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EUMETSAT Fellowship Report:

On the assimilation of ozone
into an atmospheric model

Elias Valur HéIm

Abstract

A global shallow water model with a tracer transport equation is developed,
and a theoretical demonstration is given of how dynamical information can
be derived from tracer observations in this model using data assimilation.
The advection scheme in the model is conservative and non-oscillatory
and the model is second order accurate in time and space. An exact formal
solution to the continuous and nonlinear data assimilation problem is
given using the Euler-Lagrange equations, including both model errors and
boundary conditions. The resulting system is a coupled boundary value
problem in time. For illustration, the Euler-Lagrange equations are derived
for the shallow water model. An appendix contains a tutorial on the
solution of the Euler-Lagrange equations with the representer method.
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Introduction

The work described in this report was performed as a EUMETSAT Research

Fellowship 1995-1996 at the KNMI, The Netherlands. The goal of the

Fellowship was to investigate the question how dynamical information can

be obtained from satellite ozone measurements for use in atmospheric

models. There are several conceivable ways to address this question, for
example:

a) Theoretical and experimental study in a relevant simplified model of
possible ways to derive dynamical information from ozone satellite
measurements.

b) Computerized analysis of a series of satellite ozone images for deriving
ozone winds in a manner similar to cloud wind retrievals.

¢) Incorporation of ozone sensitive satellite radiance measurements in the
radiative transfer models used in numerical weather prediction models.

d) Inclusion of ozone as a model variable in a weather prediction model
and letting ozone measurements influence the dynamics of the model
through the data assimilation system in use, just as any other
measurements.

The above approaches are complementary, and at a numerical weather

prediction center one would at one stage or another perform work along

each of these lines. The last approach, the inclusion of ozone in a data
assimilation system, must be considered as the ultimate step which puts
satellite 0ozone measurements on equal footing with all other observations
used in a weather prediction model. In a state of the art data assimilation
system (Courtier et al. 1997) ozone winds, ozone sensitive radiances,

retrieved total ozone and retrieved ozone profiles could all be treated in a

consistent manner.

In the present study we will follow the first approach described above,
and focus on the theoretical aspect of the problem in a simplified model.
However, we will adress the question by formulating a very general data
assimilation system for the simplified model, so that the concepts which we
can adress will be much the same as in the last approach using a weather
prediction model with state of the art data assimilation system. For
understanding the basic concepts there is even an advantage to use a
simplified system. Furthermore, when developing a new data assimilation
system as in the present work, it is advisable to test the system on a
simplified model version. The shallow water equations which will be used
in the present work are recognized as an essential step on the way to full
three dimensional weather prediction models, and is as such widely used
for testing new concepts in numerical weather prediction.

The original plan for the present work is summarized in Fig. 0.1. The figure
shows what has been achieved in the present work (thick) and what
remains to be done (thin). The formulation and tests of the global shallow
water model (SWE) with tracer is described in chapter 1. In chapter 2 a
general theory for data assimilation with nonlinear models using the Euler—
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Lagrange equations (EL) is summarised. In chapter 3 the theory is applied to
the SWE model with a tracer, and it is seen how dynamical information can
be obtained from tracer measurements. For the computational
implementation of a data assimilation system based on the Euler-Lagrange
equations, we use the concept of representers, and introduce the basic ideas
in a simple way in an appendix. The actual programming of the data
assimilation system has been performed, and preliminary experiments have
been done, representing the last two parts of the work, which puts all other
parts in their proper context. However, the results from the experiments
show that work remains until the data assimilation system works properly.

The further development and testing of the data assimilation system will be
a part of future work.

(A) Computation
of EL egs. with
representers

Dataassimilation
for SWE with trace
using representer

Experiments with
observations of
tracers in SWE

2 Dataassimilation
theory with Euler-
agrange eqgs.

3 Euler-Lagrange
egs. for SWE with
tracer

1 Shallow water
model with tracer

FIG. 0.1: Plan on how to derive meteorological information from tracer measurements
(thick = work achieved during the EUMETSAT Fellowship; thin = remaining
work). The columns represent the basic building blocks of the system (left column),
the integration of different building blocks (middle column), and the tests of the
integrated system (right column). The rows represent the basic dynamical model
(bottom row), the data assimilation theory (middle row) and the computational
implementation of the data assimilation system (top row).



Chapter 1

A global shallow water model with tracer transport

1.1 Introduction

The shallow water equations (SWE) are at the core of a description of
atmospheric dynamics. The shallow water equations describe the time-
evolution of the horizontal velocity and the height (or pressure) field of a
fluid mass in which the whole column of the fluid moves together in the
horizontal. The idea to use the two-dimensional SWE approximation is
relevant for large scale motions in the atmosphere, which are mainly two-
dimensional. There is also a strong link between the shallow water
equations and three-dimensional atmospheric flow. The atmospheric flow
can be approximated by a sum of several shallow water models, each
multiplied by a vertical eigenfunction for the atmosphere, the Hough
modes. Each of the shallow water models has an equivalent depth, ranging
from circa 10 km and downwards. The atmospheric dynamics are then
described by the evolution of all these SWE models interacting with each
other.

An even simpler model for large scale atmospheric flow is the potential
vorticity equation. But this model lacks some important features of the SWE
model, such as divergence, gravity waves and adjustment processes of
disturbances and instabilities from unbalanced to balanced states.
Furthermore, the link with the three-dimensional atmospheric motion
implicit in the shallow water equations is lacking in the potential vorticity
model, which is basically an approximation of the two-dimensional large

scale flow at divergence free levels in the atmosphere, which can be found at
circa 500 hPa and 200 hPa.

Our aim is to address the question if and how satellite ozone measurements
can be used to derive meteorological information. For this purpose we can
use the shallow water equations, coupled with a two-dimensional tracer
transport equation. Such a model can for example approximately describe
the transport of total ozone. It has bee shown by Levelt et al. (1996) that total
ozone transport can be approximated with single level winds at 200 hPa.

The shallow water and tracer transport model which we have
developed is based on the advection schemes of Hélm (1995a, b) and a
general curvilinear coordinate formulation of the shallow water equations
given by Smolarkiewicz and Margolin (1993). The model is on finite
volume form and conserves momentum and mass. The curvilinear
coordinate formulation of the model makes it very flexible and useful for
further development work.

We will begin with the description of the governing model equations in
section 1.2, and turn to the numerical implementation of the system in
section 1.3. Numerical tests of the dynamical evolution and the tracer
transport are in section 1.4, followed by conclusions in section 1.5.
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1.2 Formulation of the shallow water equations including a tracer

The formulation of the curvilinear model equations follow Smolarkiewicz
and Margolin (1993). In the curvilinear coordinates the model equations
have the same form everywhere, and can be discretized on a computational
grid which has an even resolution in the computational space. In the
curvilinear coordinate system the transformation from the Cartesian
coordinate x” is built into the model variables and the differential operators.
Thus all variables and operators are functions of the curvilinear coordinate

x=(x,y),e. g V=(3d/dx,d/dy). The transformation to the curvilinear system
is characterised by the Jacobian of the transformation, which is a product of
the scale factors associated with the different coordinate directions,
G=Gkx)= h, hy . The Jacobian measures how a unit volume in the
curvilinear system expands and contracts relative a unit volume in the
Cartesian system as a function of location, and the scale factors measure the
linear expansion and contraction along different axis.

After introducing the Jacobian and the scale factors, the shallow water
equations become

9CQ, , V~(XGQX)=—gG—‘Di(<D+HO)+[f+l§£X x %]GQY (1.1)

ot h, ox h, ox h, oy
0GQ p ; oh . oh
Xy (x ~ oGP 9 —rfe L0y % 90y
T+ V(GQ) ghy 5 (@ + H,) [f+hx % i % 1GQ, (1.2)
9GP V-xG®) =0 (1.3)
ot
agtqj + V- (xG¥) =0 (1.4)

Here @(x, t) is the thickness of the fluid and H, is the topography (see Fig.
1.1); the fluid momentum is Q= Q.. Qy) = (Pxh,, @yhy ), (X,9) are
velocities, and h _and hy are scale factors. In spherical coordinates
h, = acos 6 and hy =a, and f = 20sin 6, with a the radius, 6 the latitude,

and € the angular speed of rotation. Furthermore g is the gravitational
acceleration. Finally ¥ is a passive tracer.
For more accurate numerical treatment, the model variable fluid

thickness, @, is replaced by a perturbation & around a mean surface level
Hyy . The new model variable is defined by the following relations

Px, ) = Dy(x) + D'(x, 1) (1.5)

@, (x) = Hyy - H, (x) (1.6)
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FIG. 1.1: The definition of a shallow water layer. H, is the topography, Hy, is the

mean surface level; @ is the fluid thickness or “height”; @ is the “height
perturbation”.

With these definitions the pressure gradient term of Eqgs. (1.1-1.2) becomes
GOV(H)+ @) =GP V(Hy, +P) = GO VP (1.7)
and the divergence term in Eq. (1.3) becomes
V - (xGP) = V-(xG®) + V-(xGP,) (1.8)

Insertion of Egs. (1.7-1.8) in Egs. (1.1-1.3) now gives

0GQ , (GD, + GP') 9" y oh, . oh
X+ V(xG =— 0 J Y _x Y0 1.
0GQ (GD, + GP') 9" y oh . oh
=y (% =— 0 —[f+- L —X-X - x]GQ. (1.10
T V-(xGQ,)=-g oy 5 [f h, ox ay] Q, (1.10)
ac;;p + V-xG@') = -V -(xG®D, ) (1.11)

By defining a model vector q, the shallow water equations with tracer can be
written on the following compact form (with subscript t for partial time-
derivative and superscript t for vector transpose)

a=(7;,4,,95.95) =(GQ,, GQ,, G&, G¥) (112)
q; + V-(xq) =F(q) (1.13)

1.3 Numerical integration technique

The time integration of the shallow water equations uses explicit finite
volume technique, consisting of an advection scheme and evaluation of the
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forcing terms. For the advection of all variables (momentum, height and
tracer) the most efficient of the high-order non-oscillatory algorithms with
forward-in-time differencing described in Holm (1995a, b), FCM2, is used.
The solution advances from timelevel 71 to n+1 with a timestep At,
employing the fully second order time-accurate correction of the forward-in-

time algorithm given by Smolarkiewicz and Margolin (1993). The numerical
integration algorithm can then be written as

qn+1/2:A(qn, x'n’ A_t) +_ALFn (1.14)
2 2
SV (qn+1/2) (1.15)
= AT AL ) AL (L16)

In the above equations the operator A denotes the advection scheme, so that
in e. g. Eq. (1.16), an advection step with length Af is performed with the

fluxes calculated from qn+A7tFr1 and advective velocity )'(n+1/2. The first

step of the algorithm, Eqs. (1.14-1.15), give the advective velocity 2
which is needed in the advection of Eq. (1.16). The advantage of using the
nonlinear velocity extrapolation of Egs. (1.14-1.15) is that the resulting
velocities are consistent with the model equations, and allow four times
longer timestep compared with a linear extrapolation, according to the
experiments of Smolarkiewicz and Margolin (1993). The second step, Eq.
(1.16), performs the advection and adds half the forcing calculated at the end
of the timestep. This is the essence of the second order time accuracy of the
algorithm, that the applied forcing is an average of the forcing at the begin
and the end of the timestep. Since the forcing is a function of the solution
itself, it is calculated iteratively after the advection has been performed.
Experimentation showed that two iterations were enough, and further
iterations did not improve the solution (see Smolarkiewicz and Margolin
1993 for a detailed discussion of the forcing calculation).

1.4 Advection tests

We will test the shallow water model on three different situations. The first
two are standard tests (Williamson et al. 1992): a steady state nonlinear zonal
geostrophic flow and a Rossby-Haurwitz wave. The last test shows the
models response to the inclusion of topography. In the tests we will also
look at the tracer transported by the shallow water model.

1.4.1 Steady state nonlinear zonal geostrophic flow
This first test has analytical solutions for both the shallow water equations

(steady state) and the transported tracer (solid body rotation). By varying the
angle between the poles of the computational grid and the Earth’s rotation
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axis, the sensitivity of the model to the computational grid can be tested.
This test is particularly useful for detecting problems at the poles of the
computational grid, where the grid transformation factors vary rapidly.

The initial condition for this test (Williamson et al. 1992) is a zonal flow, but
with the feature that the computational grid can be rotated by an angle ar
relative the rotation axis of the Earth. This enables a simulation of for
example cross-polar flow by rotating the computational grid 0.57. The
analytic solution of zonal flow on the rotated computational grid is

u(A, ¢) = u; (cos6 cosa + sind siné sina) (1.17)
v(4, ¢) = —u, sinA sina (1.18)
D(4, ¢) = Hy, - g'1 (aQu, + %ug )(—cosA cosf sin + sinf cosa)2 (1.19)

and the corresponding Coriolis parameter is
f(4, ¢) = 2Q(-cosA cosB sina + sin6 coso) (1.20)

Here a = 6.37122 x 10°m, 2=7.292x 10 s 'and g = 9.80616 ms 2 In the test
below we will simulate cross polar flow (a=0.5),with H,,=3000m, and

uy=2ma/(12 days) = 38.61 ms™. The model is integrated for 12 days (8640

timesteps), which is the period of the solid body rotation, with a timestep of
120 s. This very short time-step comes from the accumulation of

computational points near the poles. The model resolution is 128 points in
longitude and 64 points in latitude.

Figure 1.2 compares the velocity and height perturbation at initial time
(analytical solution) and after 12 days of integration. The two solutions are
almost indistinguishable. In Fig. 1.3 the error growth of the solution is
shown. The error in the wind is ca. 0.1 m/s (~1 %) and in the height
perturbation ca. 1 m (~0.1 %) after 12 days.

—

.y

= (b) o

FIG. 1.2: Cross-polar flow. (a) Initial velocity and height perturbation. (b) Velocity
and height perturbation at day 12. The reference wind arrow is 50 m/s long, and the
height isoline interval is 200 m, with negative isolines dashed.
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FIG. 1.3: RMS error for cross-polar flow. (a) Velocity (zonal velocity soi,

meridional velocity dotted). (b) Perturbation height. The RMS error is an area
weighted global average.

In the present steady state flow across the poles, the tracer distribution
should be rotated without changing form. For the tracer we have chosen a
realistic total ozone distribution obtained from the ECMWF model. There is
a lot of small scale variation in this field which gives a stringent test of the
advection scheme.

Figure 1.4 shows the tracer distribution at the initial time and after 12
days (one rotation). Note that the advecting velocity is taken from the
model at each timestep, which is a more demanding test than just using a
constant wind field. The tracer distribution has diffused somewhat, but all
features are in the right place. There is very little distortion visible
associated with the passage across the poles.

In Fig. 1.5 we look at longitudinal and latitudinal cross sections of the
tracer distribution at day 12 and compare it with the analytical solution. The
differences which we see are mainly due to diffusion at the extreme values
of the field. No noise is visible in the numerical solution.

(a) (®)

FIG. 1.4: Tracer (0ozone) distribution in cross—polar flow. (a) Initial field, taken from
ECMWF model total czone. (b) Tracer after one rotation at day 12. The isoline
interval is 25 Dobson units and higher values are darker.
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FIG. 1.5: Tracer (0zone) cross sections at day 12, one rotation (solid lines) compared

with the analytical solution (dotted). (a) Longitudinal cross sections at ca. ON and
ca. 45N. (b) Latitudinal cross section at 90E, where the tracer has crossed the poles.

1.4.2 Rossby—Haurwitz wave

The Rossby-Haurwitz waves are not analytical solutions to the shallow-
water equations on the sphere, but are standard tests more demanding than
the steady state test above. The initial conditions are given by Williamson et

al. (1992),
u(A, ¢) = aw cosO + aK cos¥lg (R sin?6 - cosze) cosRA (1.21)
v(4, ¢) = —aK cos®16 sin@ sinRA (1.22)
2 K2 2 2
(4, ¢) = Hy, + ”? { % (2Q+w)cosze+T 05”829 [(R+1)cos*6+(2R*~R-2)cos26 —2R* ]
+ cosRA 282+ 9K vy [(R®+2R +2) - (R + 1) cos20 ]

(R+1)(R+2)

2
+ cos2RA KT cos*R@ [(R + 1) cos?6 - (R +2)] } (1.23)

= ‘. . \;‘ \,

o0 N

,/‘“'\'*;xt;”/
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~

et
f\
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N P
\\
7300 4N\ X600

FIG. 1.6: Rossby-Haurwitz wave velocity and height perturbation ficlds. (a) Initial
fields. (b) Fields after 14 days of integration.
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FIG. 1.7: Rossby-Haurwitz wave, time evolution at a single gridpoint (15.45N, OE).
(a) Zonal velocity. (b) Meridional velocity. (c) Height perturbation.

Here the parameters chosen are o= K = 7.848 x 107 571 , Hyy =8 X 10°m and
the wave number R = 4. The model resolution is 128 points in longitude
and 64 points in latitude, and the timestep is 120 s as above, and the model is
integrated for 14 days (10080 timesteps).

The velocity field and height perturbation at the beginning and end of the
simulation are shown in Fig. 1.6. The solution changes form slightly during
the simulation, due to that the phase speed decreases with latitude. This
change is expected for the divergent equations used here, although a
quantitative comparison with an accurate reference solution is necessary to
complete the evaluation of the phase speed accuracy.

Figure 1.7 shows hourly outputs of the model at one gridpoint (15.45 N,
0 E). We see a periodic motion with a high-frequency inertial wave and a
low-frequency Rossby wave. We see that the amplitude of the flow is
conserved. This shows that there is very little diffusion in the present
model, considering that there have been over 10000 timesteps. This good
behaviour of the model comes back in the total energy of the flow which
fluctuates with an amplitude of ca 0.3 % around the initial value, without
any systematic increase or decrease of total energy.
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1.4.3 Flow with topography

In the last test of the model, we investigate how the model performs with
topography included. Since there are no analytical solutions, we will
concentrate on the qualitative features of the flow, as well as on the total
energy conservation.

The topography H is averaged onto the model grid from the 0.25° by

0.25° US Navy topography. The model resolution and timestep is the same
as above (128 by 64 gridpoints, 120 s timestep). As an initial condition we
take a zonal flow similar to Eqgs. (1.17-19), except that we replace the fluid
thickness in the lhs of Eq. (1.19) with fluid thickness plus topography. Then
the fluid surface is identical to the surface of the steady state solution, with a

constant elevation along each longitude. We have u(A, ¢,0) = U, coso,
v(4, ¢,0)=0, and &4, ¢,0) =-H, (4, ¢) + Hyy- g7} (aQu + %ug )sin’6, with

the parameters H y= 8000 m, and u ;=30 m/s . The model is integrated for 12
days.

(a) Height perturbation

- o o« ~
T v " Py

Height (km)

o
'

2-

(c) Tracer o | L . L

(d) Height and topography 32 N

FIG. 1.8: Flow over topography at day 12. (a) Height perturbation field. (b) Wind
field (c) Tracer field. (d) Cross-section of height field and topography over
Himalaya, 32N. In the height and tracer figures higher values are darker.

Figure 1.8 shows the model integration results at day 12. The tracer
distribution, which initially is uncorrelated with the flow (see Fig. 4a)
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develops flow consistent features. The tracer concentrations become higher
in atmospheric lows (note the four lows at 60S), and become lower in
atmospheric highs and over topography (e. g. over Himalaya and east of
North America). The dynamics evolve smoothly from the zonal initial
conditions, and there are no visible problems in the wind field or in the
height field. The inclusion of topography causes no problems, as we can see
when looking at the total height field in Fig. 8d.

The total energy, which should be conserved in a nondissipative system,
decreases very slowly with time. At the end of the 12 day simulation 99.93 %
of the initial energy remains, which is very good. The good energy
conservation can be attributed to the fully second order accurate treatment
of the equations following Smolarkiewicz and Margolin (1993), as shown by
Hoélm (1996a) in the context of incompressible flow.

1.5 Conclusions

We have shown the first test results from a global shallow water model
with a tracer. The results show that the model gives an accurate solution of
the SWE system, with low dispersion and low diffusion. The model has no
problems to resolve cross polar flow, or flow over topography, which can be
attributed to the general curvilinear coordinate formulation of the model.
In particular it has been shown that the model is non-oscillatory, which
guarantees that no artificial maxima or minima appear. This last point is
most visible in the solid body tracer advection tests. Since the model is
formulated on finite volume form, it is per definition mass and
momentum conserving, and the tracer amount is conserved aswell. The
total energy of the model is very well conserved, although this was no
design feature of the model.

In summary, although the present model is quite accurate, further
development is needed to achieve a practical timestep length. The main
limitation on the timestep length appears at the poles of the latitudinal-
longitudinal grid used in the computation, and further developments of the
model should concentrate on removing this limitation. This will be done by
reducing the model resolution near the poles.



Chapter 2

Nonlinear continuous formulation of variational data

assimilation using the Euler-Lagrange equations: a
constructive approach

2.1 Introduction

Data assimilation deals with the general problem of how to describe a
physical system by way of combining physical models and observed data.
The practical solution to this problem is to device fast and accurate
algorithms for the discrete problem at hand. Examples of efficient data
assimilation algorithms in meteorology include optimum interpolation and
variational data assimilation. Several different theoretical descriptions have
been used as a foundation for data assimilation, based for example on
control theory, information theory, probability theory, and variational
analysis (see Daley 1991, Tarantola 1987, and Menke 1984 for further
references). One use of a theoretical approach is to suggest which
simplifications to make to achieve fast and accurate data assimilation
algorithms. The result is often similar, with different theoretical approaches
leading to equivalent algorithms. However, the theory is also a tool in itself
for a deeper understanding of the physical system (Tarantola and Valette
1982, Bennett 1992). In particular, if a theoretical description is possible
without the assumptions necessary for an efficient algorithm, this is
preferable, since then a particular algorithm becomes a special case, and
different algorithms can be related to each other (Lorenc 1986, Courtier 1997).

In most applications of data assimilation in meteorology the physical
models are nonlinear and the observation data depend nonlinearly on the
physical system. Most, if not all, efficient data assimilation algorithms
depend on some linearization techniques applied to a discretized version of
the nonlinear problem. However, this practical aspect must not be allowed
to obscure that it is straightforward to derive continuous equations for the
full nonlinear problem. For example, variational analysis applied to the data
assimilation problem gives the full nonlinear solution in terms of the
Euler-Lagrange equations (Bennett 1992).

Here we will derive the Euler-Lagrange equations that solve the data
assimilation for nonlinear models and data with given boundary
conditions. We will derive formulations using the standard L, norm
(minimisation of squared errors). The material presented in this chapter is
mostly from Bennett (1992), although the presentation and notations differ.

2.2 Model and data

The most general description of the nonlinear model would be just a single
nonlinear model operator M(q) . However, we are aiming at a constructive
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data assimilation approach for time dependent fluid dynamical models. For
these fluid dynamical models it is natural to treat the time dimension
separately, since the only time-derivative terms involved are the tendencies
of the model variables themselves. Separating the time tendencies from the
remainder of the model operator will make the resulting Euler-Lagrange
equations easier to understand. Below we will follow this approach.

We consider a nonlinear physical model and observation data given on the
region V with a boundary S. The length of the timeperiod over which
observations and model are adjusted to each other is T. Then

q,=F (@) +F(x, @.1)

q(x, 0) = q° (x, 0) + q"(x, 0) (2.2)

G(q) =g'(s, ) +g'(s, ), se§S (2.3)
E(q) = e’ (x, ) + e’(x, t) (2.4)
do=H_(qQ+d_, m=12 ..M 2.5)

Here q is a vector of variables describing the true state of the physical system.

0
The time evolution of q is given by the known nonlinear forcing F* and the
model error F~.

The initial condition is given by the prior estimate of the state qo, and
the error in the prior estimate q".

The boundary ‘conditions are expressed by the boundary condition
operator G being equal to a boundary forcing. The prior estimate of the

boundary forcing is g°, with error g . As an example, at a solid boundary the
normal velocity vanishes, so the velocity component of G is a derivative

normal to the boundary, and the corresponding components of g’ and g’
are zero. Another example is when the velocity is given from a global
model on the boundary of a limited area model. The velocity components

in G, g°, and g are then the identity operator, the global model velocity,
and the error in the global model velocity, respectively.

All additional constraints on the physical system are described by the

operator E. This operator is constrained by e’ within the error e’ , which
defines how well the constraint should be fulfilled (¢"=0 for an exact
constraint). Examples of such constraints are dynamical and/or chemical
balances which the system is known to be close to, or which the system must
fulfil exactly. If for example a certain smoothness is required of the solution,
E could be a diffusion operator.

The M observation data d_, are related to the physical system through
the nonlinear observation operators H_. The observation error is d..
Generally, the observation data are obtained as weighted averages in time
and space. The location of an observation in time and space is defined by
multiplying the observation equation, Eq. (2.5), with a weighting function
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¢m (x, £) with the following property

T
f df[ dtg_(x,H=1 (2.6)
\% 0

In other words, we divide the observation operator into a location
independent part, and a weight function that defines the location of the
observation. For example, a Dirac delta function in time and space can be
used in Eq. (2.6) to identify an observation with a given location at a given
instant and box functions can be used to describe an average in time and
space. For an aeroplane observation a sausage formed weight function along
the flight path could be used. For a satellite observation, a column stretching
from satellite to surface could be appropriate. For convenience, the

observations in Eq. (2.5) multiplied by Eq. (2.6) are summarised in the
vectors H, d, and d°,

T T
f dx f dt ¢, (x, ) d, =f dxf dt ¢, (x, t) [H,, (q) + d ] (2.7a)
\% 0 \% 0 ’

d(x, t) = H(q) + d"(x, £) (2.7b)

The prior estimate q°(x, ) is obtained by integrating the model using only
the known forcing and the prior initial conditions and boundary forcing.
The boundary condition operator G usually involves a combination of the
variables q and their derivatives normal to the boundary. The prior
boundary forcing for the region of interest is usually obtained from lower
resolution model integrations covering a much larger region. The vector of
observation operators H includes all steps needed to go from the physical
variables q to the observation data d, including for example radiative
transfer models, interpolations, and averaging in time and/or space.

2.3 Formulation of a variational problem to fit model and data

The problem at hand can be stated as follows:

Derive as accurate description as possible of a physical system from a
given physical model, prior initial and boundary conditions, constraints,
and observation data, all of which are approximate.

To complete the theoretical description of the problem, a norm has to be
chosen to measure the accuracy of the description. To actually solve the
problem, the weights of each term of the approximate description must first
be determined from statistics of the errors in model, initial conditions,
boundary conditions, constraints and observation data. An essential point is
that the statistics imply an underlying probability distribution of the errors.
For each different probability distribution there is a corresponding norm
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that best measures the accuracy (Menke 1984, Lorenc 1986, Tarantola 1987).
When the error statistics differ from the probability distribution implied by
the chosen norm, the optimal solution can be completely unreasonable. The
almost universally applied norm is L, which implies a Gaussian probability
distribution for the errors. The popularity of the L, norm is based on its ease
of application and the efficiency of the resulting algorithms. However, a
weakness of all algorithms based on the L, norm is their sensitivity: one
isolated outlier in the data can completely change the solution (Tarantola
1987, Menke 1984). The L, norm algorithms thus fail when the error
probability distribution differs much from the Gaussian distribution.
Similar arguments apply to other norms. However, algorithms based on the
L1 norm (implying exponential error distribution) are particularly robust
against outliers in data (Tarantola 1987, Menke 1984). The drawbacks of the
L1 norm methods are their complexity and inefficiency as compared with
the L, norm methods, in particular for large models.

After these words of caution, we will now formulate the variational
data assimilation problem using the L, norm.

Let the optimum solution be one which minimises the sum of the errors in
model, constraints, boundary conditions, initial conditions, and observation
data, measured by the L; norm,

[ (" (T .

Slql=] dx| dt} dx’| dt"F (x, ¢t) Wi (x, t, x", t)F(x", t)

N b Jv Jo

[ rT r T t
dt] dx’) dt"e” (x, ) W, (x, t, X", t)e’(x, t)

N b Nk

([ (f
+@ds) dtp ds’| dt'g (s, ¢t) Wg (s, t,8°,t)g (s, t)
S s Jo
(

+J dxf dx’ g (x, )W, (x, x')q"(x", 0) + d" W, d" (2.8)
\'% \Y

This expression is also called a cost function. We prefer to write out all
integrals in full, since it makes it easier to follow the details of the

derivation. Here W, Wg ,W,, W, and W, are weight matrices associated

with the error in model, boundary conditions, constraints, initial conditions
and observation data, respectively!. These weights are the inverses of the
corresponding covariance matrices, which are all positive definite and
symmetric. In the above formulation, cross correlations between model,
initial conditions, boundary conditions, constraints, and measurements
respectively, are assumed zero. Insertion of Egs. (2.1-2.7) in Eq. (2.8) gives

INote that Roman vectors are written d, etc., but since the printer does not print bold Greek
letters, Greek vectors are written with overbar, 1, etc. Matrices are written as W, etc., and

t . .
transposes as d , etc. Functionals are written as J | etc.
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(T ) 0 it 0o
Sldl=} dx} dt} dx’| dt'[q,-F (q)] W,[q,~F (q)]
N b N L

r T r rT 04t 0
+1 dx} dtf dx’| dt'[E(q)-e"] W, [E(q)-e ]
v Jo v 0

[ rT ) rT , 04t 04
+ dsJ dtd ds’f dt'[G(q)-g | W,[G(g)-g']
s Jo

~.
N
o

+ J dxj dx'[q-q° ' W,[q- ¢ + [d-H(@I'W, [d-H(Q)] (29)
Vv \"4

Here primed square brackets, [ ]*, are used as a shorthand for evaluating a
function in the primed coordinates (x’,¢). Now the standard tools of
variational analysis can be used to obtain the optimum solution (see e. g.

Goldstein 1980, chapter 2). Let q be an optimum solution which gives the
minimum of J, [q] with respect to a variation of q. Define

qx t) =q(x, ) + yn(x, 1) (2.10)

where y is a constant and 7n(x,t) is an arbitrary vector function (with
dependent components however). The minimum of Eq. (2.9) is found from

dJ,

i L_o=0 (2.11)

2.4 General solution of the L, norm variational problem

Inserting Eq. (2.10) in Eq. (2.9) gives (note that all weight matrices are
positive definite and symmetric)

T T

, ra = 20 A ot — 0 A

Jz[q]=j dxf dtf dxj dt’[qq+m, - F (q+m)] W:[q+m,-F (q+m)]
\Y% 0 A\ 0

rT T

+ | dx dtf dx’r dt’ [E(G+m ) - e® 1 W_[E(G+m) - e |’

v Jo v Jo

([ ) .= a.,
t¢ds) dtgds’f dt'[G(q+rm)-g | W, [G(g+m)-g"]

Js )b s Jo

r R 04t ~ — 04.
+ 1 dx} dx'[q+m-q | W,[q+m-q"]

NN
+[d - H(g+m)l W, [d-H(g+m)]’ (2.12)

Before we differentiate the cost function, let us note a rule for the
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differentiation of the involved operators by the following example,

0,6~ — 0
dF (q+m) oF (q) -
2 1,: 0= |q:a n (2.13)

dy

Furthermore, introduce a simplified notation for the functional derivative,

IF _oF (q)
dq  dq

|

4=q (2.14)

Equations (2.13—14) of course also apply to the operators E', G and H.
Differentiation of the cost function now gives

T 0
144 —rdxj dtrdx’rdt’[— X TwW[6-F ()
n 3 =07 M- —<N1 Wel[q,-F (q)]
2 dy‘y ° N b N ok t daq t
( (T (T _
o ax| dt| ax| ar 1Bt w, EG)-)
N o J AR aq

fT [ ,r .. 0G — ¢ ~ 01~
+¢ds) dtgds’} dt'[—=n] W,[G(q)-g°]
s Jo Js ) Jq

o dx] aen WA - (AT W, d-HE) @15)
\Y \Y dq

We see that the terms in this equation are products of operators acting on
the arbitrary function n and expressions involving the optimum state q.
Note that the operators are linear in m even if they are nonlinear in q.If

we can rearrange the above equation so that n only appears as a
multiplicative factor, then the remaining expressions must be zero at the
minimum of the functional according to Eq. (2.11), which will give the
sought equations for the optimum state. This can be achieved by partial
integrations with respect to xand t after introducing the vector variables

A, ® 1 and Vv,

T
X, ) = f dx’f dt W, (x, £, x, ) [§,~ F (§)] 2.16)
v 0
o f .. ot Ay 01
o =] d| AW, (xtx, 1) [E(§)-e] 2.17)
v b
T
u(s, f) :f ds’ r dt'W, (s, t, 5", ") [G(q)-g°) (2.18)
s Jo

V=W, [d-H(3) | (2.19)
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Inserting the above definitions in Eq. (2.15) and using Eq. (2.11) then gives

( T 0 - T it e
%%Lfo: x| dt[nt—ainJ*Mdef a1 Eq1e- 1My
Y N b aq v Jo oq oq
[ 0G — t— L=t ~ 01
+¢Pds| dt[—m]p+| dx| dx'q W.[q-q"] (2.20)
JsJo 9q v o Jv

2.4.1 The definition and construction of adjoint operators

The functional in Eq. (2.20), the gradient of the cost function, is linear in the
arbitrary vector function 1. Thus the gradient of the cost function is a linear
functional, although the model and data are nonlinear. By repeated partial
integrations it is always possible to move all derivatives of N to derivatives

of the functions A, i, ®, and v . In the process of partial integration, boundary
terms appear which have to be accounted for (here we mean boundaries in
the general sense, including the time direction). As an example, the first
term on the right hand side of Eq. (2.20) becomes

T _ _ T
fdxf dt[@]thf dx[ﬁt(x,t)k(x,t)]:g—f dxf dtnt ot 2.21)
\'% 0 ot A\ A\ 0 ot

Using Dirac delta functions to express the boundary terms, we can write this
equation as

T _ T ot
fdxf a2 = =f dxf dt{[é(t—D—é(t)—i]k}ﬁ (2.22)
e R S ot

A shorthand notion for this process of partial integration is offered by the
concept of adjoint operators from the theory of linear operators (see e. g.

Kolmogorov and Fomin, 1957). The adjoint operator A* of the operator A is
defined by

<Af, §> = <f, A*¢> (2.23)

where <-,-> is a suitable scalar product. It is worth noting that in finite-
dimensional space linear operators are given by matrices, and the adjoint A*
is given by the transpose of the matrix for the operator A.

Now take Eq. (2.22) as an illustration of the concepts involved in the

definition of the adjoint operator. By inspection A and the adjoint A* are
seen to be

I ) )
A=so= A*=8(t-T)- §(t) : (2.24)

We thus see that if a linear operator includes timederivatives, the adjoint
operator has additional terms at the initial and end times of the integration.
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Generally, if a linear operator has any derivatives normal to a boundary,
additional boundary terms appear in the adjoint operator.

As an illustration, consider a transformation of the coordinates x and ¢

to boundary following coordinates &, where time is one of the coordinates.

The boundary is then composed of isosurfaces of the coordinates £ . The
linear operator now includes mixed and/or unmixed derivatives. Unmixed

derivatives in the variable £ will give additional terms in the adjoint
operator on the boundary surfaces where & is constant. Mixed derivatives

in & and ‘:i will give additional terms to the adjoint on the intersection of
the corresponding boundary planes, and so on.

An alternative notation for the adjoint that summarises the above
discussion will now be given. In the present case, where we treat the time
and space dimension separately, we can divide the adjoint operator into
four parts defined in the interior of our domain, on its spatial boundary, and
at initial and end times,

A¥ = A%+ A¥g + A%+ A% (2.25)

Generally, the division of an adjoint operator into parts follows naturally
from the construction of the adjoint by partial integrations, and the division
can be performed in any way as to fit the particular problem. For example, a
further subdivision of the boundary terms to fit a particular problem is

possible, as in Bennett (1992), where the terms for inflow, outflow, and solid
boundaries are treated separately.

2.4.2 The adjoint equations

By repeated partial integrations the adjoint of any linear operator can be
constructed and written on the form of Eq. (2.25). We will now in turn treat
each of the terms of the gradient of the cost function, which is a linear
functional in 7.

The time derivative term has been solved by Eq. (2.21). The model
forcing term is given by

R ! o) - ! aF| -
—J dxf dt[Tﬁ]tk:—f dxj dtﬁt(—;) K—fds] dtﬁt(—T)K (2.26)
v Jo aq v Jo 9q Jy s Jo oq /s

0
Note that F usually contains spatial derivatives, so that the derivation of
the adjoints is not trivial (this applies for the adjoints below aswell). The

constraint term, including possible spatial and temporal derivatives, is on
the form

T T * T *
jdxf dt[a—Eﬁ]taz f dxf dtﬁt(a—g) 6+§ds[ dtﬁt(a—g) ®
v Jo 9q JAVI | aq Jy s Jo 9qs

- dxﬁt(a—E) mf dxﬁt(a—]i) ® (227)
v aq /g v oq )t

C—
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The boundary term does at most include derivatives normal to the

boundary,
T T *
fdsj dt[ﬁﬁ]ﬁ:fdsj dt‘ﬁf(iﬁi) m (2.28)
s Jo q s Jo 9qJg

The observation operator can generally include spatial and temporal
derivatives, but an observation will only contribute to the initial, end or
boundary conditions when the weighting function that defines the location

of the observation is nonzero there, ¢, (x, ) #0. First, insert the definition
of the weight function, Eq. (2.6),

oH —
—[Bﬁn]v__f

T oM OH  _
dx[ dt 3, o [—2=n]v_ (2.29)
v Jo 9q

m=1

Then we get

T * *
_f dxf dt¢m[MTmﬁ]vm=—f dxﬁ‘(%) (‘z’m"m)‘f dxﬁ‘(%) G
Vv 0 aq \V4 aq 0 \Y aq T

T * T ) *
_f dxf dtﬁt(%) (¢mvm)—§ dsf dtﬁt(a—HAﬂ)(q)mvm) (2.30)
v Jo aq Jy s Jo - dq g

Now all terms can be collected together and inserted in Eq. (2.20),

T - 0* * M *
_ o [oF’\ = [9E\ _ OH

—0=0=1] dx dtﬂt(xft)[—h—(—,\) A+ —,\) - —2 @Vl
’ fv fo ot oq \% aqv rrél aq Jy
T * 0 *_ ) * M *

*fdsf dtﬁ*(s,m(a—?)ﬁ—(ai)>»+(95)6—2 D) (9,v,0)
s Jo 9q Js 9q Js 9qjs  m-1\99 Js
_ * M *

+f dxﬁt(x,O)[f dX’Wi[ﬁ—qO]’—k+(a—E)5—Z P (4]
\% \Y4 aqo m=1 aq 0
_ * M *

; f dxﬁ%x,nm(a—’i) o-3 (aH—:“) (Onv)] (231)

v 9q)r  m=1\9q Jp

The final equations now follow from that the arbitrary vector function 1
can be varied independently in each of the four integrals in the above

equation, for example by changing n on the boundary only, etc. Therefore
the only way for Eq. (2.31) to be fulfilled is that each of the expressions

following n in the four integrals are identically zero. This gives

. * M . *
Ax, T)= "(3—2) oxT)+ ), (%@1) [0, (x DV, ] (2.32)
T m=1 /T
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‘*_ * M *

A D) - (aif) GxH+ Y (%) [0, (6 B ] (233)
9q )y m=1\ 99 Jy

_h(x ) [oF°
o |\ oq

) V
*

aFO)— 3G\ 3E\ _ M oH
— X(,t)=—(7) (,t)—(—A) (s, t) + (Tm)[m(,t)vm] (2.34)
aqs S aqsus S(1)s El aq Sq; S

G ) v (Hp
q(x,0) = f dx Wi (x, %), ) —(—:) a0, 0+ Y (—:ﬂ) [0, (X, 0}, 1} (239

v 9/ 1199 Jo
Equations (2.32-34) are now the Euler-Lagrange equation for the system,
with end and boundary conditions, and Eq. (2.35) is the initial condition for
the forward equation. Note that [, ®, and v are functions of the optimal
state q according to their definition in Egs. (2.17-2.19). Thus the solution of
the Euler-Lagrange equations needs the solution of the forward equations as

input. We will return to the consequences this has on a computational
implementation in the summary of the solution in section 2.5

2.4.3 Optimal corrections to the forward equations

We now use the definitions of |1, @, and v, Egs. (2.16-2.19), together with
Eq. (2.31) to obtain the optimal estimates of the errors in boundary
condition, constraints, and model forcing,

T
F (x, f) = f dx’ f At W' (x, t, X', ) M, 1) (2.36)
\% 0
T
e’(x, t) =f dx’f dt W;l (x, t,x°, ) o(x’, t') (2.37)
\% 0
T
g'(s t)= f ds’ f dt’ w; (s, 1,8, ') U(s”, ) (2.38)
S 0

We see that the optimal corrections to the forward equations need the
solution of the Euler-Lagrange (or adjoint) equations. These formulas are

obtained by inserting the following definitions of the inverse error weight
matrices (Bennett, 1992)

f dx W' (x, )W, (x, x) = 8(x"= x) | (2.39)
\%

T
j dxj dt W;l (X7 7, x, HWe(x, ¢, X7, ) = §(x"— x")8(t" "~ tyl (2.40)
\" 0
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T
f dx | deW' (7, £, %, BW, (x, £, X7, ) = 8 "= )8t - £) | (2.41)
v Jo

T
fdsr dt w; (717,85, OW (5,1, 8", 1) = s~ )8t~ 1)1 (242)
s Jo

where | is a ] x ] unit matrix and | is the number of model variables.

2.5 Summary and discussion

We have shown above, following Bennett (1992), that it is straightforward to
derive a formal solution to the problem of combining observations with
nonlinear continuous models. It is important to realise that we have
obtained a unique optimal solution to a variational assimilation problem
defined by a nonlinear cost function. The derivation of the Euler-Lagrange
equations explicitly uses the condition that the gradient of the cost function
is zero. Furthermore, the gradient of the cost function is linear, even for the
nonlinear model and observations, so that there is only one zero solution.
Therefore the Euler-Lagrange equations do describe the unique optimal
solution.

However, we came across the problem that the forward equations need
the solution of the adjoint equations as input, while the adjoint equations
require the solution of the forward equations as input. Thus the forward
and adjoint equations are coupled, and together make up a boundary value
problem in time. There is no straightforward solution of such problems, and
several numerical approximations are needed to come to a practical
numerical algorithm. Steps in this direction using the representer method
have been taken by Egbert et al. (1994), Egbert and Bennett (1996), Bennett et
al. (1996), and Bennett et al. (1997). We will now discuss some of the
qualitative aspects of the practical solution, and refer to the above references

for details (see also the appendix to this report for an introduction to
representers).

First we introduce a compact notation for the observation and constraint
adjoint terms,

%

— * M
O R e EXCR R - S CHOS IS Rere
. m=1 /.

The dots refer to the constraints at initial and end time, on the spatial
boundary, and in the interior of the model domain. For example, on the

* *

spatial boundary @ (q, -, -) becomes @ (q,s,f) and the adjoint operator
subscript is S . The complete solution can then be summarised as:
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A T)=® (4% T) (25.1)
et (o) - —*
_ )=( A) A, £+ ® (G, xt) (2.5.2)
ot oq \4
o) - G\ -
- (—7) A(s, t)= —(—A) H(s, )+ @ (q,s,1) (2.5.3)
aq /s aq Jg

qx, 0) = q° (x, 0) + f dx” W, (x, x)[A(X’, 0)+ 8*( 4x,0]  (254)
A%

qt=FO(q)+F’(x,t)=f

T
dx’ f dt' Wi (x, £, x, ) A, ) (2.8.5)
\Y 0

T
G(q)=g"(s,t) + f ds’f dt’ W; (s,t, s, t)u(s"t), seS (2.5.6)
0

S

For the sake of the following discussion, let us assume that we can solve the

*

above equation system iteratively and that we can estimate ® and 1 in the
Euler-Lagrange equations (2.51-3) in terms of a previous iterate. Such a

naive solution procedure will generally not converge, but it illustrates the
different steps of the actual solution.

We start by integrating the adjoint variable A from the given end
condition and backward in time. The end condition is zero in most cases.
Exceptions are when there are measurements close enough to the end time,
or when the additional constraints include time derivatives, which is

seldom the case. The boundary conditions for A are solved as a part of the
backward integration. The initial condition for the forward equation is

calculated from A and ® , which are known from the adjoint integration
and previous iteration, and the forward equation is integrated including a

model error term that depends on the adjoint variable A . The boundary
conditions are solved as part of the forward equations, with a boundary
error | from previous iteration. The constraints and the observations do
only appear in the adjoint equations.

We can also see what happens when we make simplifications. The
adjoint equations remain unchanged, whether we assume a perfect model

(Wf_1 =0), perfect boundary conditions (W{;1 =0), or both. However the
evaluation of the forward equations is less demanding with either of these
assumptions, since a convolution with a covariance matrix is avoided.
When both perfect model and boundaries are assumed, there is a very large
change in the computational strategy, since the forward equations no longer
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depend on the adjoint variables. We no longer have a coupled boundary
value problem in time. An iterative solution procedure would in this case
begin by solving the forward equations, and then using the forward solution
in the backward integration of the adjoint equations. This is exactly what is
done in four-dimensional variational assimilation.

2.6 Conclusions

In this chapter we have shown that the data assimilation problem of
combining nonlinear models and observations can be solved directly
without any approximations. We began by writing down a nonlinear cost
function for minimizing the misfit between model, observations and other
available information. Then we showed step by step how the nonlinear
Euler-Lagrange (or adjoint) equations for the problem are derived. A
surprising aspect of the derivation is that it is completely linear, although
the involved operators are nonlinear in the model variable q. We showed
that as a consequence, the Euler-Lagrange equations describe the unique
optimal solution to the variational data assimilation problem. Finally, we
indicated how the forward equations and the Euler-Lagrange equations are
combined to find the optimal solution.

We have included boundary conditions and any additional constraints
not explicitly modelled by the forward equations in our solution by adding
corresponding terms to the nonlinear costfunction. This gives rise to
additional terms in the Euler-Lagrange equations.

Model errors, errors in initial and boundary conditions, as well as errors
in constraints are included in the general formulation. For each of these
errors, we do need error covariance matrices. The estimation of these error
covariance matrices is a central part of each data assimilation system.

In summary, the general formulation given in this chapter covers most
situations arising in atmospheric modelling. These results can be used in
two ways. First, as a starting point for deriving a formulation of a data
assimilation system for a specific model. Second, as a starting point for
developing practical algorithms for data assimilation. We will apply the first
of these approaches on the global shallow water equations with a tracer in
the following chapter. We do plan to use some ideas from the general
formulation, and some of the ideas from the appendix to this report

(representers) to derive a new practical approach to data assimilation in
future.



Chapter 3

The Euler-Lagrange equations for the global shallow
water equations with a tracer

3.1 Introduction

We will now derive the nonlinear Euler-Lagrange equations for the global
shallow water equations with a tracer using the general approach of chapter
2. These equations can then be used as the starting point for formulating
particular data assimilation algorithms. Since a tracer is included in the
system, we will be able to see in what ways dynamical information could
possibly be derived from tracer measurements.

Some links between tracers and dynamics are obvious. Let us consider
ozone in the lower stratosphere, which is mainly a passive tracer. First,
ozone is transported by the wind field. If we obtain a satellite or sonde
measurement of ozone that differs considerably from the modelled ozone,
we could obviously change the ozone field itself. It is also possible that we
could make a small change to the model wind field so that the model
transports a more accurate ozone value to the measurement location.
Second, we could have correlations between dynamical and ozone model
errors. This knowledge could be applied to a direct construction of a better
initial model field from ozone measurements. We would then make a
correction to the dynamical fields in the neighbourhood (i. e. where error
covariances are significant) of where measurements suggest we change the
ozone field.

Once the possible links between tracer measurements and dynamics
have been identified, they do need to be quantified. First steps in this
direction were taken by Riishejgaard (1996) in a simple two-dimensional
model. Here we will only derive the general formulation of the problem
without any quantification of the different terms. A more quantitative
discussion will be a part of a future report on implementation and
experimental results of a data assimilation system based on the Euler—
Lagrange equations.

The Euler-Lagrange equations will be derived for a system including the
curvilinear shallow water model of chapter 1, Egs. (1.1-4). The curvilinear
coordinates make the derivation longer than for a particular coordinate
system, but this approach has the advantage of generality and easy
applicability for different coordinate systems. This is an important point in
practical applications, where several different coordinate systems have been
proposed recently for solving the meteorological equations on the sphere.
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3.2 Derivation of the Euler-Lagrange equations

3.2.1 The model and observations

First we rewrite the shallow water model of chapter 1 on the general form
given in chapter 2. The model variables are the same as before, that is cell
average momentum, perturbation height, and tracer amount,

q9=01,9,, 43,94 )t =(GQ,, GQy , G, G‘P)t 3.1

where G, the Jacobian of the transformation to the curvilinear coordinates,
is included in the model variables. This makes the approach applicable for
different coordinate systems. The equations are two-dimensional and global,
so there are no boundary conditions. No additional constraints are applied
on the solution. This eliminates the boundary condition and the constraints
in Egs. (2.34), and the remaining equations are

q=F(q +F(x #) (3.2)
q(x,0) = q° (x, 0) + q"(x, 0) (3.3)
d(x, t) = H(q) + d’(x, £) (3.4)

For the shallow water equations the forcing term is obtained from Eq. (1.4)
and Egs. (1.9-11), i. e.

i . oh
Y _ X Z"x
ox hy oy 7
0 . ) 7 oh . oh
F (= —v-<xq2>—g(G@m%)hi-a;(%)—<f+hiai—hia7x>q1 (3.5)
y X y

. 0 1
-V (xq,)-8(GP, + 93 )hig(%) +(f+ h—/

~V (x4, ) V- (G, )
L -V (xq,)

It is convenient to use velocities in the advection and grid transformation
terms of the forcing. The velocity in terms of model variables is

x=(t,9) = ( 1 , 1 ) (3.6)
h (GPy+q3) h, (GO, + q5)

The observations are yet to be defined, so we retain the most general
formulation that covers all possible data types. The observation terms must
then be further developed for each particular data type. The equations could
be made simpler by not considering observations that involve time
derivatives of the model variables. But we want to cover this case as well, to
show the proper treatment of observations like pressure tendencies.



Chapter 3 — Euler-Lagrange equations for SWE with a tracer 28

3.2.2 The governing Euler-Lagrange equations of the system

With the simplifications following from no boundary conditions, no
constraints, and no time derivatives in the model forcing, the Euler-

Lagrange equations together with the forward equations solving the above
system are

V=W, [d-H(§)I (37)
. M *
A T)= Y (Qgém) (6. (6 T)v. ] (338)
m=1 q T
— 0 ’('— M *
At =(ali) Ao B+ Y (ai:n—) (6. (x Hv. ] (3.9)
ot aq |y me1\ 0q Jy

_ M *
q(x, 0) = qO (x,0)+ | dx’ Wi_1 (x, x) {M(x",0) + 2 (aH—,\m) (¢, ", O)v, ]} (3.10)
\V4 m=1 aq 0
T —_
/c\lt = F0 (q)+ f dx’j dt” W;l (x, t, x°, "y MX", t) (3.11)
\% 0

The task that remains is to derive the functional derivatives of the model
forcing and the observation operators, along with their adjoints.
Observation operators will be constructed for each new observation type

introduced in the model, but we will not consider them further in the
present discussion.

3.2.3 The model forcing-functional derivative and its adjoint

The derivation of the functional derivative of the model forcing in Eq. (3.5),
and the adjoint of the functional derivative is mostly straightforward,
although lengthy. The reason is that we use the model equations on
conservative form, and that our model variables are the conserved
quantities. In this case extra care has to be taken where the advective
velocities enter the model equations, since velocity is the quota of the model
variables momentum and height. The details of the derivations are in the
appendix to this chapter. Here we will only illustrate the principles by an
example, and then summarise the results.

As an example, consider the pressure gradient term. After obtaining the
functional derivative, see Eq. (3.A.10), the adjoint follows from insertion in
the gradient of the cost function. According to the definition of the adjoint,

<Af, 8> = <f,A*¢g>, we want to replace all operations acting on the
unknown vector function n with operations acting on the adjoint variable

A . In particular, we use partial integrations to move derivatives between
these two variables. For the pressure gradient term this gives
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T . T ~_ —
f dtj dx[ﬁiﬁfk:-gf dtf dX[GO LY (G 13) + 1,5V (G Gy =
o Jv Jq o Jv

T _ — ~ —_
:—gf dt(f ds ¢ @nS-J dxn3[G_1V-(CGCD)—C-V(G'lﬁS)]):
0 S \%

T L _ T p*_
=j dt[ dxn,g[G' V(G D)=LV (G‘lag,):f dtf dx[(ai/\)k]tr_]
o Jv 0o Jv 9q

with notations given below in Eq. (3.14). Here we have used the divergence
theorem to obtain the boundary term, which subsequently vanishes for the

global shallow water equations. The functional derivative operator and its
adjoint can now be compared,

~9d 1 Jd ,g
-2 [Gp— (- — (13
o hX[G (G T (g
—N=| g ~3 n, EIA (3.12)
39 i, 6055 () 15 (B
0
L 0 |
.0 0
(aFP)X— - (3.13)
3 |8l V(CD)-LV (G ) '
i 0

The adjoint of the functional derivative of the total model forcing is given
in the appendix, (3.A.13-15), and is summarised below,

~ L i _
XV A, + qu%L(ﬁ e)/lz-aaahx
h, G X Y
) ~ 3 o ~ ~oh
oF°\ — x-V A, + qSA%ﬂu(f+9)/11+0'—X
aq - Y
~ a (§~ VA -1 P 1A o~
XV iy - B L o6 V(G B) -V (G 3)1-G 6o
Go R
L XV A, .
GO =Gd,+7, (3.14b) 4=@;.9,, Py +7,,7,) (3140
~ gy oh, 2 an ~ YA TA
¥ _YM XA
=2 Y _ X 7 x 3.14d =7"1_772 3.14
b ox b oy 1 °Tn T, (3.142)
- A Agt
={— —= .14f
g (h 0 ) (3.14f)
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3.3 Discussion

We now consider the different links between tracers and dynamics that are

present in the Euler-Lagrange equations for the shallow water equations
with a tracer:

a)

b)

d)

In the model forcing term of the Euler-Lagrange equations, Eq. (3.14a),
the tracer appears in both the momentum and height field terms (see g,

and A ). This may look surprising, since the tracer does not affect the
momentum and height field in the forward equations. The explanation
lies in the relationship between the forward and the Euler-Lagrange
(adjoint) equations. In the forward equations, the tracer is transported by
the model velocity field. The model velocity field is expressed with the
model variables momentum and height. In the adjoint equations this
effect is reversed, and the adjoint momentum and height variables are
affected by the adjoint tracer variable. This link is present in all four-
dimensional variational assimilation systems.

In the observation forcing term of the Euler-Lagrange equations, second
term on the rhs of Eq. (3.9), there is a link to the dynamical variables if
the tracer observation operator depends on any of the dynamical model
variables. This link is certainly present in weather forecasting models
whenever satellite radiances are used as observations. Then the model
temperature and humidity are parts of the radiative transfer model used
as observation operator for e. g. ozone. Through the Euler-Lagrange
equations the ozone observations will then change both humidity and
temperature, which in turn will lead to a change in the dynamical
model fields.

In the initial conditions of the forward equations, Eq. (3.10), there can be
a link between the tracer and dynamical fields in the correlation matrix
W, . These correlations are determined as a part of the scientific
development of any three- and four-dimensional assimilation system.
The correlation can sometimes be increased by a suitable choice of
model variables or by another choice of the variables used in the data
assimilation, which need not be the same as the model variables. This is
an active field of research at present.

In the forward model error term, second term on the rhs of Eq. (3.11), a
link between tracer and dynamics exist if their modelling errors are

correlated in W;l . This link is not present in most assimilation systems,
since they do not consider model errors explicitly. An exception is
Bennett et al. (1996, 1997). If we again consider ozone, the only term that
is common with the dynamics in the forward equations is the advection
term. Other forcing terms in ozone are related to photochemistry and
deposition and are not directly related to dynamics. If modelling of
advection is inaccurate, then the modelling errors of ozone and
dynamics are correlated. A correction of the ozone model error term (i.
e. where there is nonzero tracer adjoint) would lead to a small
correction of the dynamical model error terms as well. In weather
forecast models, advection is one of the most accurately modelled
processes, so this term will likely be small compared with other effects.
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3.4 Conclusions

In short, the theory shows that tracer measurements can influence the
dynamics of a model in four different ways: in the model forcing term of the
Euler-Lagrange equations; in the observation forcing term of the Euler-
Lagrange equations; in the initial conditions of the forward equations; and
in the forward model error term. The relative importance of these links
needs to be found out by experimentations with particular data assimilation
systems and data types, and this is planned as a part of further work.

Appendix
Derivation of the adjoint of the model forcing

Consider separately the different terms of the model forcing: the advective

A P
part F, the pressure gradient part F , and the Coriolis and grid
C
transformation part F,

F=F+F +F (3.A.1)

The functional derivative and its adjoint are then obtained from adding the
contributions from the three parts. Since there are no boundaries and no
time derivatives in the forcing for the global shallow water equations all
adjoint terms associated with boundaries, initial and end conditions
disappear. This is not the general case, and one should refer to chapter 2

rather than to the below equations for general rules on how the adjoints are
constructed.

The following variables will be used where applicable to simplify the

notation (with 6 etc. for the optimum solution)

GO =G, + g, (3.A.2)
t
qs = (‘h ’ ’h /GQD ’ Q4 ) (3A3)
; oh. .
6= higl— ;lx—%hi (3.A.4)
x 0¥ hy dy
C=(h Ay, h ) (3.A5)
o= y}ﬁ— fh—’ll (3.A.6)
IX y

Note that h1,2 =h

with similar notations for position and velocity
where applicable.

X, ¥y’
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1) FUNCTIONAL DERIVATIVES

a) Advection terms:

oo 9 (1% ) 9 %9

(3.A.7)
% h Go WY h Go
OF" _ d, 9 (q1+7ﬂh)(qs+7n) o (G +ym)(qo+yn),
Tn—dy{ Fl ]1- L = ]}Yzo—
q h, (G<p+yn3) Y, (Go+yny)
= VG- (B S (G g XAy
hGe Y h Go Go

b) Pressure gradient terms:

P chb d g
F, ,= 3.A9
b2 hy o axl 2 ( G : ( )
JF _ d,_ 8 - d g3+ ¥n
— =d (-2 Go+ 3 ¥ 11
__ & - "3 d 1,
=-—_[GD — 22 3.A.10
hlz[ ax1,2( ) + Tl3a (G)] ( )

¢) Coriolis and grid transformation terms:

C oh oh
Flo=t[f+ 1oy 2o 1% T, (3.A.11)

G ox o G dy go

C ~ ~
oF _ oh + oh + ~
[San) =L+ S LIy L9 ity N1+ 711) g =

dq dy Y Go+ryn, © U G<D+7’TI3
~ oh X, 4 dhy x, 4
=t[(f+0)n, - =—x—=lp 4 ¥ 21 n, - Ge%n] (3.A.12)
21 oy hy, Poox hy hia ’
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2) ADJOINTS

a) Advection terms:

A= hyG;ay (3.A.13)

b) Pressure gradient terms:

. 0

oOF | — 0

—| A= - - = A 3.A.14

(aa) G VG B)-LV (G Gy (G-A19)
0

¢) Coriolis and grid transformation terms:

~ ~oh
-q+e)@—oa;
c\ ~ ~oh
(%;)x: G+9)ly+05f- (3.A.15)
q ~
-Gélo

L 0 _



Appendix

Variational data assimilation with representers: a
tutorial

A.1 Introduction

In his book Inverse Methods in Physical Oceanography (Bennett 1992)
Bennett solves linear variational data assimilation problems via a simple
approach, which consists of expanding the sought field in terms of a prior
estimate calculated with the model from a first guess initial condition, and a
linear combination of fields associated with the changes caused by the
measurements. The latter fields are called representers by Bennett.

Here we will derive the representer approach to data assimilation with
the help of a simple example, using a straighforward approach which
simplifies some of the arguments in Bennett’s book. The method applies to
nonlinear problems as well. A full nonlinear integration of the model from
a first guess initial condition is then combined with linearized representer
equations (Bennett et al. 1996, 1997).

Keywords: wvariational data assimilation, weak constraint, strong
constraint, Euler-Lagrange equation, adjoint.

A.2 Model and data

For demonstrating representers, a simple example is chosen, linear wave
propagation in one dimension,

g+ u =Fy(x, )+ F, (x, f) (A1)
u(x, 0) = uy (x, 0) + u, (x, 0) (A.2)

u(x, 0) = u(x, L) (A.3)
do=u(x,,t )+e , m=12 ..M (A.4)

where u is true wave amplitude, d are measured wave amplitudes, and F is
forcing: u, and u, are time and space derivatives; F, is known forcing and
F, is model errors; u, is the prior estimate of the wave amplitude,
calculated from first guess initial conditions, an u o 15 the error in the prior
estimate; and finally there are M measurements with measurement error

€y~ The field is periodic in x with period L, and the time period over which
model and data are integrated will be denoted T.

An illustration of the example is given in Fig. A.1. Without forcing, the
solution is a pure translation of the initial condition u(x, 0) with a velocity
v=1, that is u(x, t) = u(x - vt, 0) . With forcing u(x, t) changes form as well.
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FIG. A.1l: Illustration of the linear wave propagation example, Eqs. (A.1-4).
Vertical lines are measurements.

Fy could be a tidal wave component, whereas F, could be an unknown
large scale wave component.

A.3 Formulation of a variational problem to fit model and data

A solution to Egs. (A.1-4) will be sought which minimises the following
quadratic functional,

L T L T
Ju] = Wff dxf dt (u, + u, - F, )2 + Wif dxj dt (u - u, )26(t)
0 0 0 0

M (L T
Wy j dx f dt (dy, —u)” 8(x-x,, )&t ~1_) (A.5)
m=1 Jo 0

1

where W, W., and W, are weights associated with the error in model,

initial condition and data, respectively (W ~ o’ ).

Constant weights imply no correlations between errors. It is straightforward
to include correlations in time and space by replacing the constant weights
by space and time dependent weight functions inside the integral, with no
added complication except that a more elaborated notation would be used.
As an example, the first integral in Eq. (A.5) would become

L T L T
fdxlf dtlf dxzf dty F, (xy, )W (e, b, %, 1), (2, 1)
0 0 0 0

Now let the solution which gives the minimum of Ju} with respect to a
variation of u(x, t) be 1(x, )

4

u(x, t)y =u(x, t) + yn(x, t) (A.6)
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(%Jy)yz =0 (A7)

with ¥ a constant and 7(x, f) an arbitrary function. The interpretation of Eq.

(A.6) is shown in Fig. A.2 (see Goldstein 1980 for a discussion of this
standard approach to variational problems).

¥

a(x, t) + (x, t) a(x, t)

» (X 1)

FIG. A.2: Variation of u (x, t) to get the minimum of Ju].

A.4 Solution of the variational problem
Insertion of Egs. (A.5-6) in Eq. (A.7) gives

L T

~ ~ 2 ~ 2
(c(ii_J) :di{ dx | dt[We @, + @~ Fo+m,+ m ) + W, (- uy + ym)°8(t)
V=0 Y Jo 0

M
F W D (=il =) S, )t~ £,) 1), o =
m=1

L T
:2j dxf dt [Wy (i, + il, - Fy )(n, + 0, ) + W, (il - uy ) &)
0 0 M
- W, D (@ —)n Sx-x, )&t -t )]=0
m=1

A standard solution is to integrate the model error term in the integral
partially with respect to t and x to eliminate 71, and n, respectively, after
introducing the (adjoint) variable A. This gives,

A=W, (@ +@, -F,) (A.8)

L L T L T
fdx[mi;g_j dxf dt(/1t+/lx)n+f dxf dt W, (i - uy)n 8(1)
0 0 0 0

0

L [T M
—j dxf dtw, Y (dy— N &x-x, )8(t-t_)=0
0

0 m=1
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Note that an integral associated with the partial integration in x has
vanished because of the periodic boundary conditions. If there were non
vanishing contributions from boundary conditions, that integral would be

retained without adding any problems to the solution. After rearranging
terms, we get

L

L
f dx A(x, T)n(x, T) + f dx (W, [ui(x, 0) - 1, (x, 0)] —A(x,0)}n(x, 0)
0 0

m=1

L T . M
+f dx[ dt[-A = A~ W, > (d,-7)80xx )&t -t )In(x =0 (A9)
0 0

Since 1 is arbitrary, n(x, 0) and n(x, T) can be varied independently of n(x, t),
which means that the expressions in each integral must vanish. This gives
the final solution, using Eqgs. (A.1-2) and Egs. (A.8-9),

Ax, T) = 0 (A.10)
M
A= A=W D, (@~ iDS(x-x, )8t —t_) (A.11)
m=1
(x, 0) = uy (x, 0) + W' A(x, 0) (A.12)
Do+, = Fy (x, ) + W Ax, £) (A.13)

The general solution in Egs. (A.10-13) includes an estimate of the errors in
the model physics, Wf_l/l(x, t) . An inverse problem of this form, where the
model is not assumed to be exact, is called a weak constraint problem. To

solve the weak constraint problem with the above formulation, Ax, 1)

must be calculated before (x, t) can be found. Note that Eq. (A.11), derived
through the variational approach, is the so called Euler-Lagrange equation

for the problem.

A simplification is to assume the model to be exact, Wf_1 =0, which
gives a strong constraint problem. Now A only influences #i(x, t) through
the initial condition. Although we still have to calculate A , we only need to
save A(x,0) for the calculation of (x, f), compared with saving the whole

field A (x, t) when model errors are included.

We will generally need an iterative approach to solve the weak as well
as strong constraint problem. First Egs. (A.12-13) are integrated forwards in

time from the first guess initial condition 1, (x,0) with A(x,t)=0. This
gives u,(x, t) , which can be used as a first estimate of u(x, t) in the backward

integration of Egs. (A.10-11). Now there is a first estimate of Alx, t) to use in
the forward integration of Egs. (A.12-13), etc.
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The solution for the weak constraint problem is sketched in Fig. A.3. The
solution of 4 gives a jump at each measurement point which translates into
an discontinuity in the time derivative of # .

For the strong constraint problem, the solution of A is unchanged, but A
does not any longer contribute to the forcing of ii, thus the time derivative
of it is continuous (as long as F, is continuous).

Note that when error correlations in time and space are included, the

changes in A and % go via smooth transitions.

‘,1 |

- W (d-0) AW +u,
T T T - ’ t T T T T > t
0 t, ty T 0 t, ty T
(a) (b)

FIG. A.3: The solution of the general inverse problem with Egs. (A.10-13). (a) Back-
ward integration of the adjoint 4. (b) Forward integration of .

A.5 Substituting representers in the general solution

A.5.1 Introducing the representers

It is not necessary to solve the general inverse problem in Egs. (A.10-13)
iteratively. It is possible to decouple the system into a series of initial value
problems. This will be achieved by introducing representers. The solution
can always be written as a sum of the prior estimate and a remainder,

Ux, t)=uyx, )+ Y, b_r_(x1) (A.14)

m=1

where 7 are members of some complete family of basis functions. The
special basis functions which will decouple Egs. (A.10-13) will be called
representers. As will become clear later the number of coefficients b_ which

can be uniquely determined equals the number of measurements M. For
convenience, introduce the vector notation,

2(x, £) = uy(x, ) + b r (v, §) (A.15)
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where b is a coefficient vector with elements b, b isits transpose, and r is a
representer vector with elements [

Inserting Eq. (A.15) in Egs. (A.11-13) gives

uy (x, 0) = u, (x, 0) (A.16)
(), + (1tg), = Fy (x, 1) (A.17)
Ax, T) =0 (A.18)
M t
A=A =W, X (dy-ug=b néx-x )8(t-t_) (A.19)
m=1
b r(x, 0) = W, 'A(x, 0) (A.20)
b (r+1,) = W, Alx, 1) (A.21)

A.5.2 Decoupling the representer equations

The integration of the different components of the representer vector r in
Egs. (A.20-21) still has not been decoupled. To achieve this, let

A=b o (A.22)

(Note that since the printer does not print bold Greek letters, I write all
Greek vectors as o etc. instead). Using Eq. (A.22) in Egs. (A.20-21) gives

r(x, 0) = W, ax, 0) (A.23)

o+ = Wo A b (A.24)

A.5.3 Decoupling the “adjoint” representer equations

Inserting Eq. (A.22) in Eqgs. (A.18-19) gives the following equations for o,
which is the adjoint representer vector,

alx, T) =0 (A.25)
t, — — M t
b (~o, -0 )=W, Y (d—tg—b D8(x-x_ )&t -t _) (A.26)
m=1

In order to decouple the integration of the components of o in Eq. (A.26),
first write the right hand side as a scalar product of vectors. Let

8= [8(x—x)8E—t,), ..., §x—x,, )8t — 1)) (A.27)
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t

d=[d, ..., dy] (A.28)
u, = [u, (3, 4) ..., uy (yp s By )]t (A.29)
r (xl,tl) ------ 1 (xM,tM)

R-= ro(xy, ty) e ry (Xp ) (A.30)

These definitions give
- t tte s
w, Y (@ —tg—b 1)8(x-x_ )6(t-t_)= W, (d-uy-Rb)d=c'8 (A31)
m=1

¢c=W,(d-u,-R'D) (A.32)
Inserting Eq. (A.31) in Eq. (A.26) gives

b (-o,—a)=cd (A.33)

Now it is obvious that by choosing the first M components of b equal to ¢ in
this equation, the components of a decouple into equations with trivial
right hand sides. To see exactly what happens, let b” and o~ denote the
vectors containing the first M components of b and &, and denote the

vectors containing the remaining elements as b”” and o **. Then Eq. (A.33)
becomes

b’ (-, ) =" (A.34)

b (- -0, ) =0 (A.35)

The first M components of a now follow from Eq. (A.34) by choosing
b'=c=W, (d-uy-R'b)=W,(d-u,-R'b" +R"'b")  (A36)
where the M x M matrix R” contains the first M rows of R (thus a function

of the first M components of r at the measurement points) and R"” includes
the remaining rows. Thus,

-, =5 (A.37)

From Eq. (A.35) it follows that b” =0 or o (x,£) =0. From Egs. (A.23-24)

it follows that o’ (X t)=0=r"_(x,t)=0, so under all circumstances we
have

R b’ =0 (A.38)
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Inserting this in Eq. (A.36) gives
b =W, (d-u,-R"'b")

o R+ W )b = (d-u,)
. t -1, -1
o b= R +W ) (d-uy) (A.39)

where lisa M x M unit matrix. We have now a complete solution for the
first M components of r, i. e. for r’.

A.5.4 Discarding the “unobservable” part of the solution

Now the wave amplitude # which minimises the functional Ju] follows by
insertion in Eq. (A.15),

U(x, £) = uy(x, t) + w'(x, £) + u”(x, t) (A.40a)
w(x, ) =b" r'(x, t) (A.40b)
u(x, ) =b" 7 (x, b) (A.40¢)

It follows from Eq. (A.38) that u’(x,,t,)=0 at measurement points. This
term thus represents the unobservable part of the optimal solution, and is

orthogonal to the observable part u’(x, t). To show that the unobservable

part u”’(x, t) =0 everywhere for the optimal solution, insert Eq. (A.40) in Eq.
(A.5) and use Egs. (A.16-17) together with Eq. (A.38) to get

L T L T
Ju] = Wff dxf dt [(u", +u’) + (u”, + u”x)]2 + Wi[ dxf dt (u” + u”)25(t)
0 0 0

0

M fL T )
+ W, 2 dxf dt(d, —uy—u’)" &x- X )ot=t )
m=1 Jp 0

L T

2 2 ‘
= Wff de dt [(u’,+u’) + (w7 +u”) + 2+ ) (u + u’ )]
0 0

L T
+ Wif dxf dt [u’2 + u”2 + 2(u’2 + u”2 )16(¢)
0 0

M
+ W, Z f
m=1

L T
dxj dt(d,, - u,- 11’)2 O(x—x )t -t )
0 0 ‘

By using the orthogonality condition all terms involving products between
u” and u”” vanish when integrated, which gives
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L T
Ju] = f dxf dt [We (u™, + u”x)2 + W, u”z]
0 0
L T
2 2
+ f dxj dt[We (' +u') + W u™ ]
0 0
W

M L T
+ W, Y j dxf dt (@, — g -u) Sx-x, )8t —t_) (A4l
m=1 Jo 0

1

Since the weights W, and W, are positive, it follows that the minimum of
the functional J[u] is obtained for

u’(x,t)=0 (A.42)
Thus, the unobservable part must be put to zero, which finishes the
solution of the general inverse problem by the representer method.
A.6 Summary of the representer solution
The solution derived in the previous section will now be summarised. All

quantities will be unprimed, and refer to the quantities with a single prime
in the previous section (the observable part) where relevant.

Uy (x, 0) = u, (x, 0) (A43)
(1), + (1tg)y = Fy (x, ) (A.44)
@ (x,T)=0, m=1,2,..,M (A.45)
(O, = (0)y = B-x_)&E-t_), m=1,2,.., M (A.46)
r (,0)= W a_(x,0), m=1,2,.., M (A47)
(ro)e+ (ro )y = Wit o (3, 1), m=1,2,..,M (A48)
r (e t) 1 (g by )
R= : ~ : (A.49)
rM(xl’tl) ...... rM(xM’tM)

(A.50)

0(x, ) = uy(x, ) + b r(x, 1) | (A.51)

A graphical illustration of the representer solution is given in Figs. A.4-5.
From Eqs. (A.45-48) it is clear that each representer can be calculated




Appendix — Variational data assimilation with representers 43

independently, and only needs data from one measurement, as shown in

Fig. A4.

4,

m

<4+

(a)

—

A

m

oW

FIG. A.4: The evolution of the representer and its adjoint for one measurement, Egs.
(A.45-48). (a) Backward integration of the representer adjoint ¢, . (b) Forward

integration of the representer 7, .

In Fig. A.5 the whole model space is drawn to show how each representer
projects the effect of one measurement onto the whole solution. Wherever
the representer is nonzero, the model solution is affected by the specific

measurement: the larger the amplitude of the representer, the larger the
measurement influences the model solution.

Ax

L -

\'

FIG. A.5: Area of influence for measurement dy . (a) Area of influence of the

representer adjoint &, . (b) Resulting area of influence of the representer ry, .
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A.7 Computational aspects of the representer solution

The calculation of the solution from Egs. (A.43-51) are straightforward, and
since each representer equation is independent, the representers can be
calculated entirely in parallel. For weak constraint problems, it is necessary

to save o (x,t) at all (x,t) for solving Eq. (A.48), whereas for strong

constraint problems (Wf_1 =0)only o (x,0) needs to be saved.

The evaluation of the final solution # (x, ) from Eq. (A.51) requires that all
representers be saved at all (x,t). However, there is a trick which does not
make it necessary to save r (x, t) . From Eq. (A.36) we see thatb = W_(d - 1),
using obvious notation. Thus the right hand side of Eq. (A.11) can be replace
by b. After calculating b from the representers, the representers can be
discarded, and the solution # (x, ) can be calculated through Egs. (A.10-13)
whenever needed, at the cost of two model integrations and negligible extra

memory requirements. These two alternative ways of calculating the
optimal solution can be called the “straightforward” method,

Uy, o, r(2M + 1 integrations) — R, b =7 from Eq. (A.51) (large memory)

and the “memory saving” method which comes at the cost of two extra
model integrations,

iy, 0, T (2M + 1 integrations) — R, b —A (1 integration) -1 (1 integration)

We refer to Bennett et al. (1996, 1997) for further details on efficient
numerical implementation.

A.8 Final comments

We have shown by a simple example how the representer approach to
variational data assimilation works. In the process the concepts of weak
constraint and strong constraint problems have been explained. When
applying this approach to more complicated problems, we will be faced with
the formulation of the adjoint of our model. In the present case the adjoint
of the model only consisted of reversing the sign in front of the derivatives,
but in general the model adjoint requires much development. Another
aspect is of course that in realistic problems all sorts of model and
measurement error correlations enter, and here there is also considerable
development needed: first, to find these correlations from measurements
and model simulations; then, to implement effective ways to include the
correlations in the model integration.

The representer method also opens up alternative ways to look at the
data assimilation problem. Although a straightforward application of the
method is not practical, there are methods to make useable representer

algorithms for numerical weather prediction models as shown by Bennett et
al. (1996, 1997).
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