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Abstract

Application of the nonlinear normal mode method to the initialization
of a limited area prediction model requires the construction of the normal
modes of the linearized model equations.

Linearized model equations, in differentiated form, can be derived in
different ways, depending on the splitting of the terms which contain the
Coriolis parameter f. Instead of setting f equal to a constant value in
these equations, leading to stationary Rossby modes, we consider a simple
extension, by modifying the linearized model equations so that they admit
solutions with nonzero Rossby frequencies.

The results are compared with those using a nonlinear normal mode
initialization with constant Coriolis parameter. They show that the two
methods are virtually identical in their effect upon the initial fields

and upon their development during the first hours of the forecast.



1. Introduction

The purpose of initialization of a primitive equation forecas£ model
is to balance the initial fields of velocity and mass in order to suppress
the high frequency wave oscillations in subsequent model integrations.
Application of the nonlinear normal mode method to the initialization of a
limited area model requires the construction of the normal modes of the
linearized model equations. Linearized model equations, in differentiated
form, can be derived in different ways, depending on the splitting of the
terms which contain the Coriolis parameter f.

In a previous paper (Bijlsma and Hafkenscheid, 1986) we applied the
nonlinear normal mode initialization method of Machenhauer (1977) to a
limited area forecast model, assuming that the Coriolis parameter in the
linear part of the model equations was constant. Due to the constant
Coriolis parameter the frequencies of the Rossby waves are zero.

Since the inclusion of beta terms in the linearized model equations
might be important in practical applications of nonlinear normal mode
initialization, as was noted by Ballish (1979), we consider a simple
extension of the foregoing method. We modify the linear part of the model
equations so that they admit solutions with nonzero Rossby frequencies,
which is the main consequence of the inclusion of beta terms in the linear
model equations. As a result, the frequencies of the eastward and westward
gravity waves are no longer symmetric and the corresponding modes no
longer complex conjugate.

An outline of the method is given in section 2. Results of the
initialization method, compared with those using a nonlinear normal mode
initialization with constant Coriolis parameter, are given in section 3.

Conclusions are presented in section 4.



2. Outline of the method

We consider the shallow water equations on the sphere in dif-

ferentiated form
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where x, ¥, ¢ and d are the velocity potential, streamfunction,
geopotential and mean free geopotential height, A and 6 longitude and
latitude, r and Q@ the radius and angular velocity of the earth and
QX, Qw and Q¢ the nonlinear terms.

The equations used in the nonlinear normal mode method under
consideration, on a discrete grid Am = Ao+ mAA, en = eo+ nAe, with MxN

interior grid points, are
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where f = 2Q sin6 is a constant Coriolis parameter, Vé the usual five-
point discrete Laplacian operator in spherical coordinates and (%T)d the
centered difference operator in the A-direction. Deviations of the linear
terms are absorbed into the nonlinear terms on the right-hand side. In

order that the linear system admits nonstationary Rossby modes, it is



sufficient to include only the term (%T)d Y. However, for the sake of
symmetry we also include (%X)d X

Because of the presence of the terms (%T)dw and (%T)dx in Egqs. (1) and
(2), the eigenfunctions of the linear spatial operator on the left-hand
side of Egs. (1) to (3) are complex exponential functions in the E-W

direction. Therefore we should like to write the solution in the form

Y V=Nt Y, 6= 0t 0,
where the fields yx, ¢y and ¢ have periodic boundary conditions in the E-W
direction and zero boundary conditions in the N-S direction, and where the

fields Xo’ wo and ¢o satisfy the discrete Laplace equations
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and are equal to the initial values of X=X, ¥~y and ¢-¢ on the boundary.
: 9 d . .

Including the terms (aA)dXo and (ak)dwo in the nonlinear terms on the
right-hand side, we could solve the remaining system of equations for the
fields x, ¥ and ¢, just like in the case of the f-plane approximation,
where these fields have zero boundary conditions.

However, because the periodic boundary values of X» ¥ and ¢ are not
known beforehand but follow from an iterative procedure, as we see at the
end of this section, we proceed as follows. As a first approximation, we

introduce the (time-independent) functions Xo? wo and ¢o’ which satisfy

the discrete Laplace equations

2 - 2 - 2 -
deo 0, deo o, Vd¢o 0

and are equal to the initial values of x, ¢ and ¢ on the boundary. Then,

setting y = Xo +* Xy Y= wo + yand ¢ = ¢o + ¢ and removing the primes of



Q; and Q&, Egs. (1) to (3) become
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Let the normal modes of the linear operator on the left-hand side of

Egs. (4) to (6) have the following spatial behaviour

Skl(m,n) = fkl(n) exp(2wi km/(M+1)),
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satisfying Vd Skg(m,n) = ~ap. Skg(m,n), with fkl(o) fkl(N+1) 0.

Then, subsitution shows that the Rossby and gravity modes are

determined by the eigenvectors and eigenvalues of the matrix
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The eigenvectors of M., are proportional to (if T denotes the transpose)
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with eigenvalues io, where ¢ satisfies the equation
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We solve this equation for ¢ 2 0; for ¢
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conjugate eigenvalues (see, for instance, van der Waerden, 1955, p. 187

< 0 we find the complex

for the solution of a cubic equation). The values of ¢ corresponding to

Rossby waves and westward and eastward gravity waves are (if
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where the asterisk denotes complex conjugation.

Then the normalized Rossby mode and westward and eastward gravity modes
are given by
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We may expand n in the normal modes
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Substituting this into Eqs. (4) to (6) and projection on the gravity modes

yields,
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Since Egs. (U4) to (6) apply at interior grid points, the boundary
values of the forcing and time tendency terms are assumed to be zero.
Following Machenhauer (1977), the initial tendencies of gravity wave

components are set to zero, yielding

~
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This nonlinear equation can be solved iteratively, as follows
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The new fields are constructed from X(q+1) - Xéq+1) + X(q+1)’
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and where the fields Xéq+1)' wéq+1) and ¢éq+1) satisfy the discrete

Laplace equations
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and are equal to the initial values of yx - x(q+1), Y - w(q+1) and

~(q+1)

- ¢ on the boundary.
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These new fields may be used to evaluate Fer . Since YM+1-k2r = Yklr’

for k = 1(1) !%l if Mis odd or k = 1(1) M if M is even, it is sufficient

2
. M+1 |, M.
to consider the wave numbers k = 0(1) > if Mis odd or k = 0(1) 5 if M

is even.
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3. Results

In order to test the initialization method described above, a test run
was made with the five-level limited area version of the ECMWF grid point
model employed by Temperton and Williamson (1979), on a grid having a mesh
spacing (AA, A8) = (2°, 1°) and covering approximately the area between ‘
45° and 65°N and 20°W and 20°E. |

By a vertical decomposition of the model equations, initialization of
a baroclinic model becomes equivalent to the initialization of the
resulting system of shallow water equations. For details the reader is
referred again to the paper of Temperton and Williamson.

Initial data‘are obtained from analyses of the geopotential at pres-
sure levels. Temperatures are derived hydrostatically. Wind components u
and v at sigma levels are calculated with the linear balance equation.
Orography is included.

Initialization starts with the computation of divergence and
vorticity. From the divergence and vorticity the stream function Y and
velocity potential y are derived. After initialization the velocity
components are obtained from ¢ and y.

The retrieval of the temperature and pressure changes at each
iteration step of the initialization procedure is accomplished by a
variational method (Daley, 19795.

The effect of initialization is made visible by means of a longitude-
time diagram of the surface pressure tendencies along tﬁe latitude line
55°N, from 22°W to 20°E.

An experiment with the initialization method of section 2 was per-
formed on initial data valid at 1200 GMT, 5 January 1982. The same data
were used for a comparison between the nonlinear normal mode and bouﬁded
derivative methods in Bijlsma and Hafkenscheid (1986). For details the

reader is referred to that paper.
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In Table 1 the gravitational frequencies of the method of section 2
are compared with those using the f-plane approximation
=214 =2 % .
= (2 2y%2 = (02 4 + £2Y)2 :
(°k12 (akld + £2)72, %23 (akzd £2)2) for the first two vertical

modes (satisfying 3a;2d - 62 + % eﬁl > 0) and zonal wave numbers k =

M+1
5.

0(1)

For a particular k, the wave number % has been chosen so that skl has

a maximum value. The parameters used have the following values: the

geopotential heights are d = 91932.53, 12478.39 mls~2 respectively, the

7.29x10 s, the radius of the earth r = 6367x103 m,

angular velocity Q
M =21, N =20 and 6 = 55%°N.

Figure 1 gives the longitude-time diagram for the first 6 hours of the
limited area model run, showing the gravity wave pattern before
initialization.

In Fig. 2 the longitude-time diagram is shown after initialization of
the first vertical mode with two iterations using the initialization
method of section 2. Fig. 3 shows results of this method after initializa-
tion of the first two vertical modes with two iterations. The diagram for
normal mode initialization with constant Coriolis parameter, after
initialization of the first two vertical modes with two iterations, is
shown in Fig. 4.

From these experiments we may conclude that the method described in
section 2 is almost identical to the nonlinear normal mode method with
constant Coriolis parameter in its effect on the initial field and in its
success in suppressing noise in the early forecast. This results is

consistent with results of Lynch (1985, section 4).
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4, Conclusions

A nonlinear normal mode initialization method, employing nonstationary
Rossby modes, is applied to a baroclinic limited area forecast model.

Results of the initialization method have been compared with those
using a nonlinear normal mode initialization with stationary Rossby modes.

These results show that the two methods are virtually identical in
their effect upon the development of the fields during the initial fore-

cast hours.
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Table 1.
Frequencies of the gravity waves of the f-plane approximation and the
method of section 2, for the external and first internal mode

respectively. For further explanation, see section 3.

(aﬁld + Fz)z - % €q ~ % (3p)zcos(n-u)/3 - % €g * % (3p)zcos u/3
0 4.2233x107% 1.9154x107%  -4.2233x107% -1.9154x10"4 .2233x107% 1.915ux1074
1 8.0448x107" 3.1674x10"%  -8.0664x107% -3.1916x107% .0233x107% 3.1434x1074
2 1.3736x1073 5.1821x10™%  -1.3750x10™3 -5.1968x10"4 .3722x1073 5.1680x107 4
3 1.9186x1073 7.1563x10™%  -1.9196x1073 -7.1663x10" % .9176x1073 7.1463x10™"
4 2.4247x1073 9,0025x107%  -2.425ux1073 -9.0100x10" 4 .4239%1073 8.9951x107%
5  2.8836x1073 1.0682x10™3  -2.8841x1073 -1.0688x1073 .8830x1073 1.0677x1073
6 3.2873x1073 1.2163x1073  -3.2878x1073 -1.2167x1073 .2869x1073 1.2158%1073
7 3.6286x1073 1.3415x10™3  -3.6289x1073 -1.3418x1073 .6283x1073 1.3412x1073
8 3.9010x1073 1.4415x1073  -3.9012x1073 -1.4418x10™3 .9008x1073 1,4413x1073
9 4.0994x1073 1.5144x10"3  -4.0995x10™3 -1.5146x10"3 .0992x1073 1.,5143x1073
10 4.2199x1073 1,5587x1073  -4.2200x10™3 -1.5588x10~3 .2198x1073 1,5586x1073
11 4.2603x1073 1.5736x1073  -4.2603x10"3 -1.5736x10~3 .2603x1073 1.5736x1073
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Figure Captions

Fig. 1.
Longitude-time diagram of surface pressure tendencies along the latitude

line of 55°N, starting at 1200 GMT 5 January 1982, before initialization.

Units are millibars per hour.

Fig. 2.
As in Fig. 1, but after initialization with the method of section 2 of the

external mode, with two iterations.

Fig. 3.
As in Fig. 2, but after initialization with the method of section 2 of the

external and first internal mode, with two iterations.

Fig. 4.

As in Fig. 3, but after normal mode initialization with constant Coriolis

parameter of the external and first internal mode, with two iterations.
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