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An improved Wind Input Source Term for

Third Generation Ocean Wave Modelling

L. Yan

Abstract

Measurements by Snyder et al (1981) in the Bight of Abaco have shown that the
growth rate of wind generated surface gravity waves can be approximated by a
relationship B = %%t = (0.25 + 0.05).¢. (%5 cos6 - 1) w for 1 < gs < 3, which,
for a given Uy , is valid for relatively low frequencies. A revised form of
this expression, B = 0.25 ¢ (28 gi cosh - 1) w was proposed by Komen et al
(1984) on the argument that friction velocity is a better scaling parameter
considering the dependence of the drag coefficient Cq on wind speed. A
different expression for B was given by Plant (1982). It has the form

%2
8 = (0.04 £ 0.02) “22

and field measurements in the high frequency range with a fixed U¥*. In this

cosf, which is in agreement with a variety of both tank

note, a new expression is presented, combining Komen's relation with Plant's

relation. It has the form
%2 *
B = w (0.04 22 cos6 + 0.00544 g— cose + 0.000055 cosp-0.000311). The effeot

of incorporating this formula in the WAM model is compared with the standard

WAM model. It is found that the shifting of the spectral peak towards the low
frequencies is somewhat slower and that the height of the peak has decreased

somewhat. However, there is no strong influence on the energy gain by waves.

Introduction

The physical mechanism of the generation of surface gravity waves by wind has

long been the focus of interest, especially after Miles' work on shear flow



instability (Miles, 1957). In his theory, the imaginary part of the wave
induced pressure perturbation, with the same phase as the slope, does work on
the wave and hence causes it to grow exponentially. Since then, many efforts
have been made to verify this theory and to make it applicable. A recent
experiment conducted in the Bight of Abaco (Snyder et al, 1981) measured

growth rates in agreement with the Miles' theory and produced an approximation

of these growth rates:
Y = (0.25 £ 0.05).e. (2% cose - 1) (1)

where Y is the growth rate parameter B scaled by angular frequency w; Ug is
the wind speed at the height of 5 m; ¢ is the phase velocity; € is the ratio
of air density to sea water density (e = 1.25 x 10_3); and 6 is the
propagation direction relative to the direction of wind. The validity of this
formula is roughly 1 < %5 < 3, since the data sets used are in that range. For
a fixed wind speed Ug, the corresponding frequency range

g/2mls < f < 3g/2nUg contains relatively low frequencies. Thus it can not
provide information on growth rate behavior reliably in the high frequency
range. Yet this high frequency range is important: considerable energy input
from atmosphere to surface waves occurs in this range. Considering the
importance of scaling wave growth parameters with friction velocity rather
than a wind speed at a fixed height (Janssen, Komen and de Voogt, 1985), Komen
et al (1984) revised the above expression using friction velocity U¥. They

obtained
U*
Y = 0.0003 (28 o cosé - 1) (2)

which at present is incorporated in the so-called WAM model (Hasselmann et al,
1987). In 1982, after investigating a wide variety of measurements for both
wave-tank and ocean fields by Shemdin and Hsu (1967), Larson and Wright

(1975), Plant and Wright (1977), Wu (1977, 1979), Stewart ant Teague (1980),
Plant (1982) proposed another growth rate relation:

Y = (0.04 + 0.02) %; cos6 (3)

over a wide frequency range from g/2wU,, to 20 Hz. Although this relation is

similar to those obtained in a number of theoretical studies and is quite



consistent with the experimental data over a rather high frequency range, it

is not so good in the low frequency range, say around f = g/2nU, 4.

In order to overcome the shortcomings of the two relations mentioned above, a
new expression (we call it "fit" in the following) is proposed in this note,
which, combining the two relations together, roughly reproduces eq. (2) in the
low frequency range and eq. (3) at high frequencies.

The fit is used in the WAM model as a wind input source term to investigate
its effect on wave growth. It has a tendency to reduce the spectral peak and
to slow down its shift toward lower frequencies. However, there is no evident
effect on the total energy gained by the waves. All other features of wave
growth develop as in the standard WAM model. This is because the frequency
range involved is rather low and there the difference between the fit and eq.
(2) is small.

The plan of this note is as follows: in section 1, we will give the derivation
of the fit; in section 2, the information on how the fit was incorporated in
the WAM model is described; in section 3, model results are discussed and

finally, in section 4, general conclusion will be drawn from the above,

Section 1 ~ Derivation of the fit

For clarity, Komen's relation and Plant's relation are rewritten as follows:

<
1

A (x cos6 - B) (2")
Y = C x? cosé (3")

where x = U*/c and A, B, C are constants with the values 0.0084, 0.036 and
0.04 respectively.

As mentioned in the Introduction, eq. (2') gives a fairly good growth rate
over the low x range, and on the contrary, eq. (3') behaves better over the

high x range. This gives two constraints for the fit we are going to invoke,
We take the form of the fit as

Yf = Dx? cosf® + Ex cos® + F cosg + H (W)



where D, E, F are constants to be determined.

According to the constraints, the fit for one dimension should satisfy the two

conditions below:

Yo = Y, for x near B (5)
and
2im Ve = Yp (6)

Comparing (3') with (4'), we find D = C.

Expanding x* as x5 + 2x, (x-x,) in eq. (4) (x, in the vicinity of B), we get

three relations:

A = 2x,D+E (7)
F = x3D
H = -Ax,

We select x, = 0.037, so as to obtain good agreement at U¥/c values observed
in the Bight of Abaco. Then we have

E = A - 2x,D = 0.00544 (8)

F = x2D = 0.000055
H = ~Ax, = ~0.000311

Fig. 1 shows the curves for Yk’ Yf and Yp, from which we can see that for a
given U¥* = 0.85.

Y. <Y, for f < 0.0986

f k
Yf = Yk for £ = 0.0986 (9)
Yf > Yk for £ > 0.0986

. .
Since Fig. 1 is drawn on x ( = %—) coordinate, the x value corresponding to
f = 0.0986 is 0.054,

One should note that in the transition range of medium frequency Y_. is larger

f
than doth Yk and Yp. This comes about because we believe that the data points

at high and low frequencies lie on one smooth curve.



Section 2 - Running WAM with the fit for Case II of SWAMP

To study its effect on wave growth we introduce our fit eq. (4) into the WAM
model for the standard situation of Case II of the SWAMP study and compare its
results with those obtained with Komen's relation (2) for the same case.

The test case (Case II) is briefly as follows: a stationary homogensous wind
field with friction velocity U* = 0.85 and its direction 6*= 0° (clockwise
from the north) blows orthogonally offshore over a deep water area which
covers 20 latitudes and 20 longitudes.

The 1initial spectrum is mean JONSWAP spectrum (Jonswap, 1973), and the
spectrum at the coastlines remains zero for t > 0. The test period is 45
hours. The spectrum output points selected and geometry considered are
indicated in fig. 2.

The WAM model is a highly sophisticated third generation wave forecasting
model, in which the source function and the propagation term in the energy
balance equation are integrated on two different time step levels with
different methods (implicit integration for the source function and first
order upwind difference scheme for the propagation term). Usually, the
propagation time step is a multiple of the source function time step. For this
special test case we take both the source function time step and the
propagation time step identically as 20 min. For other details about the WAM

model we refer to Hasselmann (1987).

Section 3 - Results and discussion

For the convenience of comparison, we attach to the parameters relevant

to Yf a subscript f, and correspondingly, the parameters relevant to Yk a

£ s Yk.

Looking into the resulting spectrum, we find that with Yf WAM also can

subscript k. We also give a name f‘t to 0.0986 where Y

demonstrate all the well-known features of the growth of the spectrum, such as
the overshoot effect, the shift of the spectral peak to lower frequencies,
sharp peak, steep forward face and smooth backward slope, etec. However, when
one looks at details of the spectral shape, there are some differences, which

also have some effect on the growth curves.



At an early growth stage, when the dominant part of the spectrum falls
beyond ft or Jjust over it, Ff (f) > Fk(f) is true for all the spectral
densities (see fig. 3). This can be entirely attributed to Y_, being larger

f
than Y, over the range f > ft.

As itIZS developing, the main body of the spectrum goes gradually into the
frequency range lower than ft. Then, the migration speed of the spectral peak
of Ff starts to slow down relative to that of Fk. Subsequently, the difference
between the two spectra increases with time. This can be seen clearly in fig.
4 and fig. 5, which indicate the spectra for the same fetch at different
durations, 21 h. and 45 h., respectively. Apparently, the spectra in fig. 4
are much closer to each other than those in fig. 5.

This phenomenon is readily explained if we recall one of the features of the
nonlinear transfer. According to Hasselmann et al (Part I, 1985), tne
strongest interaction takes place around the spectral peak and this leads to a
sharp low frequency positive lobe and an intermediate frequency negative lobe
in the nonlinear transfer rate. For a sharply peaked spectrum of the JONSWAP
form, the low-frequency positive lobe lies slightly to the left of the peak on
the forward face of the spectrum and tends to grow the peak and move the
spectrum towards the lower frequency range. The position and magnitude of the
low-frequency positive lobe has a strong dependence on the shape of the
spectrum, especially on the shape in the vicinity of the spectral peak. The
reverse is also true. In this way, nonlinear transfer is an important element
in the evolution of the wind wave spectrum.

When the spectrum has energy on either side of ft' the growth rate of the
form Yf causes lower values for f < ft, and higher values for f > fy for the
spectrum than Yk. Practically, this means that the peak of Ff(f) is simply
shifted a little bit to higher frequency as compared with that of F . (f). And
also the shapes of the two spectra are different. These slight differences in
the spectral peak locations and shapes (especially in the peak locations in
our case, while shapes are rather similar) give rise to relative large
variation of the spectral density around the peak, especially on the forward
faces, and therefore are enhanced by the feature of nonlinear transfer
mentioned above.

In the next time step, the different growth rate once more add their effect
larger than the previous time step, because of enlarged disparity between the
spectra, on the spectra. Then again, the nonlinear transfer acts, and so on.
In this way, at the end we get the developed spectra of fig. 5, the difference
being larger than that in fig. 4 which represents the spectra in an earlier

growth stage.



Additionally, dissipation process also contributes to the phenomenon being
discussed. The dissipation source term used in the WAM model has the form

Sds ~ (EB*/8%)%.w?/B . F

where E is the total energy and § is the mean angular frequency. The combined
parameter o = EZ"/g? is the steepness of the waves, representing the state of
development. The high power to which ® is raised makes the source term Sds
very sensitive to the precise value of the mean frequency and therefore to the
Spectral shape.

At an early growth stage, the larger values of both Ff and Ef (to be discussed
later) lead to a larger Sdsf term, retarding the development of Ff(f). At a
later developed stage, although Ek > Ef, we still have a Sdsf term larger than
Sdsk’ because of larger Ff. That indicates that the dissipation source term
also has influence on the slower shift of the spectrum Ff(f), its reduced peak
and energy.

As to the angular distribution, we find that Yf is quite consistent
with Yk. The small discrepency between the two spectral at 30° and 60° is
caused mainly by the effect of the nonlinear transfer coupling with different
growth rates.

On the basis of the above analysis, it is not difficult to interpret
differences in the fetch and duration limited growth curves for energy E,
given by fig. 6 and fig. 7. For early growth stages, or at short fetches Ef
has higher values than Ei . There are two reasons for this. First, at this
stage, the two spectra are relatively closer to each other and the difference
between the values of the spectral densities on the forward face is not so
large, compared with more developed case. Second, because of a logarithmic
scale of frequency adopted, the frequency steps over which a forward spectral
face stands are much smaller than the steps for the backward spectral slope.
S0, the reduced energy caused by the smaller density values on the forward
face of Ff(f) is more than offset by the larger energy gain caused by the
larger values of Ff(f) over the frequencies above the peak frequency fpf. For
the fully developed case, we should say that large gap on the forward spectral
faces of the two spectra contributes more than the gap on the backward slopes
to the difference between Ef and Ek, causing Ef < Ek' Nevertheless, such a

difference, max ([Ek - Efl) =~ 0.23, won't be regarded crucial in practical
use.



Fig. 8 and fig. 9 give growth curves for the mean frequency f where ?f is

always slightly higher than Fk' Obviously, this can also be qualitatively

explained by the above analysis of the slower shift of fpf.

Section 4 - Conclusion

We combined Komen's relation (2), which is the revised form of Snyder et al
(1981) and has a low validity range for U*/c, with Plant's relation (3), which
is supported by many experiments for rather high U*/c range, into a single
formula. To this end, a fit was explored with the form of (4). When used in
the WAM model, in comparison with Komen's relation (2), Yf slows down the
migration of the spectrum towards low frequency range and tends to reduce the
peak of the spectrum, coupling with the nonlinear and dissipation effect.
Especially at high frequency, Yf is mueh larger than Yk. Yet, the effect on
the gain of wave energy in the case considered is relatively small. And this
is also true for the other well-known features of the wave growth in the wave

evolution simulating model - WAM.
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Figure captions

Fig.

Fig,k2

Fig.

Fig.

Fig.

Fig.

1

Growth rate curves for 6 = 0° (a) and g = 30° (b). 6 is the angle
between wind and propagation directions. Arrows indicate the X points

where Yf = Yk.

Geometry. and points selected. Figures denote the fetches in Km.
Spectra Fk(f) and Ff(f) for the fetch 2200 km and duration 6 h, at

propagation directions O0c°, 30°, 60°, respectively. 9% denotes the

wind direction.

4 and 5. The same as fig. 3 except for the duration being 21 h and 45 h.

6 and 7. Fetch and duration limited growth curves of the energe Ek and

Ep.

8 and 9. Fetch and duration limited growth curves of the mean

frequency fk and ff.
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