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1. Introduction

In this report the stability behaviour of a coupled atmosphere-ocean model is investigated. The
model is a combination of Lorenz’s 1984 atmosphere model (Lorenz, 1984) and a simplified
version of Stommel’s two-box ocean model (Stommel, 1961). It comprises five variables, three
describing the atmosphere and two describing the ocean.

The aim of studying this model is to get some insight in the effect of coupling on a chaotic
system, and it is hoped that some general properties of coupled models can be found that will
also apply to more complex and perhaps more realistic climate models.

The model has been studied before by Gideon Zondervan (Zondervan, 1996) in 1996 by way
of numerical experiments. He found some interesting properties. In many cases the behaviour
did not differ too much from the original Lorenz-84-model, but in some cases the occurrence
of intermittancy was observed. This is the phenomenon that a chaotic regime is from time to
time interrupted by an apparently periodic interval. The system will remain in this pseudo-
periodic mode for a limited time and then become fully chaotic again.

In the present study the equilibrium solutions of the model and their stability are investigated
more closely. This is the first step in a more svstematic bifurcation analysis, which may help to
understand better some of the results found earlier.

2. Model description

The model is a combination of Lorenz’s atmosphere model and a simplified version of
Stommel’s two-box ocean model. Lorenz’s model was chosen because it is one of the simplest
atmosphere models that has been shown to exhibit chaotic behaviour, which is considered a
vital property of the atmosphere. The ocean model was also chosen for its relative simplicity.
The ocean does not generate chaotic behaviour itself but it is driven by the atmosphere,
introducing new and longer timescales to the combined model.

2.1 Atmosphere model

The atmosphere model used is Lorenz’s 1984 model (Lorenz, 1984). 1t is described by the
following three equations:

X=-Y"-Z"+a(F-X) (1)
Y=XY-bXZ-Y+G (2)
Z=bXY+XZ-Z (3)

Here X represents the strength of the westerly current, and Y and Z represent the cosine and
sine phases of a chain of large superimposed eddies. The parameter F'1s the forcing of the
westerly current by the meridional temperature gradient, and G is the forcing by the continent-
oOcean temperature contrast. The constants a and b are equal to 0.25 and 4 respectively.

2.2  Ocean model

The ocean model consists of two reservoirs, representing the polar and the equatorial region of
the ocean in the northern (or southern) hemisphere. The two boxes are connected by a pipeline
at the bottom, and an overflow at the surface. The flow (f) through the pipeline is assumed to
be proportional to the temperature (7) and salinity (S) differences. The same amount of water
will flow back through the overflow. Thus the exchange of properties between both boxes is
independent of the direction of the flow, which is reflected by the use of an absolute value in
the equations. The equations used are:



T: k‘d (Y;Im _T)_'f’T_kuT (4)
S=8-|fS-k,S (5)
f=0T-£ES (6)

Herein k, is a coefficient for the heat exchange between the ocean and the atmosphere, Ty, 1s
the temperature difference between polar and equatorial air, k. is a coefficient for the internal
diffusion of the ocean (through the overtlow and between the box boundaries), & represents a
constant increase in the salinity difference, through the difference in precipitation and
evaporation between the polar and equatorial regions, and @ and & are coefficients that account
for the different contributions of 7 and S to the forcing of the flow.

2.3 Coupled model

Now the two models need to be coupled. Since the strength of the westerly current (X) is
directly related to the meridional atmospheric temperature gradient (Tum), the latter can be
replaced by a function of X. In this model a linear relation is assumed.

The water vapour transport (8) is considered to be the sum of a constant part (&) and a
varying part, assumed proportional to the eddy activity (Y*+Z7).

Finally the atmospheric forcing parameters F and G are made relative to the occanic
temperature difference (7).

The coupling equations are summarised below:

L., =vX (7)
§=8,+8,(r' +2%) (8)
F=F+ET 9)
G=G,+G(T,-T) (10)

The constants &, ki, 8o, & and ® have been chosen according to the estimations made by
Roebber (Roebber, 1995) and the coupling parameters Fy, G, and 8, have been chosen such as
to ensure that the atmospheric parameters F and G are within the *“chaotic window” as found
by Anastassiades (Anastassiades, 1995). This chaotic window is bounded by 8.0 < F<8.5 and
1.0 £ G < 1.1. The parameter values thus arrived at are presented in the following table:

a 025 b 40

Fy, |80 Go |1.0

F, 0012 G, 10.010
ke | 1.8%10-4 |k, |1.8%10-5
S |7.8%10-7 |5, |9.6%10-8
o [13*10-4 [g [1.1%10-3
T 1300 v ]300

Table 1: Parameter values

While the other parameters remain constant, F; and G; are used as bifurcation parameters. In
Zondervans experiments they were varied within a window bounded by 0.00 < F; £0.08 and
0.00 < G, £ 0.08. In this study we will sometimes extend this region in order to incorporate a



region where interesting behaviour occurs. Their default values will be 0.012 and 0.010
respectively.

3. Model analysis

3.1 Equilibrium solutions
The equilibrium solutions of the system are given by the following set of equations:

X=-Y-Z"+a(F,+FT-X)=0 (1)
Y:XY—bXZ—Y+GO+Gl(Ta\,—T):() (12)
Z=bXY+XZ-Z=0 (13)
T:ka(yX—T)—]a)T—iS]T—kwT: 0 (14)
$=8,+8,(Y' +2°)~|oT-ES|S -k, 5 =0 (15)

The system can be rewritten in the following manner:

ad, (k, +k, — vk F )T+ VoK, S +(ad,T + vk, S T —£S| vk, (8, +ad,F)=0 (16)
b 1 k
X=F+FT+—2——|oT-£S|S—~>_g 17
b+ h +a§1 ad, o 2 ad, 4
a(F, +FlT—X)(l—ZX+(1+b3)X2)—(G0 +G,(T,-T)) =0 (18)

(1-X)(G, +G,(T,, - 7))
1-2X+(1+57) X
_ bX(G,+G,(T, - T))

‘= 1=2X+(1+b)X? 20

(19)

3.1.1 Relation between T and S at equilibrium

Expression (16) represents a relation between T and S which must be satistied in the case of a
steady state. In order to simplify the equation the following new constants will be introduced:
A=ad,(k, +k, —Vk F)

B ="k k,
C=ad,
D =k,
E=vk,(8,+ad,F,)
Herewith expression (16) can be rewritten as:
AT+ BS+(CT+ DS)wT -ES|-E=0 21

Assuming that @T-ES > () the following two solutions for $ are found:

S :515<B+(mD_gc)T)iszD\/(B*'((DD—E_,C)T>Z +4§D((&)CT2 +AT—E) (22)

And assuming that 0T-&S < 0 two more solutions for S are found:

Sia= —ﬁ(zz - (mD—&C)T)iZQB\/(B—(wD— EC)T) +4ED(wCT” — AT + E) (23)




(81 and S5 refer to the equations with the ‘+’sign, S, and S, to the equations with the ‘-’sign.)

In order for these solutions to exist the discriminants must be greater than or equal to zero. For
S1 and §- this requires that T< T, or T > Ty, with T, and Ty, according to:
. ©OBD-EBC+2LADY J(@BD—EBC+2EAD) —(0D+EC) (B’ —4EDE) .
abh — 3 ( )
g (wD+ECY
(T, refers to the equation with the ‘+'sign, and Ty, to the equation with the *-’sign.)
For §3 and S, the discriminant is always positive for the selected parameter ranges.

The solutions S, and S; intersect the line @7T-ES = O in the point:
P8 O
®wB+EA ®B+EA

Checking the solutions with the assumptions about the sign of w7-ES gives us their respective
domains:

(25)

for L. <T< T, S=5 (26)
forT 2Ty S=5 27
forT < T, S=35; (28)

Solution S, doesn’t satisfy the assumptions anywhere and must be disregarded.

To complete the description: for the selected parameter range we have that:
for ®T-&S >0 T2T,>0
for wI-&S <0 T<T),,S=$5>0

S, and S» describe different parts of the same curve, S; describes another curve; both curves
meet in the point (T, So).

...................................... —9.;.06....,.
0,05 4
0,04 + S1
-2
a 0,03 —-Toss
' - f=0
0,03
d’ ‘.
H ~
- / \‘\
R 0,01 e
e — - ~ ..
f——— T -
3 yel 1
1,5 i 0.5 0 T 0,5 1 1,5

Figure 1: Relation between S and T at equilibrium, with ;= 0.012.

3.1.2 Relation between T, X, G, and F at equilibrium.

Expression (18) gives us a relation between 7, X, G; en F,. It is difficult to solve the
expression for one of the variables, but it can be solved for the parameter G;. We find the
following two solutions:

G, ! 2\ 2 ,
—E\.LTi Tav_T\/CI(E,+F1T—X)(1—2X+(1+IJ )X°) (29)

1



3.1.3 The total solution

Inserting the equations for S, S, and S; into (17) and then inserting the resulting three
equations into (29) we find in all six solutions for G, as a function of T and F 1. Or three
solutions, if we limit ourselves to the positive values of G,. In a similar manner, which will not
be repeated here, an expression for G, as a function of X and Fy can be found. The most
striking feature of the curve is the small peak that occurs for Tvw<T<T,. In most cases a
horizontal line representing a certain constant value of G, will intersect the curve one or three
times, indicating one or three possible equilibrium solutions, but for one small interval of values
of G, the horizontal line will also intersect this small peak, raising the number of possible
equilibria by two.

Since each of the three solutions for G, as a function of T corresponds to only one function S
of T, a given combination of G; and T will produce only one value of S, and with equations
(17), (19) and (20), only one value of X, Y and Z respectively. So we can safely restrict
ourselves to the variable T if we wish to find the number of possible equilibria.
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06 0,01325 4

I
0,0132 +
04 1

0,01315 4+

02+
00131 +

0,01305 ; t + -
03 035 04 T o5 05

+ + —
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Figure 2: Relation between G, and T at equilibrium, with F 1 = 0.012.

3.1.4 Influence of other parameters

Influence of the F\ parameter

Equation (29) can only be solved if Fo+F,T-X = 0. This can be shown to be equivalent with:
8, —|wT —ES|S —k,5<0 (30)

. Assuming that ®T-£S > 0, for S the following inequality is found:
oT +k, - \/((DT +k, )2 — 485, ol +k, + \/(mT+ k, )2 — 483,

=§< (31
2% 2% )

Combining equation (14) with the assumptions that oT-ES 20 and X < Fo+F, T yields:
k(v(F, +ET)=-T)-oI" —k,T+ETS> () (32)

This must be true for even the smallest value of S, which is given by the left-hand side of
equation (31):

(VB + ET)=T)=4T(0T +k,)-4T\(@T+k, ) — 455, >0 (33)
As 0T-ES 2 0 infers that 7> 0 (see § 3.1.1), we finally find for F\ the following expression:
F, 1 1 2
F2——°+—+——( oT +k, )+ (0T +k ) -4 6,] 34
1 T Y 2’Yka ( »\) \/( »\) g ( ( )



I1. Assuming that 07-&S < 0, for S one of the following inequalities must hold:

T —k, —+(0T -k, ) +4ES,
S< - \/(25 D (35)

or

T —k, ++ (0T —k_) +4E3,
s> il ‘/( 7 o) +4 (36)

As 0T-ES < 0 infers that S > 0 (see § 3.1.1), expression (35), being always smaller than zero.
can be ignored, leaving us only with (36).

Combining equation (14) with the assumptions w7-£S < 0 and X < Fo+F T yields:

k(Y(F, + FT)=T)+oT’ =k, T-ETS 20 (37)
And with (36) we subsequently find:
k(Y(F, + ET)-T)+ oI —kwT—%T(mT— k, +\/(coT—kw ) +4E8, ) >0 (38)
For T < 0 we find:
Es-—5+l—L((mT—k,)—\/(mT—k.)z+4§6 ) (39)
T v 2%k, ¥ " !
and for T > 0 we find:
F 2---F‘—’+l~—]—((mT—k )~J(wT—k ) +4E3 ) (40)
1 T Y 2Yka W W 0

This last expression yields values of F; much smaller than zero, which for the purpose of this
study can be ignored, so that for 7 > 0 expression (34), and for T < 0 expression (39) will
suffice. In the figure below two curves are shown, the area below the left-hand curve

& R ooossosnss:

Figure 3: Maximum and minimum values of F; as a function of T.

Equilibria are only possible in the area between both curves. Given a certain value of F, the
intersection with the right-hand curve marks the maximum value of T for which, for a certain
G, an equilibrium can be found. For values of F; greater than (.92 also two intersections with
the left-hand curve occur, marking another interval of T values for which no equilibrium is
possible for any value of G,. The pictures below show the generation of this interval.
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Figure 4: Generation of an interval without solutions in the G,-T-curve.

In § 3.1.3 the occurrence of a small peak in the G,-T curve was mentioned. For values of F
smaller than about 0.25475 this peak is pointing down, for values of F; between 0.25475 and

0.28340 it is horizontal and for F; greater than about 0.28340 it is pointing up. This is shown
in the figures below:

0.014

0.0138

0.0136 +

0.0134 ¢+

-

[}
0.0132 +

0013 +

G.0128 4+

0.0126 ; + ' + " i o012 " 4 } 4 ; ]
0 02 0.4 06 T o8 1 12 0 02 0.4 o6 T o8 1 12

Figure 5: Flipping of the small peak in the G,-T-curve

Influence of Go parameter

If we study equation (29) more closely we find that Go only occurs in the first term of the
right-hand side and that Fy, F,, X and T are all independent of Go. So Gy only influences G,
uself. Increasing G, will lower G, and decreasing G, will raise G,, without significantly
changing the characteristic shape of the G,-T curve.

Influence of Fy parameter

The influence of F, is more complex, as Fy also determines expressions (34) and (39) and thus

the location along the T-axis of several characteristic points. However, the system is not very
sensitive to changes in F,,.

3.1.5 Fy-G, plane

In the G,-T curves that have been shown each horizontal tangent, as well as the endpoint of the
small peak, represent bifurcations, where two new equilibria appear or disappear when G, is
changed. The position along the G-axis of these bifurcations depends on the value of F,. In
the pictures below part of the F,-G, parameter plane is shown, with curves indicating the
different bifurcations. The letters refer to the corresponding bifurcations in the preceding G-T
plots and the numbers indicate the number of possible equilibrium solutions.
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Figure 6: G,-F, plane with bifurcation curves.

3.1.6 Stability

In order to examine the stability of each equilibrium the system will be linearized around an

arbitrary steady state. The following Jacobian matrix is found:

—-a =Y 27 aF
Y-bZ X-1 -bX -G,
J=|bY+Z bX X-1 0
Yk, 0 0  -0-(2oT-ES)-k -k,
0 28,y 28,2 G- S

Here o denotes the sign of the term = 0T-£S

0
0
0
c-ET
—o- (0T - 2ES) -k,

(41)

The eigenvalues of the system follow from IJ-All = 0, where A denotes the eigenvalues and 7
the unitary matrix. The equation is of the fifth order in A and it has 5 roots. The following

combinations of eigenvalues are found:

all 5 real parts smaller than zero

- with 2 complex, both of which are smaller than zero

- with 4 complex, all of which are smaller than zero
with 4 real parts smaller than zero

- with 2 complex, both of which are smaller than zero
with 3 real parts smaller than zero

- with 2 complex, none of which are smaller than zero

- with 4 complex, 2 of which are smaller than zero
with 2 real parts smaller than zero

- with 2 complex, none of which are smaller than zero

10
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In the figure below a G,-T curve is shown with the different combinations of eigenvalues.
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Figure 7: G,-T-curve with different combinations of eigenvalues, with F;=0.012

In most cases we find three real eigenvalues and two conjugate complex. This reminds us of

the Lorenz-84 model itself where also for each equilibrium one pair of conjugate complex

eigenvalues is found (Anastassiades 1995). It is tempting therefore to attribute the occurrence

of this complex pair to the atmospheric part of the coupled model. However, there are a few

small portions of the G;-T curve where we find not one but two pairs of complex eigenvalues,

as 1s shown in the picture below.
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s 11D e e
A - - - -2complex| 1,145 4 Lo T T T T~ . :
0.0136 4 . 4 - . 2 complex
N =4 complex R 4 complex
T e .
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0,0126 " " ' : — 111 : ; : : -
0 0,2 04 T 06 0,8 1 15 15,2 154 T 156 15,8 16

Figure 8: Portions of the G,-T curve with 4 complex eigenvalues, with F,=0.012.

Complex eigenvalues are associated with a spiralling movement, outward when the real parts
of the eigenvalues are positive, and inward when they are negative. In the case of four complex
eigenvalues this spiralling movement must extend to the oceanic variables as well.



Only when the real parts of all five cigenvalues are smaller than zero, the equilibrium is stable.
In the figures below the G,-T curve for F;=0.012 is shown again and the stable and unstable
regions are indicated.

—stable

0.01336 4

- instable

, 0,01332 4
e stable 01 i
- \ : -
- - instable ] B S
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: e H
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20 <15 10 -5 0T 5 10 15 20 -€ -4 2 T o0 2 4 035 037 039 041 T 043 045 047

Figure 9: Stable and unstable portions of the G,-T-curve, with F,=0.012.

Three stable regions can be discerned. The first covers all values of G, > 0.11326 and
T >-4779, the second region covers all values of G, from 0.03044 down to 0.013294. where
the peak occurs, and T from -2.08 up to +0.4568, and the third region all values of G, from
0.013348 down to 0.0126821, and T from 0.3645 up to 0.9563. The second and third stable
regions have a small overlap, as can be seen in the third picture. On the edge of the peak the
cigenvalues are undetermined.

4. Conclusions

It is not possible to express the equilibrium solutions explicitly as functions of the two
bifurcation parameters. We can, however, express G, as a function of T and Fy, while the other
four variables can be expressed explicitly as functions of G,, F; and T.

The number and positions of the equilibria do not seem to be very sensitive to changes in F).
They are, however, quite sensitive to changes in G,. The curve representing the relation
between Gy and T exhibits a small “peak’, a small fold, where three equilibrium solutions come
close together, ending in a sharp edge, where the flow between both ocean boxes is zero.
Within the specified ranges of F; and G, we find 1 or 3 possible solutions, or even 5, when the
small “peak’ is intersected. Of these equilibria 0, 1 or 2 are found to be stable. Although along
the peak two stable equilibria are found to exist, they appear to have extremely small regions
of attraction making it very hard to find them numerically.

For almost all equilibria we find three real and two conjugate complex eigenvalues. The latter
may very well be attributed to the atmospheric part of the model, since the equilibrium
solutions of the Lorenz-84 model themselves always exhibit two complex eigenvalues.
However, in some small regions we find not one but two pairs of conjugate complex
eigenvalues, so that the ocean must be implicated as well.

Several questions remain, that will have to be answered in a continued investigation: What is
the physical meaning of the peak? What influence does the peak have on periodic or chaotic
solutions nearby? What is the meaning of the occurrence of a second pair of conjugate
complex eigenvalues? How do the variables converge to or diverge from such an equilibrium?

12
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