww

+−−
=

=
 (8) 

 
The difference between wL

HLOS and wT
HLOS is the sum of the representativeness error, which 

corresponds to the wind variability within the grid box, and the error due to ignoring the vertical 
wind. 

Note: LIPAS will be updated to include HLOS wind errors due to vertical wind. 
 
3. Retrieved wind by DWL 
 

The atmospheric return signal from a range gate of length R is integrated on the instrument. 
The wind velocity and aerosol backscatter distribution will in general not be uniformly 
distributed within the range gate. 
 
βa(L,z) : aerosol backscatter profile at shot location as a function of altitude z 
 
The retrieved wind velocity for a particular range gate, indicated with superscript m, is related to 
the mean frequency shift of all photons detected due to the backscattered signal from within that 
range gate.  Mathematically, the retrieved HLOS wind velocity is a weighted average of the 
HLOS wind velocity profile and the aerosol density profile: 
 

∫

∫
=

R
a

R

l
a

m

dzzL

dzzwzL
R

w
),(

)(),(1
HLOS

HLOS β

β
 (9) 

 
Example 

For uniform aerosol backscatter βa(L,z) ≡ βa, we have for the retrieved HLOS wind 
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HLOS
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dzzw
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w

=

=

=

∫

∫

)(1

)(1

β

β

 (10) 

 
i.e. the range gate mean HLOS wind component at laser shot location. 

_ 

 

Generally, aerosol backscatter will not be uniformly distributed within a range gate causing 
an error since the retrieved HLOS wind velocity component at the laser shot location expressed 
in Eq. (10) will differ from the mean HLOS wind velocity on the right hand side. 

 

Note: LIPAS will be updated to include non-uniform aerosol backscatter. 
 
4. Shot accumulation 
 

In the ADM concept, the atmospheric return signals from N laser shots are accumulated on 
the instrument receiver. Instrumental errors, denoted ε, give an error on the retrieved horizontal 
LOS wind, wHLOS. 
 

)(sin
)(1

1
HLOSHLOS θ

ε
+= ∑

=

iw
N

w
N

i

m  (11) 

 
LIPAS assumes Gaussian distributed random instrument errors with standard deviation 
determined by the SNR of the detected signal and post-processing algorithms to retrieve the 
HLOS wind velocity. 

A HLOS wind observation, wo
HLOS is retrieved from K accumulations: 

 

∑
= 








+=
K

k

kkw
K

w
1

HLOS
o
HLOS )sin(

)()(1
θ

ε  (12) 

 
Finally, the HLOS wind observation error, ε0, equals 
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oT ww HLOSHLOS0 −=ε  (13) 

 
Example 

• Assume zero vertical wind velocity in the grid box, w ≡ 0. 
• Assume uniform aerosol backscatter inside the grid box, βa(L,z) ≡ βa. 

We then have from (10), (11) and (8) using w ≡ wL ≡ 0 
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with the hats denoting that the winds have been averaged over the accumulation length. Next, for 
wo

HLOS we have from (12) 
 

[ ] ∑
=

+−−=
K

k

o k
K

vuw
1

HLOS )(
)sin(

1)cos(~)sin(~ ε
θ

ψψ  (15) 

 
with the wiggles denoting wind velocity averaging over accumulations. For the HLOS wind 
observation error, using (13) and (7) we then have 
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The first term is the representativeness error, the second term denotes the instrument error. 

_ 

Equation (10) is the status of HLOS wind error computation in LIPAS before the proposed 
update. The instrument error, ε, is a function of the SNR of the detected signal on the telescope 
receiver and inaccuracies in the post-processing step to retrieve the LOS wind from the detected 
signal. In LIPAS, a fixed profile of representativeness errors as a function of pressure level has 
been implemented (Lorenc, 1992). Both instrument and representativeness errors are assumed 
Gaussian. 

To quantify expected error correlations using LIPAS in Task 3, we need a more realistic 
description of the instrument errors, making use of Task 1a output and realistic non-uniform 
aerosol backscatter distributions. The latter may be obtained from the MISU study to retrieve 
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aerosol backscatter from humidity profiles, Task 2b, and also, results from the LITE4ADM 
project can be used. Output from the mesoscale variability study in Task 2b is required to better 
quantify representativeness errors for the particular case under study. 

LIPAS will be applied to samples of user-supplied atmospheric profiles. Vertical error 
correlations will be quantified in Task 3b from a statistical analysis of errors in the true HLOS 
winds and HLOS winds with additional errors. These error profiles are denoted ε0 and error 
correlations are computed using the well-known equation 
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with brackets denoting the expected value over a large number of realizations. Similarly, 
horizontal error correlation, i.e., for two wind observation profiles a multiple of 200 km 
separated, we will compute horizontal error correlation by applying this equation on different 
vertical levels. 

2.1.4 Error structure analysis 
Errors in the receiver gain are flow dependent and hence imply error correlation associated 

with flow structures. These errors are of great concern for the assimilation, since these may 
introduce erroneous structures in the analyses and thus in the subsequent forecasts. Here we 
provide some preliminary guidance of the error structure analysis to be performed in task 3. 

In order to investigate simulated error characteristics for the database each wind observation, 
Uobs, is considered to be determined by a general transfer function of the true wind, Utrue, and the 
assumed errors on the following form (task 1a) 
 
 U . ..U U Uobs bias g true g true g true= + + ⋅ + ⋅ + ⋅ε ε ε ε( )1 1 2

2
3

3 , (17) 

where εbias is a constant or flow-independently varying bias error and the εgX coefficients 
represent flow-dependent gain errors of power X. An example of (17) for which we assumed a 
normally distributed random bias error, εbias, with a mean value of -1 ms-1 and a variance value 
of 1 m2s-2, a constant linear gain error, εg1, of -3% and a constant quadric gain error, εg2, of -0.3% 
is shown in Fig. 2. 

14 



 
Merci   Task 2 report MISU 

 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

u
true

 [ms−1]

u ob
s.

 [m
s−

1 ]

 
 
Figure 2. Schematic relation between the true, utrue (dashed line), and the observed, uobs. (solid 
line), wind velocity. In this example a normally distributed random bias error, εbias, with a mean 
value of –1 ms-1 and a variance of 1 m2s-2, a constant linear gain error, εg1, of -3% and a 
constant quadric gain error, εg2, of -0.3% was assumed. 
 

Different error characteristics were applied to the data set according to (17) and the threshold 
shear values were chosen such that large enough numbers of profiles and cross sections were 
extracted for the error statistics to converge. Figure 3 shows the mean and RMS errors integrated 
over all heights, as functions of the number of individual measurements. A constant linear gain 
error, εg1, of 1% was assumed. The data set shown here consists of rawinsonde data from the 
month of January for a period of three years (1995-1997) and is characterized by profiles holding 
values of shear exceeding 1.9⋅10-2 s-1. From the figure it is clear that the number of 
measurements required for the errors to converge to an accuracy of 3% is about 103, i.e., √n, with 
n = 1000. In the case of the observations, the average number of measurements per sounding that 
pass the quality control (Håkansson 2001) is about 10, and consequently each subset requires 
~102 soundings in order to describe accurate error statistics.  

The height dependence of the error correlation was determined by storing error correlation 
values in height bins corresponding to the range gates of the ADM. In doing so, the mean height 
of each combination of pairs of measurements within a profile determines in which bin the error 
correlation value was to be stored. Range-gate averages of error correlation were then estimated. 
A similar approach was utilized for the determination of the dependence of the correlation on the 
vertical distance between measurements within a profile. For a given set of error coefficients, the 
error correlation may hence be considered a two-dimensional function of correlation mean height 
and correlation distance. 
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Figure 3. Mean and RMS errors as functions of sample size. A constant linear gain error, εg1, of 
1% was assumed. 
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Figure 4. Error-correlation characteristics. (a) Vertical dependence. Mean error correlation 
(solid line) and number of observations for the respective height intervals (dashed line). (b) 
Dependence on distance between observations at heights between 8.5-13.5 km. Mean error 
correlation (solid line) and number of observations for the respective distance intervals (dashed 
line). A constant linear gain error, εg1, of 1% was assumed. 
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Error correlation characteristics for the set mentioned above are shown in Fig. 4. A constant 

linear gain error, εg1, of 1% was assumed. In Fig. 4 (a) the height dependence of the resulting 
error correlation and the distribution of correlated pairs are shown. The dependence of the 
correlation on the distance between two heights with a resolution of 2 km, together with the 
corresponding distribution of correlated pairs is displayed in Fig. 4 (b). The correlations of pairs 
with mean heights in the range 8.5-13.5 km are considered. 

It is clear that under the assumption of an otherwise perfect instrument, even small gain 
errors will lead to significantly correlated wind observation errors. Under such circumstances 
error covariances contain more information as they provide measures of the magnitude of the 
error. In fact, the correlation between errors may be decreased were another independent gain or 
bias error to be included in the observation. The RMS error of the observation would however 
increase correspondingly. These effects are shown in Fig. 5 and 6. 
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Figure 5. As in Fig. 3, although a normally distributed random bias error εbias with zero mean 
and a variance of 1m2s-1 was also incorporated in the total error description. 
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Figure 6. As in Fig. 4, although a normally distributed random bias error, εbias, with zero mean 
and a variance of 1m2s-1 was also incorporated in the total error. 
 

From Fig. 4 (a) it is clear that the error correlations assume values close to unity throughout 
the atmosphere when the errors are linearly dependent on the wind velocity alone. The flow 
dependence of the correlations is manifested as a weak “bulge” centered around ~12 km where 
the mean wind velocity, and hence the mean measurement error, have local maxima (Håkansson 
2001). At z=1.25 km the correlation assumes the value of unity as there is only one pair of 
measurements representing that height. The negative slope of the correlation curve in Fig. 4 (b) 
implies that as the distance between two measurements increases, their mutual dependence 
decreases. Similar patterns appear, for the same reasons in Fig. 6, although the curves indicate 
much weaker correlations because of the inclusion of a random bias error. 

2.2 Data Bases 
Data bases of geophysical variables are needed, but are not always available. Here, we 

consider information on mesoscale wind variability and on aerosol distribution that help us 
define appropriate data bases for use in MERCI. 

2.2.1 Mesoscale Wind Variability 
A characteristic of the ADM is that each slant column of observations consists of the 

detected backscatter from a number (700) of laser shots. These shots/detections are performed 
during periods of about 7 seconds which, given the horizontal speed with which the satellite 
travels, correspond to horizontal distances of 50 km. The process is repeated every 200 km, the 
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observations thus represent 50-km averages of the HLOS winds separated by 200 km. In order to 
estimate the representativeness of such observed averages, a literature study on mesoscale wind 
variability has been performed.  

Nastrom and Fritts (1992) and Fritts and Nastrom (1992) have investigated aircraft 
measurements of wind and temperature data collected during the Global Atmospheric Sampling 
Program (GASP) in search for sources of enhancement in mesoscale variability. Their attention 
was focused on estimating mesoscale variances and spectra over two lengths of flight segment, 
64 and 256 km respectively, which make the study interesting for our purposes. All data were 
recorded with a horizontal resolution of ~1 km and at heights exceeding 6 km. It was shown that 
topographic features, jet streams, frontal and convective systems are primary sources for 
variability over both length scales. Extreme variances of the order 10 m2s-2 were occasionally 
encountered over marked topography and in the vicinity of jet streams and frontal zones (Fig. 7), 
whereas mean variances for these types of features were about 5 m2s-2 (Fig. 8). The observed 
variances correspond to variations in wind velocity which are in the range, or even exceed the 
required accuracy of the ADM. (The 2-3 ms-1 accuracy required for the ADM corresponds to 
allowable variances in the range 4-9 m2s-2.) 

 
 
Figure 7. GASP observations showing 64 km variances of u, v and θ, taken from ~54oW to 5oE 
on February 22, 1979. (From Fritts and Nastrom (1992).) 
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Figure 8. Mean variances of u, v and θ for various sources. (From Fritts and Nastrom (1992).)  
 

The wind statistics study (Håkansson 2001) shows, considering the magnitude of the relative 
vorticity field and the horizontal integration length of the ADM, that in extreme cases an 
observation may be composed of measurements with a variability range of 50 ms-1. It is also 
shown that the same range of variability may occur vertically within one range gate. It is clear 
that the ADM DWL can not provide meaningful observations in such cases. In fact, 
meteorological data assimilation systems usually reject observations in cases with extreme 
variability, since no useful representative interpretation of the observations in terms of analysis 
variables can be made (see eq. 16). 

2.2.2 Influence of Humidity on Aerosol Scattering Properties 
The response of the ADM is highly dependent on the atmospheric extinction of light, which 

in turn is a function of the aerosol distribution. It is thus of interest to study the performance of 
the instrument for realistic distributions of the aerosol field. However, collocated observed and 
modelled profiles of aerosol- and wind distributions are rare. Nevertheless, the characteristics of 
the aerosol field are to a significant degree determined by the presence of humidity in the 
atmosphere. The degree of hygroscopicity (Fig. 9) of the aerosol results in an increase in particle 
size and hence mass, given an increase in relative humidity, RH, which in turn leads to an 
enhancement of the aerosol’s ability to extinct light. The increase in the extinction coefficient σe, 
generally implies enhanced aerosol scattering as determined by an increase of the scatter 
coefficient σsp.  
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Figure 9. Schematic diagram of the sub-micrometer particle hygroscopic behaviour observed in 
clean air masses during the second Aerosol Characterization Experiment (ACE-2). The more-
hygroscopic particle was observed at all times, whereas the concentrations of particles 
originating from local pollution and sea-spray varied considerably with time. (From Swietlicki et 
al. (2000).)  
 

The dependence of σsp on RH is given by  
 
 ( )σ σ γ

sp spdRH RH( ) = ⋅ − −1 100 , (18) 

where σspd is the scatter coefficient of the aerosol in a dry environment (Gassó et al. 2000). The 
dependence of σsp on RH is commonly displayed as the ratio F(RH)=σsp(RH)/σspd (Ten Brink et 
al. 1996) from which the parameter γ may be determined by means of curve fitting (Fig. 10). 
Vertical profiles of γ were derived by Gassó et al. (2000), an example of which is shown in Fig. 
11. 
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Figure 10. Plots of F(RH) versus RH for (a) a clean marine air sample (RH~82%) taken during 
ACE-1 and (b) a polluted air sample (RH=75%) taken during ACE-2. The “Ο” and the “+” 
symbols respectively correspond to increasing and decreasing RH scans of the same aerosol 
sample. (From Gassó et al. (2000).) 

 
 

 
 
Figure 11. Vertical profiles of (a) γ and (b) derived ambient scatter coefficient, σsp (×10-6 m-1), 
and RH during ACE-2. (From Gassó et al. (2000).) 
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Figure 12. Hemispheric backscatter fraction b=σbsp/σsp as a function of RH, particle size and 
wavelength for polluted periods during ACE-2. (From Carrico et al. (2000).) 

 
From the figures it is clear that the humidity field has significant impact on the optical 

properties of the aerosol as the coefficient σsp at RH~90% assumes values about 3 times that of 
σspd. The magnitude of the backscatter coefficient σbsp amounts to only about 10% of that of σsp 
(Carrico et al. 2000), however the relative impact of RH remains about the same (Fig. 12). While 
dependent on aerosol particle size distribution and the wavelength of the transmitted light, these 
effects only offset the variability of the aerosol’s properties as determined by the humidity field. 

On assuming realistic general particle size distributions of the aerosol, the relative humidity 
field as derived from observations and analyses, may be used in the simulation of effects of 
atmospheric extinction due to aerosol. One such realizaton is the frequently observed log-normal 
distribution (Quinn et al. 2000, Bates et al. 2000, Van Dingenen 2000, Collins et al. 2000, 
Flamant et al. 2000) exemplified in Fig. 13. The distribution may then be modified by the RH 
field to form a simulation of the aerosol effects in points collocated with those of the wind field. 
The resulting fields may serve as input to LIPAS. As the Rayliegh channel of the instrument 
measures molecular scatter, the assumptions should be utilized for the Mie channel only. 
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Figure 13. Particle size distribution in the marine atmospheric boundary layer as measured by 
various ship-mount instruments. Solid line corresponds to the best fit obtained with a modeled 
size distribution. (From Flamant et al. (2000).) 
 

It is of importance to keep in mind that the variability in aerosol distribution may however be 
different from that of RH, for example in the case of pollution- or Saharan dust episodes in which 
no significant correlation between the two fields is discernible (Schmid et al. 2000).    

2.2.3 Data Base Construction 
The LIPAS modifications and error analyses can be applied to e.g. i) the typical cases of 

interest in Task 1b, ii) interesting cases found in the MISU derived database on atmospheric 
wind statistics or iii) LITE data collocated with ECMWF analysis fields. 

From the database consisting of radiosonde- and model data described in the wind statistics 
study (Håkansson 2001), subsets of profiles and vertical pole-to-pole cross sections have been 
extracted. Four different “seasons” where each season consists of data representative for a 
specific month, accumulated during three consecutive years (1995-1997) are considered. The 
respective months are: January, April, July and October. The objective with this approach is to 
capture possible seasonal characteristics within a significantly reduced data set. 

The data set is to be used with LIPAS in order to evaluate the error correlation performance 
of the ADM. Wind shear is chosen as the parameter for separating “relevant” profiles and cross 
sections from “irrelevant” ones, thus further reducing the size of the data set. Only profiles and 
cross-sections for which the maximum or mean shear exceeds certain threshold values were 
extracted to form the subset. With the wind shear acting as a “separator”, we are confident to 
extract mainly profiles holding certain variability in the wind field, whereas “dull” profiles of 
nearly constant or no wind velocity are omitted.  

The ECMWF fields contain wind, temperature, humidity, cloud liquid water, and cloud cover 
information, which can serve as input for LIPAS. Over the selected profiles with large wind 
variability, the nominal ADM profiles will be simulated every 200 km, after which it will be 
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interesting to simulate ADM over the same profiles with some nasty errors, and analyse 
(subjectively) the potential for deformation or loss of critical wind structures. 

2.3 Error Scenarii 
Task 1a resulted in a shear infinite number of possible error scenarii. In combination with 

results of task 1b and general data assimilation considerations, we here suggest a limited set of 
error scenarii. 

2.3.1 Error Covariances 
Not all error covariances are suitable for simulation in MERCI. In particular the more 

complex errors should be evaluated: 

• Errors that can be directly specified as a wind error covariance can be assessed without 
further simulation by relating it directly to the conclusions of Task 1b; 

• Errors that depend on t or l need to be simulated to assess their potential detriment by 
computing the spatial covariance structure over a given data set; We note that for 10 
independent random wind difference samples of NWP model minus DWL per profile, 
and if assuming independent random errors on different profiles, then for an expected 
wind difference <NWP-DWL>=3m/s, 10 profiles can provide a bias correction with 
accuracy of about 0.3 m/s; 

Clearly, the NWP model provides a reference that is useful for bias correction or quality 
monitoring, as is common practise for satellite data these days. Note however that on the 
synoptic scales no correction of systematic biases will be possible due to the limited number of 
samples available. As such, we study the covariance structure and distinguish by different time 
scale and different meteorological implication: 

• Horizontal correlations and variances; most damaging on synoptic time scales 200-2000 
km; 

• Vertical correlations and variances; most damaging on all vertical scales 2-20 km. 

In addition, combined vertical and horizontal covariance structures will be studied for some of 
the special cases as referred to in Task 1b. 
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Figure 14. Percentage of surface winds larger than 5 m/s over the North Pole area in the 
summer period from 1-12 June 2000 according to ECMWF analyses. A high percentage of calm 
winds exists near steep orography and over land areas.  
 

2.3.2 Wind Calibration 
Poor wind calibration may obviously cause error on different time and space scales. 

However, geophysical external calibration sources, i.e., sources of opportunity, exist that reduce 
the need for an absolute calibration: 

• Assimilation of wind shear observations, e.g., deduced from frequency shift differences 
∆f(z=1) -∆f (z=j), may be considered rather than profiles of wind observations. This 
results in a loss of one range gate level of information per profile, since this is used as 

26 



 
Merci   Task 2 report MISU 

 
geophysical reference. Note that the wind shear profile should not exhibit any further 
vertical or horizontal error correlations. 

• Ground calibration over calm sea, land or ice areas. Figure 14 shows frequent occasions 
of calm winds in white and yellow. Unfortunately, in many locations over sea and ice, we 
will have in most cases winds above 5 m/s. Note however, that not many ideal cases may 
be needed along an orbit, while many profiles will be made. Over water, calm cases with 
currents or long waves may not be suitable, but these may be predictable. Anyway, over 
land calm targets seem more likely than over sea or ice, but here height variations are 
more frequent.  

• In order to reduce the atmospheric contamination of the ground calibration range gate, the 
length of the lowest range gate may be reduced. However, effectively this would also 
result in the loss of a vertical level and thus in a loss of one piece of information in the 
vertical (see also first bullet).  

• If biases are stable over many profiles, we can estimate <NWP-HLOS> for calibration as 
was mentioned in previous section. 

2.3.3 Temperature Effects 
The temperature of the atmosphere determines the bandwidth of Brownian motion of 

molecules. This dependency is known and may be tabulated in a response table (e.g., M. 
Endemann), which is a rather smooth (linear) function. Subtle effects, like Brillouin scattering, 
may complicate the theoretical expectations, but empirical tuning will be possible for a known 
temperature dependency. Moreover, if the Molecular channel atmospheric Doppler frequency 
shift can be expressed as 
 

∆f = GMF(u,v,T) 
 
where u,v, and T represent respectively the atmospheric variables of horizontal wind components 
and temperature, then we can compute from the NWP model state, which includes u,v, and T, an 
equivalent of ∆f , and subsequently an observation innovation by taking the difference. By 
projection of this innovation back onto the NWP model state, through the analysis equations, we 
have effectively exploited the observation. In fact, one could say that not only the wind field, but 
also the temperature field, may be updated by ADM Doppler shift observations. Uncertainty in 
temperature dependency thus seems not problematic. 

2.3.4 Proposed Error Scenarii 
We foresee the following error scenarii as most relevant for study in MERCI:  

• Atmospheric β heterogenities and clouds will be studied with LITE and collocated 
ECMWF data (KNMI); 
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• Vertical sub-range-gate wind variability, and β heterogenities derived from q to be 

studied with sondes (MISU) to complement the KNMI studies with the coarser resolution 
ECMWF wind data; 

• Vertical shift ∆z = 100 m and ∆z = -100m due to range gate localisation errors; 

• Rx gain bias α = { -5%, -1%, 1%, 5%}; percentual biases present flow dependency; 

• Rx gain bias (αM, αR) = (-5%, +5%); inconsistencies between the Mie and Rayleigh 
channels could potentially cause serious wind shear observation errors; 

• Combination of errors, in particular height and gain errors; 

• Besides Rx gain errors, task 1a alluded to effects of higher order. We plan to take the 
expected frequency shift response function of the molecular receiver chain, which also 
includes a quadratic dependency on Doppler frequency shift, and change it by the 
percentages in Rx receiver gain bias mentioned above. As such, quadratic error terms, in 
addition to linear ones, will be studied. 

3 Conclusions 

The output of task 1 and the LIPAS software is used to define how to investigate variations 
of instrument parameter vector l for sets of atmospheric states t.  

The lidar performance analysis tool (LIPAS), developed for ESA, will serve as the basis for 
simulating error correlation in HLOS wind observations. LIPAS includes incoherent detection at 
0.355 µm laser wavelength and comprises i) returned signal intensity from atmospheric aerosols, 
molecules and earth radiance background; ii) characteristics of Fabry-Perot and Fizeau 
interferometers; iii) blocking filters; iv) CCD noise simulation; v) post-processing of the Mie 
multi-channel receiver and the Rayleigh dual-channel receiver. The output is a HLOS error 
profile for an accumulation of 0.5 sec. As such the parameter vector l is represented in LIPAS. 
We defined modifications of this l in order to simulate relevant observation error models, 
including error correlation. Ways to analyse the error correlation structure statistically or more 
subjectively in some critical cases are presented. 

From task 1 conditions are specified where certain error conditions are expected. In this 
subtask we identify a meteorological database to perform simulations. However, combined 
mesoscale atmospheric wind, aerosol, and cloud conditions are not widely available. We propose 
to use: 

Results from the project LITE4ADM, where LITE data are used at 355 nm to construct 
highly-resolved molecular, aerosol, and cloud backscatter profiles. These profiles are collocated 
with numerical weather prediction fields from ECMWF to provide wind and humidity 
information. The humidity information will be correlated with the LITE aerosol backscatter in 
order to estimate the usefulness of humidity as a tracer for aerosol loading. 
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Identify database for winds and relative humidity on observed scales from TEMP/PILOT 

measurements. Relative humidity will be used as a tracer for aerosol profile data. To this end, for 
a given set of TEMP/PILOT, distributions of humidity will be computed at each vertical level, 
that will be mapped on the LIPAS distributions of aerosol backscatter on the same level. 

Extend the literature search for mesoscale variability (<50 km) with respect to Lorenc et al 
(1992) by incorporating more recent publications, including investigations on remote wind 
sensing systems (e.g., Gavrilov and Fukao, 1999; Hall, 1989; May et al, 1995; Nastrom and 
Fritts, 1992; Thuillier, 1995). 

From the results of the wind statistics study, we identify a set of cases that can be used to 
evaluate the error correlation performance of the instrument simulator. We envisage sets of 
cross-sections with characteristic wind variability. Sufficient cases are selected in each set to test 
both the performance of the instrument in difficult situations and to test that the instrument meets 
the requirements as specified in subtask 1b. We envisage that part of the database may be used 
by the industrial team to test performance. 

We identified a set of error scenarii that are trivial to analyse and therefore not so useful for 
statistical assessment: 

• Profile biases, e.g. due to poor calibration and yaw off-set. Such biases, if they occur, 
obviously cause horizontal error covariances to be correlated; and affect all vertical levels 
in the same way. Biases that are constant in height can be eliminated by assimilating 
wind shear information. In this case one vertical level is lost (since it is used for 
reference); 

• Errors that are repetitive and can be estimated by comparison to a reference data set, e.g. 
a NWP model. 

Last but not least, we identified a minimum set of error scenarii that will be further evaluated 
in MERCI tasks 3 and 4. 
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Acronyms 

ADM Atmospheric Dynamics Mission 
ALADIN Atmospheric Laser Doppler Instrument 
AMI Active Microwave Instrumentation on ERS 
ATOVS Advanced TOVS 
CCD Charge-Coupled Device 
CLW Cloud Liquid Water 
CNRS French national centre for scientific research  
DNMI Norwegian Meteorological Institute 
DWL Doppler Wind Lidar 
ECMWF European Centre for Medium-range Weather Forecasting 
EPS EuMetSat Polar System 
ERS European Remote-sensing Satellite 
ESTEC European Space research and Technology Centre  
ESA European Space Agency 
EuMetSat European organisation for the exploitation of Meteorological Satellites 
GCOS Global Climate Observing System 
GOS Global Observing System (meteorological) 
HLOS Horizontal LOS 
HRPT High Rate Picture Transmission 
KNMI Royal Netherlands Meteorological Institute 
LIDAR Light Detection and Ranging 
LITE Lidar In-space Technology Experiment 
LIPAS Lidar Performance Analysis Simulator 
LMD Laboratoire Meteorology Dynamique 
LOS Line Of Sight 
MF Meteo France 
MISU Department of Meteorology at Stockholm University 
MMS Matra Marconi Space (now Astrium) 
NOAA National Oceanic and Atmospheric Administration (USA) 
NWP Numerical Weather Prediction 
OSE Observation System Experiment 
OSSE Observation System Simulation Experiment 
PBL Planetary Boundary Layer of the atmosphere 
PDUS Picture Distribution System 
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PILOT WMO code for conventional wind sounding 
RfQ Request For Quotation 
SAF Satellite Application Facility 
SATOB WMO code for satellite cloud-tracked wind 
SMHI Swedish Meteorological Institute 
SoW Statement of Work 
TEMP WMO code for conventional wind, temperature, and humidity sounding 
TOVS TIROS-N Operational Vertical Sounder 
UV Ultra Violet 
WMO World Meteorological Organisation 
WP Work Package 
  
  
 


