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Abstract

A simplified model of the air flow over surface water waves propagating at arbi-
trary phase velocity (as compared to the wind speed, e.g. at 10 m) and direction
(relative to the wind direction) is presented. The air flow is divided into an outer
(OR) and an inner (IR) regions. In the OR the wave-induced motions experience
nviscid undulation, while in the IR they are strongly affected by turbulent shear
stresses. Introduction of the OR and the IR allows a considerable simplification in
the description of the air low above waves.

The critical height (the height where the wind speed and the wave phase velocity
are equal) is for most cases located inside the IR. Hence, its singular behaviour is
strongly suppressed by turbulent stresses. This fact allows a simple description of
the wind velocities in the OR, which is based on the approximate solution of the
Rayleigh equation suggested by Miles (1957).

The description of the IR is based on the solution of the vorticity equation ac-
counting for the turbulent diffusion. The turbulent shear stress is parameterised via
the eddy viscosity coefficient adopting the mixing length closure scheme. Exponen-
tial damping of the shear stress variations with height towards the OR is introduced,
which leads to further simplification. This damping describes phenomenologically
the basic feature of the wave boundary layer: rapid distortion of turbulence in the
OR.

The model is reduced to a set of explicit analytical formulas which describe the
wind velocities and shear stresses in the boundary layer above the waves. Results
of the simplified model {velocities and shear stress profiles, the growth rate) are in
reasonable agreement with those obtained by a two-dimensional numerical model
based on the second-order closure scheme. This fact is encouraging, and has an
important consequence: the description of the air flow dynamics over waves is not
sensitive to the details of the closure schemes. It is only important to provide the
vertical damping of variations in turbulence characteristics on a scale comparable
with the IR height.

The simplified model is compared with data of the laboratory experiment of Hsu

and Hsu (1983), and reasonable agreement in velocity and shear stress distributions
is found.
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1 Introduction

The physical phenomena which occur on the air-water interface, are defined or strongly
influenced by the air flow dynamics over the water surface. Exchange of momentum, heat.
moisture and gases between the atmosphere and the ocean is determined to a large extent
by the wind-wave interactions. A significant part of the momentum flux at the sea surface
is formed directly by wind waves. As breaking waves eject spray into the atmosphere, they
could enhance the exchange of heat and moisture. To account for this process the vertical
transport and spreading of spray, defined by the air flow above waves, should be known.
Short wind waves, the key issue in remote sensing application, are formed and modulated
by the wind. To understand and parameterise the processes which occur at the sea surface
and in the adjacent part of the air boundary layer, an explicit description of the air flow
over waves is needed.

Starting from Miles (1957) numerous studies have been dedicated to the problem (see,
©.g., arecent review of Belcher and Hunt, 1998). Recently, it became clear that the modula-
tions of the Reynolds stresses close to the wave surface are responsible for the peculiarities
of the wind-wave interaction. Belcher and Hunt (1993) introduced the sheltering mecha-
nism of wave growth. They distinguish two main layers above the waves: the inner and
the outer layer. In the inner layer, a very thin region adjacent to the surface, the wave-
induced turbulence is in local equilibrium with the local wind shear. In contrast, in the
outer region the turbulent stresses correlated with the wave surface are suppressed due
to rapid distortion effects, so that there the dynamics corresponds to inviscid flow. The
action of the Reynolds stresses in the inner region causes a thickening of the stream lines
on the forward slope of wave. The inner region is thus asymmetric, leading to a pressure
asymmetry in the outer region which results in wave growth. The introduction of the inner
and outer region in the description of the turbulent boundary layer above waves is very
productive and helps considerably to simplify the analysis of the air flow dynamics above
waves. Belcher and Hunt (1993) found an analytical solution for the case of slow waves.
Harris et al. (1996) developed an eddy viscosity model in which the turbulent stresses in
the inner region are parameterised by using the eddy viscosity derived from the balance
between the turbulent kinetic energy (TKE) production and its dissipation. In the outer
region the eddy viscosity coefficient is damped exponentially, and the turbulent stresses
vanish.

We present here a simplified model of the wave boundary layer (SWBL), which can be
used as a simple module in a variety of studies where the detailed structure of the air flow
above waves is required. As an example we mention the calculation of stresses in the model
of short waves modulation by long waves (Kudryavtsev et al, 1997), or the calculation of
the wave-induced velocity field to study the distribution of sea spray. The SWBL model
can also be useful to support experimental studies, both in the stage of preparation and
measurements, when a quick decision to correct/extend measurements is needed and the
use of expensive large numerical models of the boundary laver is not feasible. The SWBL
model is designed to describe the air flow above fast and slowly moving waves (as compared
to the wind velocity), and propagating at arbitrary angle to the wind direction.



The main conceptional simplification of the problem is based on the division of the
turbulent boundary layer into two parts: the outer and the inner region, after Belcher and
Hunt (1993). In the outer region (OR) the wave-induced motions experience undulations
typical for inviscid flow. The description of the outer region is considerably simplified by the
use of the approximate solution of the Rayleigh equation for the vertical velocity suggested
by Miles (1957) and Lighthill (1957). The amplitude of the vertical velocity is proportional
to the mean velocity profile, and decays exponentially with height. The horizontal velocity
is found with the same accuracy from the vorticity conservation equation, where the vertical
velocity is known.

In the inner region (IR) the dynamics of wave-induced motions is affected strongly by
turbulent stresses. Towards the outer region stresses are damped exponentially. Unlike
Harris et al. (1996), who introduced damping of the eddy viscosity coefficient, we in-
troduce damping directly on stresses. The local eddy viscosity closure scheme is used to
parameterise those stresses. The eddy viscosity coefficient is obtained from the balance
between the turbulent kinetic energy production and its dissipation, where the dissipation
is expressed in terms of the mixing length. The description of the inner region is based on
the solution of the vorticity equation. The method of Langer (1934) is used to solve the
equation, taking into account the existence of the critical layer. The solution in the inner
laver is patched to the outer layer solution, and the explicit formulas for the velocity and
stresses are obtained.

The solution of the simplified model is compared with the results of the 2 dimensionzl
(2D) numerical wave boundary layer (WBL) model (Mastenbroek et al., 1996), based
on a second-order Reynolds stress closure scheme. A good quantitative and qualitative
agreement, both in velocity and stress distribution, and for fast and slow waves is shown.
The estimate of the growth rate parameter obtained by the SWBL model is consistent with
the 2D WBL model.

The results of the SWBL model are compared with data of Hsu and Hsu (1983) obtained
in laboratory conditions. The comparison is encouraging: the simplified model reproduces
well the measurements of velocity and shear stress fields above waves. The main mode]
assumption (division of the air flow into an outer and inner region) is supported by the
measurements.



2 Model equations

2.1 Wave-induced variations of wind velocity

A fully developed turbulent air flow over a monochromatic surface wave travelling on the
(€1, 22) plane along the z;-axis with the phase speed ¢ is considered. The air flow moves
at an angle 6 to the zy-axis, and all the air flow variables are uniform along the xy-axis.

The surface is described by

N = no(kry — wi), (1)

where k and w are the wavenumber and the frequency of the surface wave. In a frame that
moves with the phase speed of the wave the equations governing the steady air flow are
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where p is the pressure, 7 is the Reynolds shear stress, 711 and 733 are the Reynolds normal
stresses.

We use a wave-following coordinate system

r = I,
z = z3—n(T1,23), (5)

where 1(z1, z3) = n,(x1) exp(—kz3). Equations (2)-(4) then take the form

'U(a—i" - 771%)’” +w(l - 773)%71 = —(% - 771%)13 +(1- 7’13)8%713
+(561‘_ - 771%)(711 — T33), (6)
’“/((% - Ul%)w +w(l - 773)%10 = —(1- 773)5%13 + (% - 771%)713, (7)
(0% - nlé)u +(1- ng)%w = 0, (8)

where P = p — 733, and n, = 9n/0zy, 13 = On/0x3. The vertical transformation of the
wz-coordinate is defined so that the lines z = const are related to the streamlines of the
irrotational flow over the wave.

The slope of the surface wave is small, so that the air flow can be described as a sum
of the basic flow and small perturbations



vz, z) = V(z),
w(z, z) w(z, z),
P(z,z) = P(z)+ P(x,z)
Tj(2,2) = Tii(2) + Tyla, 2). (9)

Here the wind velocity components U, V' and the variables marked by bars are related to
the basic flow averaged over the z- CO()rdmate while tildes refer to the perturbed flow. For
a small air flow perturbation equations (6) - (8) can be linearized (hereafter the tilde over
the perturbed variables is omitted) so that

P U 9P ony 0
U a—t + ( w — 'IhU)E = ax + ais + 5;(7_11 - 733)7 (10)
E)u E)P 8713 o
_ Y ‘ 11
Vo 0z Or ()
ou 0 . A
Ef — I(w -mlU) = —msl, (12)

where 13 = 90%/92,0x;. The mean wind velocity profile is assumed to vary logarithmically

U(zx) = (u,/r)In n(z/z) cosf — ¢
= (¥./K)In(z/z.)cosé. (13)

Here 5 is the Von Karman constant, zy is the roughness parameter, @, is the {viction
velocity in the basic flow, and z, is the critical height defined as

o .
Ze = Zpexp(——). (14)

1y cos 6 '
The roughness parameter is taken as the sum of the Charnock relation and the viscous

roughness scale to account for low winds

20 = 0.014u2/g + 0.11v, /u., (15)

where v, is the kinematic viscosity of the air.

The air flow perturbations can be now calculated from (10)-(12) with the boundary
conditions:

u,w, P, 1 = 0, (16)
if = — oc, and

U= ug, (17)

w = —cdny/0x (18)

at = = zp, where u; is the horizontal component of the surface wave orbital velocity.



The vorticity equation for the perturbed flow results from equations (10)-(12) by elim-
ination of P

9?2 9?2 0?
T3 + m—=(m1 — T33), (19)

aQ 1" ’
Var + =m0 =malU = (525 — 50 + g

Ox
where € = 9u/0z — Ow/dz is the vorticity, U' = 8U/dz, and U" = 8%U/8z%. The vorticity
equation can be rewritten as the Rayleigh equation for the vertical velocity using the
continuity equation (12)

32w 8211) " ) 62 82 32
- ———’(/T:— 5 A~ 5 )T1i3 — —F— — 733 ). 20
(8z2 * 812) v (‘823 8:172)T13 0x0z (711 = 753) (20)

Equation (19) can be solved after the Reynolds stresses are expressed in terms of the
independent variables, i.e. the turbulence closure scheme has to be introduced.

2.2 TInner and outer region

Belcher and Hunt (1993) developed scaling arguments to describe how turbulence in the air
flow is affected by a surface wave. They introduced two main time scales. The advection
time scale, Tp ~ k~'/|U(z)|, characterizes the time for turbulent eddies to be advected
and distorted by the mean flow over the wave. The eddy turnover time scale, T} ~ Kz/u,,
characterizes the time for eddies to be dissipated, when the turbulence is in equilibrium
with the local wind shear. The height at which these scales are comparable Tp ~ T} is
defined as the height of the inner region {. Belcher and Hunt (1993) give an estimate

Kl = 2ku,/ [U()]. (21)

In a case of very fast waves the estimate is kI = 2ku, /c. In the inner region z < [ the
turbulence tends to a local equilibrium with the local wind shear. In the outer region z > [
turbulent eddies are advected too fast to be correlated with the local wind shear. The
turbulent stresses are smeared out, i.e. they are not correlated with the surface wave, and
the wave-induced air flow in the OR becomes inviscid.

The inner region has an important physical meaning. It represents the region in the
boundary layer above the wave where disturbances of turbulent stresses (and other char-
acteristics of turbulence), caused by the interaction of the air flow with the surface, are
located. Experimental evidence of the existence of the IR above waves was presented by
Mastenbroek et al. (1996).

The height of the IR is the key parameter in the present model. It is shown as a function
of the inverse wave age parameter Uk/c (Uy is the wind speed at z = k=') in Figure 1. For
a given wind, the IR height increases with increasing phase speed and reaches its maximal
values in the vicinity of U,/c ~ 1. This corresponds to waves at the peak of the wave
spectrum of a fully developed sea. For faster waves the IR height decreases again.

The subdivision of the boundary layer above waves into an inner and an outer region
considerably simplifies the parameterization of the Reynolds stresses. In the outer region
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the turbulent stresses are simply neglected, and the air flow experiences inviscid undulation.
In the inner region simple local eddy-viscosity schemes can be used. Here the air flow is
strongly affected by wave-induced variations of turbulent stresses. We thus introduce a two
layer air flow model. The boundary between the two layers is specified at height h = nl,
where n is a constant of order 1. At height z = A the wind velocity and its vertical gradient
are continuous.

2.2.1 The role of the critical layer

The critical layer plays a crucial role in quasi-laminar models of the air flow ahove waves
(Miles, 1957). This type of models assumes that the turbulent stresses can be neglected.
In the terminology of the rapid distortion theory above waves this assumption is onlyv valid
when the height of the critical laver is situated in the outer region (Belcher and Hunt,
1998). The height z, of the critical layer, defined by the condition U(z,) = 0, equation
(14), is shown in Figure 1. In the range of U, /¢ > 1 the critical layer is located inside the
inner region, so that the turbulent stresses should influence the dynamics of the critical
laver.

AMiles (1959) indicated that viscous effects become important and break down the as
sumption of the quasi-laminar model when the viscous scale of the critical laver

O = (Vohz, [T k)3 (

(S
o
~—

is of order =z, or more, i.e. §, > z,.

If the critical layer is situated within the inner layer of the turbulent flow the eddyv-
viscosity takes the role of the molecular viscosity. The estimate of the height 4. in this case
can be made by replacing the viscosity v, in equation (22) by the eddy viscosity K = 247, 2
at = =z (see equation (44) below). Then the estimate (22) becomes

N a5,.2.2 1/3 DY
de = (2n7z k)Y (23)
and the condition d, > z, is equivalent to
iz < 282

From Figure 1 it follows that both conditions z, < [ and kz, < 2x? are satisfied in
the range of Uy /¢ > 1. Tt means that in this range turbulence dominates the dvnamics of
the air flow in the vicinity of the critical height. Hence, the applicability of quasi-laminar
models in the description of the air flow dynamics is restricted to a very narrow range of
the parameter Uy /¢ around Up/e~1.



3 Solution of equations

Any flow variable in the air Y experiences a small variation ¥ in the presence of waves.
The wave steepness ak (a is the wave amplitude) is assumed to be small, and the variation
can be expanded in powers of ak, namely

Y(z,2) = (V) (kYD (z, 2) + O(ak?)), (24)

where (Y) is a scaling argument. The second small parameter of the problem is the
dimensionless scale of the IR kl. As the variable Y could depend on kl, we expand
Y (z, 2) in powers of kl

YW (z,2) = Yy(x, 2) + klY;(z, 2) + O(KI2). (25)

To normalize variations in the air flow parameters, u,/x is chosen as a scale for the wind
velocities (including the background wind speed), and %? as a scale for the Reynolds stresses
and pressure.

The surface wave is introduced as the real part of

ikx

no(z) = ae'™™. (26)
The solution of the problem is presented in the form of normal modes

Y(z,2) =V (2)e, (27)

where (z) = Vo (2) + iY;(z) is a complex amplitude. It can be also expanded in powers of
kl

Y(2) = Yo(z) + kiYi(2) + ... (28)

The real part of Y(z) is the amplitude of the wave-induced variation in the air flow which
is correlated with the wave elevation. The imaginary part of )A’(z) is the amplitude of the
variation which is correlated with the wave slope. Notice that if Yi(z) is positive then the
maximum of the wave induced variation is displaced towards the rear slope of the wave. As
the surface wave is described by acos(kz), only the real part of (27) has a physical sense.

The analysis is carried out in first-order in ak (hereafter the superscript 1 is omitted),
and in zero-order in kl. This solution is called the zero-order solution). For the vertical
velocity the first order kl-correction of the zero-order solution has a significant physical
sense (see Section 3.2.5), and will be considered additionally.

3.1 The outer region

The turbulent stresses in the outer region are not correlated with the surface wave. Hence.
the wave-induced motions in the OR should be close to that of the inviscid air flow.



3.1.1 The inviscid air flow

When the air flow experiences an inviscid undulation over the surface wave, eq.(20) is
reduced to the Rayleigh equation
02'@0
02
with the boundary conditions for the vertical velocity (16), (17), and (18). This equation
has been studied in details in numerous papers starting from Miles (1957).

Miles (1957) and Lighthill (1957) suggested an approximate solution of the Rayleigh
equation in the form

U( — kb)) — @ U = 0, (29)

wo(z) = ~U(2) exp(—kz), (30)

where ~ is a constant of proportionality.  As it was mentioned by Phillips (1966). this
constant should have a different value above and below the critical height. At - < -, the
constant must be ~ = ¢ to satisfy the boundary condition (16). At z > z. the constant
should differ from 7 due to the expected influence of the critical layer dvnamics. Direct
substitution of (30) in 129} <hows that this solution satisfics the Rayleigh equation with
the accuracy of (B In(hz/hz ) at Tlarge” distance from the surface (hz~ 1) and with
the acciracy of A2 close 1o the surface (ho << ).

To cheek the approximate solition (301, it is compared with a numerical solution o 11¢
Ravleigh equation (291, The results of the numerical integration of the Ravleigh cquation
along with the approximate sohition (3
and 2 ave presented in Fionre 20 To fit

) lor the inverse wave age parameter U, = 5

'
by

}
301 to the “exact” solution the tuning consiant

R il
s ir

This choice gives reasonable agreement between the approximate solution (30) and the
numerical solution. Note that at the critical height ed.(30) gives @y, (z,.) = 0. However. in
fact @, (z.) is slightly positive. Tts value defines the energy transfer from the shear flow
to waves in the quasi-laminar theory of Miles (1957). As was proposed by Miles (1957),
the magnitude of the vertical velocity at the critical height can be estimated through the
approximate solution (30). Integrating eq.(1 1) with @y defined by (30) from infinity to =

is chosen as:

[

o
AVARVAN
o

[

(31

/

<2

e

“pne

and substituting the obtained relation for the imaginary part of P into eq. (10), we obtain
the following relation

vhZe [ .
To(ze) = Re(y)" / U2eked k). (32)

Uy
In Section 3.3 this relation for the vertical velocity at = = z, will be used to calculate the
growth rate parameter in an inviscid boundary layer (Miles’ theory).

The approximate solution for the horizontal velocity can be obtained (via @ defined by
(30)) either from the continuity equation (12) or from the continuity equation (4) depending
on which coordinate system is used. In the regular fixed (z,3) coordinate system the
approximate solution for the horizontal velocity reads

flg(3) = iy [~ + A e, (33)

10



This solution is shown in Figure 2 along with the numerical solution of the Rayleigh
equation for different wave ages. The approximate description of both horizontal and
vertical motions compares reasonably well with the numerical solution. We shall apply this

approach for the approximate description of the outer region in the turbulent boundary
layer.

3.1.2 The outer region in the turbulent air flow

As was mentioned in Section 2.2.1, the singular behaviour of the critical layer dynamics
in the turbulent air flow over a surface wave must be suppressed significantly. Hence, we
may suppose that the vertical velocity in the OR has to be described approximately by
eq. (30) with v = i (to satisfy the lower boundary condition) throughout the whole wave
boundary layer, i.e.

Wo(z) = iU(2)e k=, (34)
This solution describes the basic behaviour of vertical motions in the turbulent boundary
layer caused the surface wave. However, as will be shown later, this solution is correct
only in zero-order. The dynamics of the Reynolds stresses inside the IR results in vertical
motions which are of kl—order (see Belcher and Hunt (1993) in the case of slow waves).

The estimate of the horizontal velocity resulting from the continuity equation with @,
from (34) looks reasonable if the main peculiarity in the %y profile is caused by the singular
behaviour of the critical layer. In the case of a turbulent boundary layer this singular
behaviour in @ must be significantly blurred, and we need a more accurate estimate of the
horizontal velocity.

The estimate of iy via the continuity equation is not appropriate since it is derived by
differentiation of the approximate solution (34). This procedure can result in a decrease
in accuracy. To get the solution of @, with the same accuracy as Wy, we have to use the
vorticity equation (20). In terms of normal modes this equation takes the form:

JYo 1T
tkU( 5

— — iky) + (D — ie " VYU + ike FUU = 0. (35)
Substituting the approximation (34) for Wy into the vorticity equation, and then integrating
the obtained expression for 91y /02 from oo to 2 (satisfying the condition @iy(c0) = 0), we
obtain the following approximate solution for the horizontal velocity:

fo(z) = Ue™* 49 / et Uz, (36)

Summarizing, the general features of the wave-induced motions in the outer region are
described by eqs.(34) and (36) for the vertical and the horizontal component of the wind
velocity respectively. These are the "zero-order” solutions (in the sense of expansion (25)
in kl-powers). The kl-correction of the solution for Uo(~) does not introduce new essential
elements in the description of the horizontal velocity in the OR. However the kl-correction
of the vertical velocity is important as Re(w) plays a dominant role in the energy transfer
from wind to waves (see Sections 3.2.5 and 3.3)

11



3.2 The inner region
3.2.1 Reynolds stresses

In the inner region the Reynolds stresses are in equilibrium with the local gradient of the
wind velocity. Consequently, they can be described by the local eddy viscosity closure

scheme
du  Ow
3 = KN {—+—), 37
s ) (0; N 3.’1:) ' (37)
_Ov ,
To3 = K % (38)

ITere A is the eddy viscosity coefficient which is expressed via the square root of the
turbulence kinetic energy ¢ (TKE) and the turbulence length scale, which is proportional
to the distance from the surface

K = kze'/?, (39)

Furthermore, the normal Reynolds stresses in the IR are proportional to the shear stress
m o= —a, (T + H)Y (40)

T33 = -a‘u,(rf3 + 7.33)1/2. (41)

The shear stress can be found from the TKE conservation equation, where local balance
between TKE production by shear of the horizontal velocity component and its dissipation
is assumed. In first kl-order this balance reads

T130u/0z + o300 /02 — €? [kz = 0. (42)
The linearized equation (42) written in normal modes is
- oU L du_ 37, 13)
T35 + T3 = ——¢@. :
oz B0z 2wz (

The shear stress is derived from (37), (39), and (43):
Py = KoU/Oz+ Kou/oz
3+ cos?é _0u
= (m) KTl
This expression is valid well inside the IR, at z < [. As the height approaches the outer

region, the shear stress has to attenuate. To take this effect into account, we introduce
vertical damping of the shear stress. Then (44) takes the form

R _ (34 cos’8h .01
T3 = KUy | —m—————— e °

3—cos?h ) R

At small z/7 this equation reduces to (44), and at large z/l the shear stress vanishes.

Harris et al. (1996) introduced damping of the eddy viscosity to suppress stresses in
the OR. The direct damping of the shear stress, proposed here; is as effective and more
straightforward.

(44)

(45)



3.2.2 Vorticity equation in the IR
Let us rewrite the vorticity equation (19) in the dimensionless vertical coordinate
¢ =z/l (46)

Taking into account relations for the shear and normal stresses (45), (40), and (41), the
vorticity equation (19) in terms of normal modes takes the form

o~

a 1" ’
z'U(a—Z — ikl@) + (k1) (@ — ie™HU) UL, + ieHUT,

_ (34cos?0) kU 0 e | 9 O .
= e d) w 8C2+(Al) ikl cos f( oy O‘“’)ag Ce 7 ) (47)

The continuity equation (12) reads

o~

9
ikl + a—"‘éf —ie ML = 0, (48)

where U = 0U(¢)/0¢ and U, = 8°U(()/d¢2.

It was shown (see Figure 1) that the height of the IR ki is small except in a narrow
range in the vicinity of Uyg/c ~ 1.2. Thus, outside this narrow range the terms of kl-order
can be neglected in equation (47) and it takes the form

2(3—cos20)0¢2 \""  OC Z/-c]Ulj ac I'(¢), (49)

where the function T'({) is

a, [(@— e ™),

1—'\ — ; Crrrr

<) ‘lUt\ [ ¥ +ie” " UU
= |U1| [U)l[,(c +ie FUT, ] (50)

To obtain the second equality the expansion (28) in kl-power series for the vertical velocity
is used, so that Wy is defined by (34) and 1@, is the ki-order correction. The term I’ describes
the source of vorticity caused by vertical motions in the shear flow.

The kl-order correction of the vertical velocity can be found from the continuity equa-
tion (48) if the zero-order solution for 7 is known

¢ :
W(Q) = ikl | (G — Ue™"@)d(,. (51)

Equations (49) and (51) are solved by iterations, either analytically or numerically. In the

next section the approximate analytical solution is derived. In Appendix 3 the numerical
solution is described.
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3.2.3 Horizontal velocity

To further simplify the problem, the IR is divided into an inner surface layer (ISL) z; <
z < el (where ¢ is a small constant), and the shear stress layer (SSL) el < z < h = nl.

Inner surface layer The ISL is defined as a thin boundary layer adjacent to the surface.
where the wave-induced stress is constant over height. Formally it means that the first
term in the left-hand part of equation (49) is the leading one. The solution of this equation
is then

. dug

¢ ¢
where C, is an unknown constant of integration proportional to the amplitude of the wave-
induced shear stress inside the ISL ({ < £). The profile of the wind velocity inside the ISL
can be obtained from (52) and the lower boundary condition

_c. (52)

~

U (o) = s, (53)

which results in
uo(C) — iy = Clog(C/ o). (54)
Here ¢o = 29/l, and @, = re/T, is the normalized horizontal component of the orbital

velocity,

Shear stress layer In the SSL all terms of equation (49) are significant. Let us vewrite
equation (49) in the form

()J N _»(‘)(ﬁl\l) o _()(70 . -
— (e Dy et Yy =T ‘ (5
gz g ) e e ) = Told) 1o

Here

m- =2

, A u U \ (3 — cos® ) e
k103 ) (3+cos?8)

and the source of vorticity Ty(() is

Th(C) =2

(3 —cos?8) [ @l e ]
(3+cos28) \ k|07 (““J’cc +iem0 U C’g)- (56)

At the upper boundary of the SSL ¢ = n, the solution of this equation has to patch the
horizontal velocity and its vertical gradient in the OR, i.e.

’ZZQ('I) — 0) = 'D,Q(‘I'l + U),

Jq C=n—0 aJ¢ (:n—H)' ‘

e



At the lower boundary ¢ = ¢ the solution of (55) has to patch the horizontal velocity in
the ISL (defined by (54)) and its vertical gradient, i.e.

ﬂ0(6+0) = ﬁ0(6_0)7

- () :
<8< (=e+0 a¢ (=¢—0 | )

Equation (55) is an ordinary non-uniform differential equation in the variable Ce™ 0y /0C.
The WKB-approximation (e.g. Nayfen, 1973) is considered as a powerful method to find
the approximate solution of such a differential equation. However, direct application of
this method to equation (55) is not possible, because at the critical height the function
m?(¢) is equal to zero, which gives a singularity in the WKB solution.

To avoid the singular behaviour of the solution in the vicinity of the critical height
the method by Langer (1934) (see, e.g., Nayfen, 1973) is used in the present study. The

details of this method are presented in Appendix 1. According to Langer (1934) the general
solution of equation (55) is

o c C
Ce¢=2 = Ai + —
© A ¢ (¢) W ©'(¢)

In this equation C and C; are constants of integration, A: and Bi are Airy functions
(see Appendix 2), ® is a partial solution of the non-uniform equation (55), and ¢(C) is a
function which obeys the equation

Bi(o(()) + ®(¢(()). (59)

2
m
P'(0) = —. 60
With the upper boundary condition (57) for iy /O, equation (59) can be written as
ou C AiBi, — Ai,Bi o B
_C 0 — n n rn —-n _ @
Ce 3 —\/a B + o (ne "G, @n)—Bin + P, (61)

where a subscript n denotes a value at ¢ = n, and G, is the vertical gradient of the
horizontal velocity (defined by equation (36)) in the outer region at ¢ = n. The partial
solution @ is (see Appendix 1)

d(() = —% {Ai / <(cp')—1/QBiF0d§1 — Bi / <(¢')—1/2Air0d¢1} . (62)
The function ¢(() is specified as the solution of equation (60):
5 2/3
P(() = — [3/2 / w—m?d@} . if¢<s (63)
¢ 2/3
e(¢) = [3/2/5 \/ﬁdgl} . if¢>4 (64)
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with § = min((.,n).
After integration of (61) with the boundary condition (57), the solution for the hori-
zontal velocity @ is

B0(€) = fon = CAQ) + (™G = ) BIC) — [ 9(C)eCdInG, (65)

In (65) the dimensionless functions A(¢) and B(() are

/ Aszn 4anz ¢S dln¢
_ L

A(C) = \/—
Bo) = - [ \F ane@dlncl (66)

3.2.4 Patching the ISL and SSL solutions

To obtain the constants C' and C,, the equations for the horizontal velocity in the ISL (54)
and in the SSL (65) are substituted into the lower boundary condition (58). This gives
oo (Uon — Us) + (B: — A.BL/AL)(ne ™Gy, — &) — [P ®(C)eldIn( (67)
' log(e/Co) — A/ (e AL) ’
C = Cuf(eA) — (ne™G, — B,)(BL/AL). (68)

Here A. = A(e) and B, = B(e), while AL = 0A/8¢ and B! = 0B/J( are derivatives at
¢ = €. With (68) the horizontal velocity inside the SSL (65) can be written as

0) ~ o = O 25+ (70, — ) (31 - 2 ©) - [ e s, o)
€A, < ¢

Equations (54) and (69) define the zero-order solution of the horizontal velocity in the ISL
and SSL respectively. This solution depends on the near surface friction velocity defined
via the resistance law (67). The resistance law relates the surface stress (the friction
velocity) to the velocity difference across the IR caused by the surface orbital velocity and
wave-induced velocity in the lower part of the OR. Notice that to calculate the horizontal
velocity from (69) the kl-order solution for the vertical velocity is needed.

3.2.5 Vertical velocity

The kl-order correction of the vertical velocity has a fundamental physical meaning. It gives
the real part of the vertical velocity which plays a dominant role in the wave generation by
the wind. Vertical motions correlated with the wave elevation produce the slope-correlated
variation in the air pressure. The pressure correlated with the wave slope in turn provides
the energy transfer from the air flow to the waves.

The first-order solution for the vertical velocity inside the IR follows from equation (51)
with %y defined by (54) and (69). However, this solution does not provide the attenuation
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of the vertical velocity above the IR. It is clear that such a behaviour of the vertical velocity
is not physical, which is explained by the fact that the solution for up used in (51) is valid
for small kz only, i.e. inside the IR.

Outside the IR all wave-induced variables of the air flow decay exponentially with

height. To account for this fact the exponential decay is introduced in equation (51). The
equation for w; takes the form

¢
B1(C) = —ikle¢ / (@ — UeH)dc, (70)
o

It is this equation which is solved by iterations together with the equation for the horizontal
velocity (69).

Equation (70) is very important to understand the mechanism of wave generation. The
imaginary part of the horizontal velocity, produced by the action of the shear stress inside
the IR, generates the real part of the vertical velocity which is in phase with the wave
elevation. This velocity penetrates into the inviscid OR and generates the slope-correlated

pressure. The pressure then penetrates the thin IR and forms the energy flux from the air
flow to the wave.

3.2.6 Shear stress variations

The turbulent shear stress defined by equation (45) is rewritten in the form

R 3+cos?0\  _.0u
7'13(0:( 2 ) e all

3 — cos? 0 o (71)
With (61) and (68), this equation reads

T13(¢) = (%) [C'*D(C) — (nG, — ®,)E(C) + (I)(C)} _ (72)

The function ®(¢) is defined by (62), and the functions D(¢) and E(¢) are

D(¢) = \z,é

(73)

EQ) = |}

Equation (72) is valid inside the SSL (¢ < ¢ < n). In the ISL (o < ¢ < €) the shear stress
is constant and equals

(74)

2
213(0) = (3+cos 9)

3 —cos?6
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3.3 Energy transfer from wind to wave

The energy flux F,, from wind to waves is

OE,
T (Tijusng)
= pgc{ P O + po (Tsus) . (75)
S 0"1: E

Here T, is the tensor of the total surface stress, u,; is a component of the surface velocity.
n; is a component of the unit vector normal to the surface, p, is the air density, P, = P(zp)
is the surface pressure (including normal turbulent stresses), 7, = T13(2p) is the turbulent
shear stress at the surface, and brackets () denote an average over the wave length.

The dimensionless growth rate parameter 3 is defined as

1 OFE,
E,w ot

B= (76)

where the gravity wave energy F,, = 1/2p,¢a% In terms of normal modes this expression
takes the form

—2
a u* D ~ ——
= 22 [m(Po) + Re(?)], (77)

where P, = ﬁo(éo), and 7, = 713(¢y). The first term in (77) describes the energy flux due
to the work of pressure (and the normal Reynolds stresses) on the vertical orbital velocity;
the second term represents the work of the surface tangential stress on the horizontal

orbital velocity. The term Re(7,) is defined by (74) and (67). The surface pressure (and
the normal stress) can be found from (11):

-~

Im(By,) = n2k / " (U, — Re(fi3)) dz, (78)

where the vertical velocity is defined by (70), and the shear stress is defined by (74) and
(72).

The growth rate parameter is compared with Miles (1957) theory in Section 4.3. In
Miles theory the growth rate parameter is written:

j ‘ B U// R
B =2nk> (—k—U—,wQ) i (79)

<

With the estimate (32) of the vertical velbcity at the critical height, the growth rate
parameter in the inviscid shear flow is written as:

B = 2rk">Re(v)%kz F 26 g ’
=2 Y)“kz, - Ule™dz) . (80)
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4 Results

4.1 Wind velocity and shear stress profiles

In this section we present the comparison of the wave-induced velocity and Reynolds stress
fields predicted by the simplified model with those predicted by a 2D numerical wave
boundary layer model (WBL model). The latter is described in detail by Mastenbroek
et al. (1996). Here we only mention that the second-order turbulence closure scheme
developed by Launder et al. (1975) is used to model the turbulent stresses. Parameters of
the surface wave and the air boundary layer used for the comparison are listed in Table 1.
The vertical profiles of the velocity and the Reynolds stress are shown in Figures 3a-3g.

Run | Uy angle Up/c c/u, kz, kl kzy

1 5 0% 0.5 60.8 1.9x10° 0.02 5.0 x 10-°
2 5 QO 0.83 36.6 328 0.05 1.4x107°
3 5 0° 1.66 183 85x10"2 0.28 55 x 10~
4 5 Q0 5 6.1 57x107% 0.11 5.0x 104
5 15 0° 0.83 28.8 2.22 0.11 1.7x 1075
6 15 0° 1.66 144 25x107? 0.17 6.8 x 10-5
7 15 180° 1.5 159 — 0.03 5.6 x10~°

Table 1: Parameters for different test runs

In the OR (kz > kl) the structure of the velocity field reflects the properties of the
inviscid shear flow above a wavy surface. Here the wave-induced motion is defined mainly
by the elevation-correlated (real part) component of the horizontal velocity and the slope-
correlated (imaginary part) component of the vertical velocity. Their quadrature compo-
nents (/m(u) and Re(w) respectively) are negligible in the OR. A good agreement of the
approximate solution based on equations (34) and (36) with the numerical solution based
on 2D WBL model is found for all 7 cases.

In run 1 (Figure 3a) the surface wave runs faster than the wind. At sea this case
corresponds to swell. The critical height is located outside the wave boundary laver. The
structure of the IR is determined by turbulent stresses. The main role of turbulent viscosity
in the IR is that it provides the patching of the air flow fluctuations to the orbital velocities
of the surface wave. This results in the generation inside the IR of the slope-correlated
horizontal velocity, and hence (through the continuity equation) the elevation-correlated
component of the vertical velocity. The latter is small (kl-order) but plays a crucial role
in the energy and momentum exchange between wind and waves. The vertical profiles of
turbulent shear stress obtained by the simplified and the numerical model are in qualitative
and quantitative agreement. Both models predict a strong enhancement of surface stresses
in the region of the wave trough.

The wave in run 2 (Figure 3b) corresponds to the peak of the wind wave spectrum of a
fully developed sea characterised by inverse wave age U, /¢ = 0.83. The features of the air
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flow are qualitatively the same as for case 1. Again the comparison between the simplified
and the numerical model is reasonable both in the outer and in the inner region.

Case 3 (Figure 3c) corresponds to a surface wave of which the frequency is twice that
of the peak of a fully developed sea spectrum. The height of the TR kI = 0.27 is close to
its maximal value (see Figure 1). In this case it could be expected that the solution of the
simplified model deviates from the numerical solution as the accuracy of our approximation
is of kl-order. An additional complication could arise from the fact that the critical height
iz = 0.084 is comparable to the height of the IR. However, the comparison is encouraging.
The simplified model reproduces well the local maximum in Re(u) and the local minimum
in stresses in the vicinity of the IR height kz = 0.3. These extremes are generated by the
vertical advection of vorticity.

Run 4 (Figure 3d) corresponds to a slow wave. Again a good comparison in velocity
distributions is found. The structure of the IR is characterized by a speed-up of the
horizontal velocity over the crest. The horizontal acceleration of the air flow occurs in the
vicinity of the IR height and is caused by the source of vorticity: just on this level the
real part of the vertical velocity has its maximum. The numerical model gives a somewhat
stronger acceleration of the flow than the simplified model. This is explained by the fact
that the turbulent mixing in the numerical model at the upper boundary of the IR is more
suppressed than in the simplified model. The vertical profiles of the turbulent shear stress
are in qualitative agreement, though the local extreme of Re(7) is underestimated by the
simplified model. Furthermore, the simplified model cannot reproduce the existence of
slope-correlated stress in the OR.

While runs 1 to 4 had low wind speeds, runs 5 and 6 (Figure 3e and 3f) illustrate the
case of strong wind. Here, the inverse wave age is the same as in runs 2 and 3 respectively.
The model calculations give similar results as were obtained for low wind (compare Figures
3b and 3e, and Figures 3c and 3f). This shows that the structure of the wave-induced fields
is defined mainly by the wave age of a wave component, rather than by the wind speed
itself. A reasonable agreement between the solution of the simplified and the numerical
models can be noticed.

Finally, case 7 (Figure 3g) is related to swell which propagates against the wind. In this
case the horizontal velocity speed-up occurs over the crest of the wave. Inside the IR the
action of turbulent stresses shifts the region of the accelerated air flow to the downwind
slope. The maximum of surface stresses is in the vicinity of the wave crest, but is shifted
to the downwind slope. Remarkabley, the simplified description of the turbulent wave
boundary layer is well consistent with the complicated 2D WBL model.

The main conclusion can be drawn from a comparison between the models. The general
peculiarities of the air flow dynamics over surface waves for a wide range of phase velocities
{from waves running faster than the wind to waves running much more slowlv than the
wind) can be reproduced both qualitatively and quantitatively with the use of a simplified
description which is conceptually based on the division of the turbulent wave boundary
layer into two parts: the outer region and the inner region. The description of the air flow
in the OR is based on the solution of the Rayleigh and the vorticity equation for inviscid
shear flow. In the IR the wave-induced motions are found through solution of the vorticity
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equation in which the turbulent diffusion of vorticity is taken into account.

For a correct parameterisation of turbulence in the OR, it is only important that vari-
ations in turbulent stresses are suppressed. Which turbulence closure is chosen to provide
this suppression is not important: whether it is a complicated second-order closure scheme
or a primitive vertical damping of turbulent stresses, as is used in the simplified model.

4.2 Comparison with measurements

In this section results of the simplified model are compared with the laboratory measure-
ments of velocity and stress fields by Hsu and Hsu (1983). They used a mechanically
generated wave with phase velocity 1.6 m/s. Other parameters of three runs of this exper-
iment are shown in Table 2. In this table U, is the wind speed in the middle of the tank.

Run | Uy, Urexp U(k™Y) wu, Uk~Y/c
(m/s) (m/s) (m/s) (m/s)

1 1.37  0.043 14 0.06 0.87
2 212 0073 2.0 0.08 1.28
3 292 0.110 29 013 1.84

Table 2: Parameters of the experiment of Hsu and Hsu (1983)

The wind velocity at z = k™!, denoted by U(k™"), and the friction velocity u, presented in
Table 2 are determined by fitting a logarithmic profile to the observed mean wind speed.

The wave-induced horizontal velocity and shear stresses measured in a wave following
coordinate system are shown in Figures 4a-4c. The vertical velocity is not shown in the
figures as there is an apparent bias in these data of which the cause is unknown (Masten-
broek, 1996).

Runs 1 and 2 relate to cases where the wave moves somewhat more slowly and faster
than the wind respectively; run 3 represents a slowly propagating wave. In cases 1 and 3
the measurements were done in both outer and inner regions, while in case 2 the IR depth
is large, and all measurements are confined to the inner region.

The data confirm the existence of the outer and inner regions. Neither case 1 nor case 2
exhibits any significant variations in the turbulent shear stress inside the OR, while inside
the IR a systematical trend in the shear stresses is clearly seen. In run 2 all measurements
are done inside the IR, and the stress varies throughout the whole domain.

Peculiarities of the wave-induced horizontal velocity are determined by the phase speed
of the wave (or more correctly: by the wave age parameter). If the wave runs faster than
the wind, then the air flow accelerates above the trough (run 1). Otherwise, the air flow
accelerates over the crest (runs 2 and 3): the larger the speed difference between wind and
wave, the stronger the acceleration.

The simplified model reproduces well the behaviour of the wave-induced disturbances
of the velocity and stress fields above the wave. The only significant deviation of model
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predictions from laboratory data can be observed in the lower part of the vertical profile
of Re(T).

4.3 Comparison of predicted growth rate with WBL-model and
Miles’ theory

In Figure 5 a comparison of the growth rate parameter resulting from the simplified model,
the WBL model and the theory of Miles (1957) (see Section 3.3) is shown. In the IR the
air flow dynamics is governed mainly by the shear stresses. They generate the real part
of the vertical velocity (in ki-order, see equation (70)), which in turn generates the slope
correlated surface pressure (78) in the OR. This pressure penetrates the thin IR and forms
the energy flux to waves (sheltering mechanism of wave generation). The magnitude of
Re(i) and hence Im(Py,) is less than that predicted by Miles theory, which results in
smaller values of . In the range 15 < ¢/u, < 22 the growth rate has a peak. Its origin can
be explained by the fact that in this range of c/u, the critical height approaches the upper
boundary of the IR, and peculiarities of the critical layer dynamics (though they are still
suppressed by the weakened turbulence) become important. In the range of fast waves the
growth rate parameter is negative; it means that waves return their momentum to the air
flow.

Qualitatively, the simplified model reproduces well the growth rate dependence on ¢/u,
resulting from the numerical WBL-model. There is only a small underestimation of 3.

It is rather surprising that Miles’ theory predicts the largest values of 3 for slowly
moving waves (c/u, < 15), and is in better agreement with empirical values of the growth
rate parameter (Plant, 1982). It was shown in Section 2.2.1 that the applicability of
the quasi-linear theory is restricted to a very narrow range of the inverse wave age around
Uip/c >~ 1.2. Outside this range the critical height is inside the IR and its singular behaviour
must be significantly suppressed by the action of turbulent stresses. Comparison of the
wave-induced velocity resulting from Miles’ theory with the measurements of Hsu and Hsu
(1983), clearly shows that this theory does not hold.

A comparison of the angular distribution of the growth rate 3(#) predicted by the
simplified and the WBL model for inverse wave ages Uyg/c = 1.5 and 5 is presented in
Figure 6. Both models predict a widening of the angular dependence of 3 with an increase
in the wind speed. For the fast wave the simplified model is well consistent with the
numerical model. For the slow wave the simplified model gives a more rapid drop of 3
with increasing angle than the numerical model.
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5 Discussion and conclusions

A simplified model of the wave boundary layer over a surface wave propagating at an
arbitrary phase velocity (as compared to the wind speed) and direction (relative to the
wind direction) has been presented. The main simplification of the problem is achieved by
the division of the wave boundary layer into an outer (OR) and an inner (IR) region. In
the OR the wave-induced motions experience inviscid undulation, while in the IR, they are
strongly affected by the turbulent shear stresses.

The IR depth is relatively small (ki ~ 0.1) for all waves, except for those running with
a phase speed close to the wind velocity (wave age is 1 < Upjg/c < 1.2). In this narrow
range the height of the IR is kI ~ 1. An important conclusion resulting from the analysis
of the IR depth is that the critical height (the height where the wind speed equals the
phase velocity of the wave) is almost always located inside the IR. This means that the
singular behaviour of the critical layer dynamics is strongly suppressed by the turbulent
stresses for all waves, with exception of those with a wave age close to Uyg/c ~ 1.2.

The fact that the singular behaviour of the critical layer dynamics does not influence
the inviscid outer region, allows a simple description of the wind velocity in the OR. This
description is based on the approximate solution of the Rayleigh equation suggested by
Miles (1957). The solution for the vertical velocity is proportional to the mean wind velocity
and an exponential decay function. The approximate solution for the horizontal velocity
results from the integration of the inviscid vorticity equation with known vertical velocity.
The description of the OR in the simplified model is presented by explicit formulas, and
is compared with the results of the numerical solution of the Rayleigh equation. A good
comparison is found.

The description of the IR is based on the solution of the vorticity conservation equation
which accounts for the turbulent diffusion of vorticity. The turbulent shear stresses are
parameterised using the mixing length closure theory. Introduction of exponential vertical
damping of the wave-induced shear stress leads to further simplification of the problem.
The damping of the shear stress describes phenomenologically the basic feature of the wave
boundary layer: the rapid distortion of turbulence in the OR. The zero-order solution (in
terms of a kl-power expansion) of the vorticity equation is found. Explicit relations for
the wind velocity and the shear stress inside the IR are found and patched with the OR
solution.

Correction of the IR solution in kl-order only has a physical significance for the real
part of the vertical velocity. This component of the vertical motion, being generated inside
the IR due to the action of the shear stress, penetrates into the OR, and generates the
slope correlated component of the air pressure there. This pressure penetrates the thin
IR and forms the energy and momentum flux from wind to waves (the so-called sheltering
mechanism of wave generation).

The comparison of results obtained by the simplified and the numerical 2D WRL model
is encouraging. Reasonable agreement is found between the wave-induced velocity, the
shear stress and the growth rate parameter. This result has a very important consequence:
the description of the air flow dynamics over waves appears not to be sensitive to the details
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of the turbulence closure scheme. For a correct description of the air flow a scheme only
has to provide the vertical damping of the wave-induced stresses at a scale comparable
with the IR height. The phenomenological approach used in this paper is based on a direct
suppression of the turbulent stresses with height. This gives results which are close to those
found by using the complicated second-order Reynolds stress closure scheme developed by
Launder et al. (1975).

The results of the simplified model are consistent with data of Hsu and Hsu (1983)
obtained in a laboratory experiment. The experimental data confirm the existence of the
outer (and the inner) region above waves.
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A Appendices

A.1 Langer’s method
We search for the approximate solution of equation (55), which we write as:

2
g—; —m(Q)r = £(C), (81)

with 7 = (e™$01,/0¢ and f = T,. We use an approach developed by Langer (1934), which
allows to avoid the singular behaviour of the solution in the point (., where m*((.) = 0

(the so-called turning point). Following Langer’s method, we introduce new independent
variables:

1= ¢(C) and v = ¢(¢)7((). (82)
Then equation (81) takes the form:

62 a N\ — fond 2N RAT
5+ ()7~ 2<,o'w'/w)% + ()7 (-m? =W Y) ) v = fe(e) ™ (83)

The functions ¢(¢) and () are chosen so that

w:\/aa

Wy — 7 (84

Then equation (83) becomes
82’0 nN—3/2 [=¢
w—nU:f(V?) 2, (85)

In this equation the term dv is omitted, where § = =3/4(¢")2 (&) + 1/2¢™ ()3 Tt is
assumed that the omitted term is significantly less than nv.
The general solution of equation (85) is

v = C14i(n) + CyBi(n) + ¥(n), (86)
where Ai and Bi are Airy functions (see Appendix 2), and ¥ is a partial solution of

the non-uniform equation (85). The partial solution can be obtained through the Green
function G:

U(n) = /0oo G(z,m)f (z)(¢'(x)) " da.
The Green function for equation (85) is
G(z,n) = m [Ai(z)Bi(n) — Ai(n)Bi(z)] H(n - z), (87)

where H(n — z) is the Heavyside function, defined as H — 0,ifn—2z<0and H =1, if
n—zx>0.
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A.2 Airy functions

The Airy functions Ai and Bi are independent solutions of the following differential equa-
tion (Abramowitz and Stegun, 1964)

Their integral presentation is:
(3a)™PrAi [i(?)a)‘l/%] = / cos(at’® & zt)dt
0
(3a)~Y3nAi [:t(3a)_1/3z] = / [exp(—at3 + 2t) + cos(at® + zt)dt] dt.
0

In the present study the Airy functions are used to find the approximate solution inside
the TR. In this region the variable z is limited by the condition |z| < 2. For convenience of
calculation the Airy functions in this range of z can be presented in ascending series:

Ai(z) = C1f(z)“029(2),
Bi(z) = V3(cif(2) + eag()).

Here ¢; = 0.35502 and ¢, = 0.25882 are constants, and the functions f and g are defined
as:

N1 Bk
f(z) = ;3k(§)km,

N 72 Z3k+1
9(z) = 20:3k(§)km,

where (@ +1/3)p = 1 and 3*(a+1/3), = (3a+1)(3a+4) - - -(Ba+3k—2),fork=1,2,3....
(with v = 0 and ow = 1/3 in the f and g series respectively)

A.3 Numerical solution

Equation (56) gives a second-order ordinary differential equation in the variable (e™*1y /9C.
Instead of an approximation with Airy-functions, it can also be solved by a numerical
method. In this case it is more convenient to remove the inner surface layer, so that the
equation is solved from { = (; to ( = n. Then two boundary conditions are needed. At
¢ = n, the solution has to patch the OR-solution (Eq. (58)). However, at ¢ = (; no direct
boundary condition is available. Therefore the following procedure is applied:

1. A first guess for 9ig/0¢ at ¢ = (; is taken.

2. Eq. (56) is solved numerically.



3. The profile of the horizontal velocity gradient found in this way 1s integrated from the
surface to the top of the SSL, starting with the lower boundary condition ty(¢y) = ;.
This results in a value of dy(n — 0).

4. Dependent on the difference Uo(n +0) — do(n — 0), the lower boundary condition for
Otig/0C¢ is changed and the iteration is repeated from step 2.

The iteration is continued until 4g(n + 0) — tg(n — 0) is small enough.

(\]
~1
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Figures

Figure 1. Vertical structure of the turbulent boundary layer over a wave as a function of
Uk/c for wind speed Uy = 5 m/s (frame a) and Uy = 15 m/s (frame b). The solid line is
the IR scale ki (equation (21)); the dashed line is the critical height kz. (equation (14));
the dotted line is the roughness scale kz, (equation (15)).

Figure 2. Inviscid shear flow: profiles of real and imaginary parts of vertical (@(x3)) and
horizontal (%(23)) velocities. The wind speed Uy, = 15 m/s. The inverse wave age param-
eter is Uyp/c = 2 (left column), and Uyp/c = 5 (right column). The approximate solution
(equations (34) and (36)) is shown by dashed lines. The solid lines show the numerical
solution of the Rayleigh equation (29) with the horizontal velocity defined through the
continuity equation (5). Wind velocities are normalized on aki, /k. The critical height is
kz:=0.018 for Up/c = 2, and kz. = 0.004 for Uo/c = 5.

Figure 3a. Profiles of real and imaginary parts of the horizontal velocity (left column),
the vertical velocity (middle column), and the shear stress (right column). The solid lines
show the solutions of the simplified model for u(z), @(z), and 7(z) (equations (65), (70),
and (72) respectively); the dashed lines show the results of numerical calculations based
on the 2D wave boundary layer model with the second-order closure scheme (Mastenbroek
et al., 1996); the dotted lines represent the simplified model solution obtained with the
numerical method (see Appendix 3). Wind speed is Uy = 5 m/s; inverse wave age is
Ui/c = 0.5. Wind velocities are normalized on ak@,/k, and the shear stress is normalized
on aku?.

Figure 3b. The same as in Figure 3a, but Uyjp =5 m/s and Uyy/c = 0.83.

Figure 3c. The same as in Figure 3a, but Uy, = 5 m/s and Usjg/c = 1.66.

Figure 3d. The same as in Figure 3a, but Uyp = 5 m/s and Uyy/c = 5.0.

Figure 3e. The same as in Figure 3a, but U = 15 m/s and Uyy/c = 0.83.

Figure 3f. The same as in Figure 3a, but Uy, = 15 m/s and Uy /c = 1.66.

Figure 3g. The same as in Figure 3a, but for a wave moving opposite to the wind. Wind
speed is Uyg = 15 m/s and inverse wave age is Up/c=1.5.

Figure 4a. Comparison of the simplified model results (solid lines) with lahoratory
measurements of Hsu and Hsu (1983), shown by open squares. Run 1: Uy = 1.4 m/s;
Uk/c = 0.87 (see Table 2 for details). The horizontal velocity is normalized on aku, /k,
and the shear stress is normalized on aku?.

Figure 4b. The same as in figure 4a. Run 2: Ug=2.0 m/s and Uy /c = 1.28.

Figure 4c. The same as in figure 4a. Run 3: U, = 2.9 m/s and Uy/c = 1.84.

Figure 5. Growth rate parameter as a function of U, /c for different models. The solid
line denotes the solution of the simplified model for Uio = 5 m/s (squares), and U, = 15
m/s (triangles); the dashed line relates to the solution of the 2D numerical model (Masten-
broek et al., 1996); the dash-dotted line represents the solution of the quasi-laminar model
of Miles (1957).

Figure 6. Angular dependence of the growth rate parameter at Uy = 15 m /s. Inverse
wave age Uyg/c = 5 (upper frame) and Uo/c = 1.5 (lower frame). Solid lines correspond
to the simplified model, dashed lines to the 2D numerical model.
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