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SUMMARY

In realistic air-pollution models a variety of physical and chemical
processes have to be taken into consideration. The most important
processes for constituents are advection and (turbulent) diffusion in the
atmosphere, emission from diffuse and concentrated sources, wet and dry
deposition and (photo-)chemical interactions. A mass balance, that
reflects these processes is difficult to solve directly with numerical
mathematical methods. However, the method of fractional steps (Yanenko,
1971) makes it possible to treat the different processes separately. Thus
an algorithm that is most suitable for the approximation of a particular
sub-process, such as advection, can be chosen.

Photo-chemibal interactions play a substantial role in air-pollution situ-
ations. They are described by non-linear mathematical equations, which in
many cases demand for their numerical solution that the chemical constitu-
ent concentrations remain non-negative. It turns out to be especially hard
to construct numerical advection schemes that are non-negative as well as
mass conserving and accurate enough. Therefore the larger part of this
study is devoted to a comparative study of a number of special numerical
methods that approximate the solution of the advection equations with two
spatial dimensions. The best methods that came out of previous comparison
studies have been chosen, together with some methods which appeared in
recent literature.

To get a clear and coherent impression of the performance of these
advection schemes a consistent set of tests has been made on a VAX 11/750
under the UNIX 4.1 system. A number of objective criteria discriminate
between the various outcomes. Also practical results such as computer time
consumption and storage requirements are given,

The results indicate that the Second Moment Method is a robust and
relatively cheap method for the resolution of the advection equation,
although its storage requirements can be prohibitive. For a more detailed
discussion see section 2.11.

Numerical methods for the treatment of the vertical structure and the
non-linear chemical interactions are not included in this report. These

will be the subject of a subsequent investigation.
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1. INTRODUCTION

In the last decade simulation models have become important instru-
ments for tﬁe understanding and the abatement of air quality problems.
Much effort is glven by physicists and chemists to design urban scale,
regional or global models which describe the transport of air pollutants.
There are many other related problems in environmental science where the
main concern is the way in which transport of a contaminant is taking
place by a moving fluid. Next to the air pollution problem there is e.g.
the question of transport of trace constituents in the ocean, in estuaries
or by rivers., However, all these problems have the following in common.
When practical situations are to be simulated using a numerical model, the
governing model equations have to be discretized. To this end the equa-
tions are approximated utilizing numerical mathematical methods. Such a
process unavoldably will introduce errors, which even can defile the
entire solution (e.g. if negative concentrations are produced) when an
incorrect method is chosen. Therefore, if the careful model-research is
not to be nullified, it is of paramoun® Importance to use advanced
numerical methods. Here the rule can be employed that numerical errors
should be of smaller order than the uncertainty that is present in the
results of measurements and model approach to obtain results that are
interpretable.

Usually several mechanisms can be distinguished in the model equa-
tions for the transport of contaminants. The important mechanisms are
advection (transport by wind), turbulent diffusion and chemical and
photochemical reactions. Each of these has its own numeriecal character-
istic difficulties and therefore the method of fractional steps (Yanenko
(1971)) is attractive to use. This method makes it possible to employ for
each sub-mechanism separately an efficient numerical solution technique.

In this report a number of special numerical methods for solving the
advection equation with two spatial dimensions are compared. Although even
before the advent of the computer algorithms for the transport of chemical
constituents were designed, many specialized methods have appeared in the
literature recently. Many of them have a heuristic basis which makes it
difficult to trace their formal accuracy. Therefore it is desirable to
test these methods on one computer with one set of test problems, so that
the properties of the methods will be demonstrated in a clear manner,

In this study the best methods of previous comparison studies have been



chosen together with some methods which appeared in recent literature. For
testing purposes the methods have been programmed directly from the
original papers. Here the important features of the numerical algorithms
are compiled; more detailed descriptions and results can be found in [1]-
[61.

The available computer configuration on which a simulation must be
performed puts a strong bias on the choice of the numerical algorithm., It
must be stated, however, that in the near future powerful computers become
within reach of many users. Hence memory limitations will be not as severe
anymore and it will be easy to couple an attached array processor to any
computer. This implies that the mathematical properties of an approxi-
mating scheme are the most important items to take into consideration in
any comparison study. In this report no account has been taken of methods
which are designed for vector or parallel computers. This promising
subject is left for future study.

In the remaining part of this chapter the basic conservation laws for
the transport of air pollution will be explained. Moreover, the method of
fractional steps, the initial conditions and the forcing will be eluci-
dated. The subsequent chapters deal with numerical methods for the advec-
tion equation. Special numerical methods, which treat the vertical
structure In the atmosphere and the stiff differential equations that

emerge from the chemistry will be left for future investigation.

1.1 The conservation laws

The equations that govern the air pollution process are the result of
conservation laws. If s chemical species ci(z,t) (i=1,...,8) are con-
sidered suspended in a turbulent flow, then the following nonlinear
partial differential equations express conservation of mass (Businger
(1984), Pasquill and Smith (1983)),

ac .
i
Tl V. (U ci) =V. (IK . V ci) + fi (01,...,cs,t) + Si . (1.1.1)

In this set of equations U (x,t) = [U,V,W]t is the advective velocity
field, imposed by meteorological conditions, X 1s a spatial point and t

represents time. IK is a second-order eddy diffusivity tensor., The

functions f; prender the complicated non-linear interactions among the

chemical components. The term S is a source or sink term that describes

the influence of surface sources, point sources and deposition processes.



In general it is not necessary nor desirable to solve (1.1.1) in its
full form. In many cases it suffices to solve a simplified equation which

reads in cartesian coordinates

ac daUc, avVe oF .
i+ 1+ i=-——l+f‘_+s

at ox oy 9z i i’ i=1,...,8 . (1.1.2)

The most essential transport phenomena described by (1.1.2) are horizontal
advection and vertical eddy diffusion. The mechanism for effective hori-
zontal diffusion is provided by the horizontal shear in the wind velocity
profile. The flux Fi expresses both vertical eddy diffusion and vertical
transport.

The equations (1.1.2) must be solved on a limited spatial domain Q
which is bounded by 30. It is assumed that Q is fixed in time. The
mathematical formulation of (1.1.2) is completed if initial and boundary

conditions are added. The initial conditions for X In @ can be written as

ey (x,0) = i (x), i=1,...,8. (1.1.3)
With respect to“the horizontal boundary conditions distinction has to be
made between in- and outflow boundaries. For that part 391 of the boundary

where an inflow of contaminant is taking place the local value must be

prescribed by

c, (x,t) =c,

i i1 B, 1=1,.08, X e 29 . (1.1.4)

At the remaining part 892 of the boundary the concentration is largely
determined by advection outwards Q.
At the top and at the bottom of the model expressions for the flux Fi have
to be prescribed.

In the analysis of the numerical methods it will be assumed that the
meteorological windfield.g and the initial concentrations c-

io
a prescribed grid. Moreover, it is supposed that relations are available

are given on
for the vertical flux Fi and the chemical interactions fi.

1.2 An approach to the forcing

The forcing term S in eq. (1.1.2) consists of a number of complex

Source and sink terms, namely



S = Sp + SS - Sd . (1.2.1)

The depletion term Sd describes the deposition process at the earth's
surface or the removal of material by wet processes. These processes
usually are parameterized, see Pasquill and Smith (1983).

The other terms are the surface source term Ss and the point>emission
term Sp. The surface source term is constructed from an emission
inventory. It is usually a sufficient smooth function of x and therefore
will not cause any difficulties in the numerical integration procedure,.

Point sources, however, bring about strong sub=grid chemical inter-
actions. It is virtually impossible to incorporate them in a numerical
grid point approximation without introducing large errors, which makes it
necessary to treat point sources separately. This is done by tracking the
plume of each point source with a Gaussian model (Pasquill and Smith
(1983)) for several time steps, until this concentration distribution is
smooth enough to be incorporated in the large-scale grid point model. The
air pollution model must thus provide for a bookkeeping section, which
traces the trajectories of the point sources. An analysis can be found in
Karamchandani et al. (1983). The Gaussian model has as an additional
advantage that the chemical reactions between the relatively high concen-
trations of pollutant that are present in the initial stages of the plume
can be described much better by this subgrid procedure. Numerical methods
that are most suited for a direct treatment of point sources are

Lagrangian methods of the particle~in-cell class (see section 2.9).

1.3 The method of fractional steps

As was pointed out in the introduction, several mechanisms for the
transport of contaminants can be distinguished in eq. (1.1.2), all having
a totally different numerical behaviour. These mechanisms are advection in
a horizontal plane, vertical diffusion and chemical reactions. To get a
feel for the numerical difficulties two out of many problems are
illustrated below.

In the atmosphere the large scale dispersion of pollutants is chiefly
a result of advection processes, whereas turbulent diffusion has a local
mixing effect. Approximating the advection part of (1.1.2) with several
numerical schemes on a grid, Sheih and Ludwig (1985) found that for
realistic gridsizes of 50 km, which are used in regional scale models,

about half of the schemes produced an artificial diffusion larger than the



natural eddy diffusion.

Another example which is of numerical concern can be found in the
terms f; that reflect the chemical reactions between the concentrations
¢i. Apart from the fact that the terms are non-linear, they also compli-
cate the numerical solution process because the spectrum of reaction time-
scales is very large. In photochemical situations it is realistic to
encounter reaction times that differ by an order of 108 seconds (McRae et
al. (1982)). This phenomenon will dominate the entire solution process if
this type of process is not resolved by a special method.

There are several ways in which the above mentioned difficulties can
be removed. The most appropriate option seems to be the method of
fractional steps, that was introduced by Yanenko (1971) and elaborated by
Marchuk (1975). In this method the original differential operator (1.1.2)
is factoriied, thus obtaining a sequence of manageable equations, Here we

may obtain

ac, alc aVe,
i i

Advection 3t e Y 3y - S1i . (1.3.1)
aci BFi

Diffusion 3T - T3t S2i . (1.3.2)
Bci

Chemistry 5= (c1,...,cs,t) . (1.3.3)

The source term S must be incorporated in both (1.3.1) and (1.3.2). The
advection step (1.3.1) will be used in this form in the upper air (above
the mixed layer) where vertical diffusion is considered negligible. The
homogeneous advection step will be used in combination with the diffusion
step (1.3.2) in the mixed layer (Van Dop et al. (1982)).

In each timestep At of the numerical calculation these equations are
solved. Observe, however, that equations (1.3.1-2) are uncoupled from
(1.3.3) and therefore each of them constitutes a set of s uncoupled
equations themselves. The investigation can now be restricted to numerical
methods which are specific for the physical character of the three
composing parts indicated above, thus leading to an efficient and stable
overall scheme.

Further denote the part that approximates the advection equation

numerically by the operator N,, the diffusion equation by Nd and the

chemistry equation by N, then it is possible to write the numerical

process symbolically as



n n-1
¢ =N N N ¢ . (1.3.4)

Here the index n indicates time level t,. It can be proved that the
operator splitting in this method of fractional steps formally is of first
order accuracy in time. To accomplish second order accuracy in time it is
necessary that the numerical operators commute, which in general is not
the case. If the order in which the operators are applied is reversed in
each alternate timestep, i.e.

n+1 _ n-1
c =N N/ N N N, N c , (1.3.5)

then the method is of second order accuracy.

10



2. NUMERICAL METHODS FOR THE ADVECTION EQUATION

In this chapter several numerical schemes are compared, that seem
most appropriate to discretize the advection equation in two spatial

dimensions (1.3.1) for a single concentration field c, viz,

T + % + —5; =0 . (2.1)

This is possible, since it was shown in section 1.3 that the set of s
equations becomes uncoupled when the method of fractional steps is
involved. Moreover, first the homogeneous equation (without source term S)
will be considered in the analysis.

The most important physical properties for the understanding of the
transport equation are given in the next section. Thereupon a few numeri-
cal properties will be displayed. In section 2.3 it is mentioned which
methods are investigated, together with the testproblems and objective
criteria that will point out the most suitable method. In the sections
2.4~2,9 the methods are described in a short fashion, if necessary

supplemented with indications concerning the technieal implementation,

2.1 Physical properties

The solution of the advection equation (2.1) possesses a large number
of properties that fruitfully can be employed in the search for the most
suitable numerical approximation.

In the first place it is noted that in many occasions it is allowed
to consider the windfield to be divergence-free at each horizontal level

z, Wwhich is expressed by

ox 3y : (2.1.1)

Therefore, it is equally possible to start the numerical analysis from the

conservation equation (2.1) or from its advection form

ocC acC ac
U e 5 " 0 . (2.1.2)

A very important requirement for the simulation is the positivity of

the solution., This means that a positive initial concentration field will

remain positive during the evolution process. Especially when non-linear

1



photochemical reactions (1.3.3) are used in the simulation it is impera-
tive to design a positive scheme. In the following this is made plausible.

Chemical reactions usually are modelled by the equation

dci
vl Pi - Li ci, i=1,...,8, (2.1.3)

where the time constant T 1/Li gives an indication of the time scale on
which the reaction takes place. The production term Pi and the loss term
Li are in general functions of cj, J=1,...,8, and are polynomial in
form. Therefore a negative concentration cj, which is due to the numerical
procedure, can strongly influence the terms P; and Li' If as a consequence
Li becomes negative a violent non-linear instability may occur. This,
together with the usual broad spectrum of time constants in the photo-

chemical simulation can have a disastrous effect.

Next, it is observed that the exact solution of equation (2.1) has
the property of mass conservation. This is shown by integrating (2.1) over
2, which yields

d
T f cdx = - f c U.n ds . (2.1.4)
Q o0

The right hand side designates the flux of material over the boundary 3
with normal n.

It is recommendable to incorporate both the positiveness and the con-
servative properties in a numerical scheme. This objective turns out to be

a very restrictive one, since only a very small class of methods satisfies
these demands.

If boundary fluxes are not present, not only mass conservation
results from (2.1). In fact, then there is an infinity of conservation
laws. Next to conservation of moments of the concentration distribution in

a uniformly moving fluid, there follow

m
= [c"ax =0, meIN . (2.1.5)
This is a consequence of the very strong property of conservation of form

in a uniform velocity field. For, in this case the solution of equation

(2.1) with initial condition e(x,y,0) = cy(x,y) simply is

12



, t _ .t
c(x,y,t) = co(x - of Udt, y of vdt) . (2.1.6)

This in turn demonstrates a special Lagrangian solution of (2.1), which
states that the material derivative De/Dt is zero, or ¢ is constant along
a characteristic defined by dx/dt=U and dy/dt=V. A more fundamental treat-
ment can be found in Whitham (1974).

In numerical schemes it is impossible to satisfy (2.1.6), except for
special, often trivial cases. However, the relations that are described in

this section are very useful to measure the performance of a particular
method.

2.2 Numerical properties

Within the scope of this report it is not possible to deal with all
the elementary implications of numerical schemes. Comprehensive accounts
on this subject are found in Richtmyer and Morton (1967), Roache (1976)
and Peyret and Taylor (1983). Here only some topics which are of interest
to the approximation of the advection equation will be discussed.

It is found from theory that mass conservation can easily be incor-
porated into higher-order schemes. In general, however, these schemes
produce solutions that are very dispersive (wave-like) in character, thus
resulting in undesirable negative concentrations. On the other hand, it is
easy to construct lower=-order positive schemes. They, however, suffer in
the most cases from an extensive artificial diffusion, which brings on an
unacceptable (Gauss-like) smoothing of sharp gradients, such as peak
concentrations. Yet, these peaks are of great interest in air quality
simulation models.

This contradistinction is the basis of the theses that an "optimal" scheme
in general is not the simplest one. Another point is that it is desired
that the numerical scheme yields high accuracy, whilst the grid-resolution
is as low as possible. Also the advection calculation effort must be in
balance with the remaining parts of the simulation. Again this will

introduce a certain complexity in the algorithms.

The performance of the numerical schemes can be measured by observing
in test situations the time evolution of moments, the conservation of peak
values, gradients and other criteria that were described in the foregoing

section. For the tests criteria will be defined in an exact manner in the

13



following section.
Intimately related to the performance is the numerical stability of a

scheme, which is expressed in the Courant number Y = UAt/Ax by

| Y] sa. (2.2.1)

Here Ax is the spatial mesh size. Formula (2.2.1) actually indicates the
possibility to transfer information among neighbouring gridpoints.
Implicit schemes often yield a=w. Not only (2.2.1) determines the
effectiveness of a scheme. Also the accuracy imposes restrictions on the
timestep At (Praagman (1979)), which can render implicit schemes less

effective than (2.2.1) suggests.

A complicating, but important issue is the fact that the simulation
is organized on a limited area. This makes it necessary to specify
boundary conditions.

For inflow boundaries ¢ is prescribed. Outflow boundaries are treated
differently by each method. If they are not designed carefully, high
wavenumber oscillations may reflect at the numerical outflow boundaries

and spoil the solution or even jeopardize the stability of the method
(Trefethen (1985)).

Furthermore it can be remarked that the method of fractional steps

from section 1.3 allows for a sub-factorization of the advection step
(1.3.1) by

acC alc

3t + Pyl o, (2.2.2a)
ac oVe

at + 5y " 0 . (2.2.2b)

Or, in terms of the numerical operators N,
Na = (Na)y (Na)x . (2.2.3)

Some methods actually employ (2.2.2) and therefore only the analysis of a
one-dimensional numerical scheme is necessary. The greater number of
methods that are tested here are true multi-dimensional methods, thus

diminishing the error that is involved in the operator splitting.



Finally, in some situations one may consider the use of a non-
equidistant grid. One situation is encountered when the input data is
irregularly distributed over the domain 9. A second occasion arises when a
local refinement of the mesh is desired.

The last case can be treated by means of introducing a nested grid, but

both cases can be handled in a flexible way oy the finite element method
of which an account is given in Strang and Fix (1973).

Here methods on an equidistant grid, or on grids that are topologically

equivalent to it are dealt with only.

2.3 Advection schemes, testproblems and criteria

The many advection schemes, that have been developed until today can
be subdivided into two fundamental classes, namely the class of Eulerian
methods, where the solution is found relative to a fixed grid and the
class of Lagrangian methods, where the solution is traced along local
characteristics. When the underlaying mathematical methodology is taken as
a reference, it is possible to make the following classification: finite
difference, spectral, variational, particle-in-cell and non-classified
methods. A specimen of each will here be encountered.

In the framework of this comparison study a starting point is the
outcome of previous comparison studies. The best methods have been
selected from these studies to be investigated on one computer and with
identical sets of testproblems and criteria. Moreover, some new methods
that were published in recent literature have been adopted for the
comparison study.

In the following a table of methods is displayed. The first number in
it denotes the section in which a résumé is found, which is, whenever
necessary, supplemented with indications concerning the technical imple-
mentation, Next the name of the method, an acronym and a reference are
given. In this report the features of most concern are presented. A separ-
ate report on each method is issued which contains a more detailed exposi-
tion of the outcome of the testproblems. The number in square brackets
refers to these reports and can be found in the list of references,

The methods are

2.4 The pseudo-spectral method, PS/DH, De Haan (1981), [11,
PS/CP, Christensen and Prahm (1976), [1].
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2.5

2.6

2.7

2.9

The second moment method, SM, Long and Pepper (1981), [2].
A chapeau function method, CF, Chock (1985), [3].

A multi-dimensional positive advection transport algorithm, MPAT,
Smolarkiewicz (1984), [4],

A multi-dimensional flux-corrected transport algorithm, MFCT, Schere
(1983), [5].

A particle method, PM, Praagman (1986), [6].

Four problems have been selected to test the quality of the afore

mentioned methods. All methods are capable of handling smooth concentra-

tion fields, without sharp gradients, quite well. Therefore the testprob-

lems have been directed toward a number of important phenomena that proved

to be difficult in practice. For all the testproblems an exact solution is

present.

T1

16

Sharp gradients and boundary crossing.

To obtain an impression of the performance of the inflow boundaries a

local block-concentration

ey (x,y) 1 for (x,y) ¢ B,

0 for (x,y) € Q\B

is defined, with Q

[0,L] x [0,L] and B by

_ . . . < .
B { (x,y) / 11Ax 12Ax, J1Ay <y s JZAY } .

[7a)
ted
[7)

In this test L = NX Ax Ny Ay = 320000, where Nx and N, are the

y

number of intervals in x- and y-direction, resp. and the velocities
are U = V = 20000/3600 m/sec. The initial condition is c(x,y,0) 0.
The block-concentration is enforced by the boundary conditions. The

exact result is shown in figure 2.3.1a.

An impression of the action on sharp gradients by the numerical

method under consideration is obtained by starting with the block-



concentration Co, in the middle of @ and by applying the velocity
field of Ti1-a. Subsequently the effect of the outflow-boundary
implementation is tested when the block goes outside of the domain

2, see figure 2.3.1b.

" 2

N S

Ic

- e

v
v

Figure 2.3.1a. b.

T2

17

A local concentration in a rotating windfield (the "Molenkamp" test).

This standard test, first mentioned by Molenkamp (1968), is very

instructive, since it combines a simple solution with a non-cartesian
windfield.

In a windfield that is uniformly rotating with angular velocity
w=w Sz’ the advection equation (2.1) yields in polar

coordinates (r,¢)

~a—t+wa—¢=0, (2-3-1)

which has as a solution
c(r,¢,t) = co(r,¢—mt) . (2.3.2)

The initial concentration here is chosen to be

A oos2

co(rt¢) = {
0 in the rest of q.



The parameters have the values
t
L 3 N, Ax/16, X, = L NX Ax/4, 0 17,
2n / (6%3600), Nx Ax = NX Ay = 320000,

w

Nx = number of intervals in the x and y direction. The origin is at
the centre of Qq.

In figure 2.3.2 the Molenkamp test is depicted.

y4

xVv

Figure 2.3.2

3
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A source term test.

Until here the source term in (1.3.1) remained undiscussed. This
test, however, gives a possibility to measure the performance of the
implementation of the source term.

In this test the windfield is assumed to be constant and in the

positive x-direction. Define a time-independent source term to be

g(x) if Xy < x < xg,
S(x,y,t) = { (2.3.3)

0 elsewhere,

For a zero initial condition the advection equation yields as a

solution with forecing (2.3.3)

X

[ ee) ae . (2.3.4)
x-Ut

=

c(x,y,t) =

If g(x) = with ¢ = mi
co/r, o and ¢ constant, Xpin = Min (x0+Ut,x1) and

= max (xO+Ut,x1) then (2.3.4) yields for t 2 0 the trapezoidal

X
max
solution



0 for x £ x. or x 2 x.+ Ut

0 1 ’
X=X for x < x<x . ,
o] o] min
e(X,¥,t) 4. . (2.3.5)

c
° X . =X for x . < x < x ,

min "o min max

x1+Ut-x for xmax < x < x1+Ut

After some time the source is switched off, so that the trapezoid

Wwill travel towards the outflow boundary.

This situation is displayed in figure 2.3.3. Of course this test can

be used in a Molenkamp version by interchanging x with ¢.

ya
l_]
(0] x
c
99.(x1—x0)
T
Xg X4 x,+Ut X

Figure 2.3.3 The source term test.

To determine the magnitude of the deviations of the numerical
solution to the advection equation (2.1) for a testproblem with respect to
the exact solution, objective criteria must be introduced. To this end
property (2.1.6) is utilized, i.e. the form of a concentration distribu-
tion in a uniform flow field is conserved. This includes that parameters
which are related to the shape of the distribution, such as e.g. the mean,
the variance or the kurtosis, but also the moments from (2.1.5) are

potential criteria.

Here a number of illustrative criteria are used. These are

19



C1 The detailed impression of the shape during its evolution, by inspec-

tion of contour plots and three dimensional plots.

gg Peak conservation: max ?j ,
Xi,Yj

C3  Negative concentrations: min c?j ,
Xi’yj

ClY Mass conservation: T n ,

— i, M

1
mean absolute error (21 norm): N 'Z. | cij C(Xi’yj’tn) | ,
1,7
- mean quadratic error (&, norm): ( 1 I [crl = c(x,,y.,t )]2)}é
2 N .. ij i’j’"n ’
1,
- maximum absolute error (%_norm): max | c?. - c(xi,yj,tn) | .
1,J

C6 Two special criteria for the Molenkamp test T2. These are in polar-
coordinates the conservation of the radius r, and the angle

deviation A¢O of the centre of mass of the cosine distribution.

To get a normalized impression the criteria have been taken relative to

the exact solution.

2.4 The pseudospectral method

The first pseudospectral model with emphasis on practical application
for atmospheric computations was introduced by Christensen and Prahm
(1976). They showed that, compared to finite difference methods, this
method has a high resolution and yields a numerical solution within an
a priori prescribed tolerance in less computing time and with less storage
requirements. In this report the pseudospectral method is considered in
connection with the method of fractional steps (2.2.2), hence only the
one-dimensional algorithm will be outlined.

Consider the segment [0,L], and define collocation points
X, = (3=1).8%x; j=1,...,N; Ax = —— (2.4.1)

L
J N-1

20



Expand c(xj,t) in the following Fourier series
(N=-1)/2 oni
e(x.,t) = 1 Alk,t) . exp (5= kx,) , (2.4.2)
J ==(N-3)/2 J

J=1,...,N-1 (N-1 even) ,

where the Fourier transform of c(xj,t) is defined by

-1 N=1 2ni
A(k,t) = (N=1) . j£1 c(xj,t) . exp ( . kxj) , (2.4.3)
.- N3 Lt
k = 2 e .

From this definition it follows that c(xj,t) is periodic in the sense that

c(xj,t) = C(xj+N-1’t)

Let the function c(x,t) be defined by

_ (N=1)/2 sui
c(x,t) =3 A(k,t) . exp (—%— kx) ,
k==(N-3)/2

where the coefficients A(k,t) are defined by (2.4.3), and interpret this
function as an approximation to c(x,t). Note that in the collocation
points E(XJ,E) = c(xj,t). Then, in the collocation points, the space

derivative %%(xj,t) can be calculated, and formally,

dc _ ac _ . o2mi 2ni
5;(xj,t) = ax(xj’t) = E - k . A(k,t) . exp ( T kxj) . (2.4,4)

The procedure of expanding a function at collocation points in a
finite series and taking formal derivatives as outlined is known as
collocation. The rationale for such a procedure is that in between the
collocation points the approximating function and its derivatives are
supposed to be close to the exact solution.

One could proceed now by calculating

de L dA(K,t) 2ri
qt (xj,t) = i at . exp ( T kxj)

in order to derive for constant U the (full) spectral method

dA(k,t) _ _ 2mi
at = T k U A(k,t)
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which constitutes a set of N-1 ordinary differential equations;

k = =(N-3)/2,...,(N=-1)/2. In the pseudospectral method such a procedure is
not followed, but instead the time derivative is taken in "physical" space
by an RK4 method, while the space derivative is calculated in the
"spectral" space to which the collocation functions belong. This procedure
makes it possible to handle a varying velocity field U(x,y) without for
the full spectral method resolving the convolution, which is due to the
product of U and c. Moreover, the boundary conditions are easily
incorporated in the pseudospectral method. In fact one may choose an
arbitrary set of collocation functions, e.g. Chebychev polynomials, at
suitable collocation points X3, instead of the Fourier series expansion.
The reasons for using Fourier series expansion are that the set of
collocation points form an equidistant grid and that fast Fourier-
transform algorithms are available (Cooley and Tukey, 1965), which make it
possible to compute the space derivatives in a modest amount of time.
However, the Fourier series expansion presupposes periodicity of the
solution c(xj,t) which will almost never be the case in realistic
problems.

Christensen and Prahm resolve the periodicity problem by sacrificing
some outer grid points. They let the concentration decay exponentially
there whenever these constitute an outflow boundary, in order that the
concentration flowing out will not flow in at the opposite boundary. The

decay rate is chosen such that 3¢ = =-U 3 _ % = 0, and 3¢ . i.e.

ot 39X oX ax’
each passage of a grid cell the concentration drops by a factor of about
-1 AX
e '. So, 1 T is chosen.

De Haan (1981) resolves the periodicity problem by the following

procedure. Let the concentration c(x,t) at any time t, be given and

consider the decomposition
c(x,t ) = p(x) + q(x) ,

where p(x) is a (m+1)th-order polynomial such that
q(0) = q(L) =0

and

q(i)(o) = q(i)(L), i=1,...m

i: ith derivative, i.e. q is periodic up to and including its mth

derivative. The derivative of p can be found exactly. This procedure seems
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mathematically rigorous: the only parameter involved is the "degree of
periodicity"” m which cannot exceed N-2 (Gottlieb and Orszag (1977)).

Both methods have been implemented. The time iIntegration is performed
by using a yth order Runge-Kutta procedure, which allows for a maximum
Courant number Y = v/8/% (Procedure De Haan) or Y = 0.89 (procedure

Christensen and Prahm; see [1]).

The following is concluded:

- storage requirements are minimal, i.e. one array per concentration
field and 6 local help arrays;

- reasonable errors at lower grid resolutions (compared with the other
methods) are to be expected;

- measures have to be taken because of the periodicity of the

collocation functions.

2.5 The second moment method

The basic problem in finding & solution of the advection equation
(2.1) is to design a numerical scheme that retains as much information as
possible on a relative coarse grid, while some predefined restrictions are
satisfied. If the positiveness and mass-conservation of the solution are
considered as essential restrictions, then it is natural to look for a
Lagrangian approach. One way of retaining as much information as possible
is to adopt a procedure that describes information of sub-grid scale
details.

Egan and Mahoney (1971) combined these elements in an algorithm which
is called the Second Moment Method (SMM). This method makes it possible to
realize the description of sub-grid information by the introduction of
structure functions. In each grid-cell the concentration distribution is
approximated by a rectangular profile, which has the property that it can
completely be fixed in one space dimension by three local moments. These
are a mass C, a mean F and a width R. This has as a consequence that
rectangular concentration distributions, which are usually difficult to
approximate with analytical methods, can be described exactly. However, in
return, the cost that has to be faced is that for each quantity that is to
be advected three fields must be retained in memory.

Evolution formulas for the higher moments are obtained from their
definitions together with the properties of the advection equation (2.1),.

After each timestep Egan and Mahoney recalculate the advected distribution
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onto a fixed Eulerian grid. This makes their method a quasi-Lagrangian
method (Roache (1976)).

In the following the procedure will be given for a more accessible
advection equation with one space dimension. The treatment for two spatial
dimensions will be indicated. The technical procedure for this case can be
found in [2].

For the numerical discretization of the advection equation (2.2.2a),
a mesh is introduced on which cells of width Ax are situated around the
nodes xp, m = 0,...,M, see fig. 2.5.1.
A local cell-oriented coordinate g = (x-xm) / Ax is used in the

definitions for the structure functions. The mass in cell m is:

xm+ZAX Y -
c(x) dx = _zf C(g) dg . (2.5.1)

Cellm

Rm
+—>

%
%
7

m-1 <+ m-+1

XV

Mlﬂ -
O+t—-

Figure 2,5.1 Grid definition

The dimensionless mean F and width R have as definition

L, =
Fm - Cm _gf E C(E) dE ’ (2.5.2)
2 12 42w
R G (2.5.3)

The factor 12 in the last definition is chosen, since then the
interpretation of Rm is just the width of the rectangular distribution as
indicated in fig. 2.5.1.

The evolution parameter in the advection process is the Courant

number Ym = U(xm)At/Ax. In one timestep At the rectangular profile Cp will
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be displaced with Ym. If the transport is taking place over cell
boundaries (fig. 2.5.2), new local structure functions are found from the
part a that is advected into cell m and the part r that remains there (see
fig. 2.5.3) with the formulas (2.5.1) - (2.5.3).

m m+1
-R)Rpe—1 BP\Rm
N
tn+1

. N

T

—>Tm

4—|‘nr—>
/’ /I/?/:
tn /Cm /

/ // 1 ;a

-1 .0 1
2 k¢ 2

Figure 2.5.2 Transport over cell boundaries

These yield

LT B (2.5.4)
m . 1 .
i=a,r
cMT M Ly or (2.5.5)
m m it T
i=a,r
c™T RMH2 L 5 ¢l R 4+ 12F2] - qpch*] (F* 2 (2.5.6)
m m i i i m m
i=a,r
QRa’
“«R;,—»
Ca RN
LR N
-1 1
2 9 2
< T
F.,. k

Figure 2.5.3 The definition of the advected (a) and remaining (r) parts

This formulation (Pedersen and Prahm (1974)) allows for the local

advection of concentration and therefore it admits a method of calculating
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the sums in a way that is customary in finite element techniques. This is
particularly useful in two dimensional problems.

To complete the definition of the advection over a timestep,
expressions must be found for Cy» Fj and Ry i=r,a in relation to ch, F1
and R™, Here a proportionality parameter P, is used as a measure of
crossing a boundary. Its definition is displayed in figure 2.5.2, which
shows (dropping the index m) that

R P = sign (y) (F+Yy) + ¥R - ¥ . (2.5.7)
If Pm £ 0 then all mass will remain in cell m, if Pm 2 1 then all mass is
transported to a neighbouring cell, depending on the sign of Ym’ otherwise
only a part is advected into a neighbouring cell. The rules that determine
the structure functions depend on P, and can be found in Egan and Mahoney
and in [21].

From the formulation it is seen that (2.5.4) in fact is an upwind
method and that the formulas (2.5.5) and (2.5.6) each add a correction in
the shape. This is also shown in figure 2.5.4. Fig. 2.5.4(a) displays
three consecutive steps with the method (2.5.4) and a uniform Courant
number of = 0.4. Fig, 2.5.4(b) shows the influence of the first moment
(2.5.5), whereas fig. 2.5.4(c) shows the advection making use of the full
SMM,

The present method is unconditionally stable. However, since in the
actual implementation there is no provision for advection beyond one grid

cell, a practical limiting condition is

| vy | 1. (2.5.8)
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Figure 2.5.4 An initially rectangular concentration distribution advected
to the right in three sequential time steps with Y = 0.4,

Dashed distribution corresponds to transport by continuum advection. (a) A
simple Upwind method (Eq. (2.5.4)). (b) A difference scheme using
reconstruction with the first moment of the concentration distribution.
(¢) A difference scheme using the reconstruction with first and second

moments. (Egan and Mahoney (1971)).

Although the Second Moment Method for an advection equation with two
spatial dimensions is formulated in a similar way, the complexity of the
method increases. This is due to the fact that there are more outflow
possibilities from a two~dimensional cell to its neighbours. One such

situation is shown in fig. 2.5.5.

y RRy,

»
—>
<

AN

Figure 2.5.5 Transport in two dimensions
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Moreover, now five fields need to be retained in memory to describe the

entire structure. The limiting condition becomes

A
—_

Max ( |y, |, |Yy| ) (2.5.9)
m,1
where Yx and Yy are the local cartesian Courant number in x- and y-

directions, resp. In [2] the technical details of the method in two

dimensions are described.

The following can be concluded from the theory.
The method

- is quasi-Lagrangian,

- is positive and mass-conserving,

- describes rectangular distributions in a constant linear flow field

in an exact way,

- allows for sub-grid details, which enables a local treatment of
chemical reactions.

There are, however, also a number of disadvantages.

= For the full SMM approximation of each concentration field five
arrays are necessary. For the implementation five help arrays are

needed.

- In a non-linear velocity field the quasi-Lagrangian basis of the

method causes numerical diffusion.

2.6 A chapeau function method

In their comparison studies, Chock and Dunker (1983) and Chock (1985)
find that a particular chapeau function method, namely the foreward-Euler
time integration method coupled with a balancing diffusion term is
superior to the other methods they tested. For the two-dimensional
advection equation the method of fractional steps of Yanenko (1971) is
used and therefore only a one-dimensional method description will be
sufficient in the following.

The method starts from the observation that the unconditional
unstable foreward-Euler, centered space method can be stabilized by
introducing a balancing diffusion term. This is also the basis of the
highly dispersive, second order Lax~Wendroff method. If a Taylor expansion

at (Xi’ tn) for one time step At is combined with the advection equation
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ac . .9

3% - Lec, L. = ppe (v .) , (2.6.1)
one obtains

e vt L ™ et 12 M v o (atd) | (2.6.2)

Here the quadratic term at the r.h.s. is the balancing diffusion term, and
the time dependence of L is neglected.

Next, the concentration is approximated by a linear combination of basis
functions ¢j(x) which are piecewise linear on elements eJ, continuous and

triangular shaped and satisfy ¢j(xi) = see fig. 2.6.1.

ij'

X

Figure 2.6.1 Chapeau function definition
This yields

cn(x) T c ¢ (x) . (2.6.3)
J
Next the method of Galerkin, as described in Strang and Fix (1973) is
used. This yields the matrix equation

MEe™ - as (2.6.4)

where EF i1s the vector with elements c?. At interior gridpoints the mass-

matrix M and the stiffness-matrix S have as a definition:

Mij = [ ¢i ¢j dx , (2.6.5)
3¢ 3¢i 3U¢.
Sij=Atf[U¢ ‘——ZAtU*a-;—a_]dX. (2.6.6)

For the hyperbolic (linear) part an inflow boundary is necessary. For

the elliptic term the boundary conditions are chosen to be

e (Lo
'R (x1) = (xI) =0, (2.6.7)
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so that there will be no artificial diffusive flux across the boundaries.

Elaboration of (2.6.4) - (2.6.6) for an internal point Xj on an

equidistant grid results in

Ax n+ n ntl _ n n+l _ n _
g L[ (i mey )+ b(ey SURCI R e
n n n
= ¥at [ Ui—g Ciq * (Ui—g Ui+g) ¢y Ui+g i ]+
2
At 2 n  _ 2 2 n 2 n
+ ZE— [ Ui-z Ci_,' (Ui"z + Ui"’g) Ci + Ui*z Ci_'_1 1. (2.6.8)

The velocities at the r.h.s. are to be taken at the In the evaluation the
velocity was considered constant over an element ej and represented by its
mid-element value.

It should be noted that in every time-step a set of equations with
coefficient matrix M from (2.6.4) must be solved. However, since M is a
constant, diagonally dominant matrix, only once an LU decomposition is to
be performed. It is also possible to avoid the matrix inversion by lumping
the off-diagonal elements with the diagonal elements. Gresho et al.
(1978), however, showed that this could highly compromise the accuracy of
the numerical solution. In this context this problem is directly shown by
(2.6.8) which after lumping becomes a very dispersive Lax-Wendroff scheme.

A more precise impression of the scheme (2.6.8) can be obtained by
inspecting the phase and amplification properties in time. This can be
done by means of the normal mode solution c(x,t) = exp i(ax-wt). The

dispersion relation of the original equation (2.6.1) reads

w=oU (2.6.10)

A measure for amplification over a time-step At is the factor

£ = exp (-1 wAt) ,

which in the exact case (2.6.10) can be written as

[l
1]

exp (-1 ve) . (2.6.11)
Here Y = U At/Ax is the Courant number and 8 = aAX the wavenumber.

The numerical scheme (2.6.8), however, is only an approximation to
(2.6.11), which yields
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£=1+3Y{ Y (cose=1)~-1sin 8 } 7 (2 + cos 9) . (2.6.12)
A comparison of (2.6.12) with (2.6.11) is shown in figure 2.6.2a, where £

is shown in the complex plane as function of 6, 0 £ 06 £mand Y as a

parameter. The amplification |g| is given in fig. 2.6.2b, whereas in fig.
2.6.2c (arg g)/Y is depicted. In the exact case these quantities plot for

all values of Y on the heavy lines.

Similar plots are displayed in figure 2.6.3 for the lumped scheme, which

has as amplification factor

E=1- 2Y2 sin® (¥6) - i Y sin 9o . (2.6.13)

Although both methods are formally of second order it is concluded
that both the amplification and the phase properties of the full scheme
(2.6.8) are superior. This must be paid since the stability interval is
considerably less. For stability it is needed that |£| < 1, which yields
|Y| £ 1 for the lumped scheme (2.6.13). However, in the case of method

(2.6.4) the matrix M 'S+I is governing the stability. Using (2.6.12) it
turns out that only

[Y| < V373 2 0.577 (2.6.14)

is allowed.
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Since a fractional step method is employed, (2.6.14) holds for both
cartesian courant numbers Yx and Yy.

Although the method (2.6.8) is not as dispersive as the lumped
version: a Lax-Wendroff type method, still a small amount of 2Ax-ripples
occurs as a consequence of phase errors. Sometimes this leads to
unacceptable negative concentrations. One way of diminishing the influence
of the high Wavenumbers is by filtering them out. Many (non-linear)
filters have been designed in the past years mainly for effectively
removing computational noise from steep gradient solutions (e.g. Boris and
Book (1976), Van Leer (1979), Spekreyse (1986)). Chock (1985) chooses the
simple, ad~hoc filter of Forester (1977) to handle this problem. This non-
linear filter selectively smoothens out 2mAx-ripples by applying a local
smoothing operator, without suppressing a possible peak value
significantly, if this peak region is sufficiently smooth.

The Forester filter is defined as follows

n+1,k+1 _ n+1,k n+1,k k K N n+1,k k k
¢y =c; + ¥ [A°1+g (uy + Wiy = dey_ oy *+wy 01,
k =0,1,2,...,K . (2.6.15)

where the index k is an iteration index, k < % is a diffusion coefficient
and My is a mesh parameter, which is set to zero for all values of i

before each iteration. Further variables in this filter are

A ci+g = ci+1 BT Si+1 = sign (A ci+g) . (2.6.16)

By means of the sign function it is possible to detect 2mAx-ripples in the
following way. If Sj ¥ Sj+1 for a particular j, a local extremum is
present. To see whether it is a true extremum, Sj-m"'°'sj must have the
same sign whereas Sj+1""’sj+m+1 are all required to have the opposite
sign. If this condition is not fulfilled, then all H;, are reset to 1 in
the interval with the nodes J-m to j+m. If the sign condition holds, there
is a true local extremum and the filtering process can be continued at
Xjeme In principle the selective smoothing can be repeated several times.

Here the values that were found to be optimal by Chock (1985) are adopted:

K

0.1 and m = 1 for filtering 2Ax-waves and the number of iterations
k = 1. A property of the Forester filter is that mass-conservation is not
affected if the basis functions in the finite element approximation are

linear.
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For this method it can be concluded that

- the storage requirements are minimal, i.e. one array per
concentration field, and for the implementation one help array,

= the explicit method (with mass=matrix lumping) is highly dispersive
in character. The implicit method reduces this phenomenon
substantially. The non-linear noise filter of Forester makes it a
viable method for air-pollution simulation purposes,

~ the finite-element approach makes the method flexible. However, since
the fractional step method is applied, only areas that are

topologically equivalent to a square can be treated.

2.7 A multi-dimensional positive advection transport algorithm

A few years ago Smolarkiewicz (1983, 1984) proposed a positive
advection scheme with small implicit diffusion. His scheme is based on the
upwind scheme, but this seems not to be essential: it may be based on any
positive scheme for which an analytic expression, containing second order
space derivatives, of the local discretization error is available. This
second order term is considered to be the space derivative of a, so
called, diffusive flux which is expressed as product of a diffusive
velocity and the concentration.

In one dimension and for the upwind scheme the second order local

discretization error is
9 2 ac
¥ o5 (lu] ax - U At) =2 (2.7.1)

The diffusive velocity then is defined to be

2 1 3¢
~% (Jul ax - U bL) < o= 0<c

U, = (2.7.2)
0 O=c
(In fact, whenever c=0, the only requirement for UD is that it be finite.)
The solution ¢ that is found after an upwind scheme step may be considered
to obey the differential equation
3¢

3¢ = - U+ U

3

%l
LR Ie k]

. (2.7.3)
In order to restore the solution it is proposed to succeed the upwind

scheme time step by a restauration step using the velocity field -Up. OFf

course, this step suffers the same local error, and a second diffusive
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velocity field (based on ¢ and -UD) may be found to take another restaura-
tion step, and so on. In practice, after 3 or 4 restauration steps no
essential improvement will be found anymore. Positiveness of the upwind
scheme ensures positiveness of the correction scheme provided a sufficient
small Courant number is taken.

For two dimensions one may apply this procedure for each direction
separately, based on the concept of factorisation. Results show that it is
more favourable to apply a real two-dimensional scheme, because then the
cross~derivative terms Bzc/axay can be taken into account. The two-

dimensional diffusive velocity field (UD, VD) then is defined by

_ 1 ac 1 o¢
Uy = ~% (Ju] ax u? at) + ¥ vt 5
(2.7.4)
o - 1 dc 1 @c
Vy = % (V] ay v2 at) 1 5y ¥ uvat S 3%

For one dimension it is proved that, whenever the velocity field is
defined on a staggered grid, the Courant number Y = U At/Ax should satisfy
|Y| s 1, and for 2 dimensions |Y| = max (IY [ IY |) s 2-/2 (Smolarkiewicz
(1984)). The calculation of the diffusive wind fleld on a staggered grid
is done by an appropriate averaging procedure. For ease of computation,
extra boundary points (xo, XN+1s Yoo YN+1) are assumed in order to compute
Up and Vp. At an outflow boundary 3c/3n = 0 is taken (Smolarkiewicz
reports that a more obvious choice 820/3n2 = 0 results in non-positivity

of the scheme!).

It is concluded that this method

- is positive and mass conserving;

- has minimal storage requirements: one array per concentration field
(however, one concentration help array and two velocity help arrays
are needed in a restauration step);

- in every restauration step costs the calculation of the diffusive
wind velocity field and an upwirnd time step.

2.8 A multi-dimensional flux-corrected transport algorithm

A decade ago a new numerical method for solving the advection

equation originated. This method starts from the flux equation

o)lo;
(el ko)

+ 2
)

Lol ]

=0 (2.8.1)
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and writes the discrete approximation in the form

c?+1 = c? - %%; C Fi+z - Fi—Z] . (2.8.2)
Here c and f are the concentration and the advective flux, resp., which
are defined at the spatial grid points X; and at the time tn. The
approximation F to the flux f is defined on a staggered grid. The way in
which this approximation is realized determines the spatial behaviour of
the scheme (2.8.2). It is well known that lower order schemes, 1like
upstream or donor-cell, produce an extensive numerical diffusion. On the
other hand, higher order schemes introduce high-wavenumber ripples, also
called spurious oscillations, that cause unwanted negative concentrations.

The flux-corrected transport (FCT) method SHASTA of Boris and Book
(1973) was the first to combine a low-order and a high-order scheme in
such a way that the spurious oscillations are eliminated but still profits
from the high-order accuracy. This is done by performing a non-linear
weighing of the transportive fluxes of both schemes, and is called "flux-
limiting" or "flux-correction".

Nowadays there are many investigations where this idea is used, see
Van Leer (1979), Spekreyse (1986), Roe (1986). Zalesak (1979) devised a
formal procedure for the FCT algorithm. This will be given below for an

advection equation with two spatial dimensions, i.e.

ae, o1, g
8t+ 3X+ 3)’_0 . (2.8.3)

The finite difference approximation becomes in this case

n+1 n

- - At -
iy " %15 av : (F1+Z,J Fi‘%,J) By + (G Gi,J‘Z) ax
(2.8.14)

Here AV = Ax Ay is an area element, centered at the grid point (i,j). The

i,3+% =

transportive fluxes F and G are defined as in figure 2.8.1.
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Figure 2.8.1

Definition of the fluxes

i—1 i i+1

Between the square brackets in (2.8.4) the change of mass per unit time

in AV is denoted, as is usuwal in finite volume methods (Peyret and Taylor
(1983)).

The formal procedure is arranged into six points.

(1)

(2)

(3)

(4)

(5)
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Compute transportive fluxes FL and GL by some low-order scheme that

guarantees to give monotonic and positive results for the problem.
Compute the transportive fluxes FH and GH by some high-order scheme.

Define the "antidiffusive fluxes"

H L

Rivg,s 7 Fivy,s 7 Fray, s
H L
A,avy ™ i gey T Gy ey

Compute the low-order time advanced, "transported and diffused"

td

solution ¢*® with (2.8.4), making use of F* and GY from step (1).

Limit the antidiffusive fluxes, such that et as computed in step

(6) is free of spurious oscillations:

Aoy o= uiy AL, < s
i+%,5 T My, 5 iy, Hivy,

A=y A , 0sSyu
i,j+% i,3+% i,j+% i,j+%
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(6) Apply the limited antidiffusive fluxes:

n+l _ td _ At . % Y 1 - A
R A e R L N A N e U

°ij T %3 T

The most crucial step in the above procedure is the proper design of
the flux-limiter u. This is also the step where hybridization techniques
differ. The choice p = 1 would result in time-advancement with the high-
order scheme.

Here the method of Zalesak (1979) will be followed. The low-order
fluxes are defined by the donor-cell method (Roache (1976)), given by

L de
Fiog,3 = Visy, 5 Ciay,j 2

n n
Uivg,5 = % Uiy Uier,3)
(2.8.5)
n
Ci' if Ui+Z . o,
Qo J )
i+¥%,3

n .
Ci+1,j if Ui+g,j <0 .

Similar expressions are obtained for GL.
The high-order fluxes are generated by means of the "ZIP" flux
concept of Hirt (1968), see also Zalesak (1981). A fourth order ZIP

transportive flux, written in one-~dimensional form (dropping the index j)
is

H 2
Fiay = 70 U ey v Uy ey ]

1

- L Uity Cioq * U 0y v UL, ep v U Ciyp 1 - (2.8.6a)

At the boundaries a second order ZIP flux is implemented, which has the
form

H
Flay = 80 U ey v Upep ] (2.8.6b)

Next the special form of the limiter in step (5) which Zalesak uses
for his Multidimensional-FCT algorithm, will be reproduced here without
the subtle reasoning that is given in Zalesak (1979). Some intermediate
quantities are needed for the limiter. These are the fluxes P and Q and

their ratio R. Moreover, the later to be defined c™@X and c™P ape ysed to

38



set bounds to cn+1. The mass that flows into AV as a consequence of the

antidiffusive fluxes is given by P;j, see figure 2.8.1. The expression is

+ s
Pij = [ max (o0, Aikg,j) - min (0, Ai+g,j) 1 ay +

+ [ max (0, A, J‘Z) - min (O, Ai j+i) ] ax . (2.8.7)

The allowed increase in mass in AV per unit time is

+ o _ AV max _ td
Qij = At L cij cij J. (2.8.8)

Their ratio is

Iy + + .
min (1, Qij / pij) if P..>0

Rij = | (2.8.9)
0 if P..=0

Similar quantities are introduced for the sum of the masses that flow away
from AV, caused by the antidiffusive fluxes:

Pij = [ max (o0, Ai+g,j) - min (0, AiPZ,j) 1 Ay +

+ [ max (0, Ai,j+g) - min (0, Ai,j-g) 1 Ax , (2.8.10)
- _ AV td _ min
Qij by [ cij Cij ], (2.8.11)
) min (1, Q / PiJ) if pij >0,
Rij = i (2.8.12)

0 if P.. =0
1]

The bounds on ¢ are defined by,

. - max (cn ctd)

ij ij* "igt ¢

max a a a
cij = max (01-1,j’ Cij’ oi+1,j’ i,5-1° ci,j+1) , (2.8.13)
cb = min (cn td)

1j ~ i3 137

min _ b b b b b 5
cij = min (ci_1 . clJ, Ci+1,3’ ci,j—1' ci,j+1) . (2.8.14)
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Finally, the limiting factors become

+

min (Ry,, ., R;J) if Apy 520,

Mivy,y " { . _ (2.8.15)
min (Ryj, Ry, ) if Aiy; <O
min (R;’j+1, R;j) A Ly 20,

By ey " { . (2.8.16)
min (Rij’ Ri,j+1) if Ai,j+g <0.

The complexity of the above described limiter of Zalesak shows that
it is an art to design a suitable limiter. At the moment the theory is
still developing and phase and amplification behaviour of the scheme or
the stability condition can be found only by trial and error for a problem
at hand.

In the actual implementation the quantities are cell-normalized,
which means that fluxes are multiplied by At/Ax or At/Ay and masses
by At/AV.

From the foregoing theory it can be concluded that

- the hybridization technique eliminates high-wavenumber oscillations,
while still attaining a fair degree of spatial accuracy;

= the method is multi-dimensional and according to Schere (1983) has a
better performance than the fractional step version SHASTA of Boris
and Book (1973);

- the storage requirements are minimal, i.e. one array per

concentration element and five local help arrays.

2.9 A particle method

In the particle methods the advection equation (2.1) is solved in a
full Lagrangian manner., Although the method followed here is slightly
different many proposals, being more or less similar, can be found in the

literature (see for references Roache, 1976).
It is assumed that the velocity-vector (U,V) has been given in the
nodal points on the domain of interest @ and also that the structure of

this domain being either a finite element of a finite difference grid, is

ko



known. Using these discrete velocity nodal points, the velocity vector in
each internal point is obtained by interpolation.

An initial concentration field is created by covering the whole
domain of interest (see figure 2.9.1) by small squares and by assigning to
each the representative amount of the species considered. Each square

keeps its identity as long as it remains within Q.

1 i ] ] ) ] ] 1 I i
Lodogfod I [
I A O O [
T s | s s et S L S
) | 1 ! 1 | M | |
r T 1 T T H
A O [
[
._%_4_-+__4__1 ______ F_%__ﬂ__ﬂ__+__
I I | : | i ! ' o
o] snlevien e | ninaten Indendee b snfeben mebeiestenknds Gt BT S
A O N A
A I st .
1 |
| | | | |
I ] Bt o S S S [ SR
| | | 1 | L | 1 | |
Figure 2.9.1 Q: Eulerian grid —_——
rigure c.3.1

Particle squares

Once the field of squares has been created the transport of each of

these "particle" squares is computed by solving the ordinary differential
equations:

dx
dt
{ (2.9.1)

d 0 o
dz - V(x,y,t), y(t )

Ulx,y,t), x(t°) = x°

i

It

]
<

numerically, where (x°, y®) is the position of the barycenter of the
square at time t = t©,

The numerical solution of (2.9.1) is obtained utilizing the classical
fourth order Runge-Kutta method (see Lambert (1973)). During the
computational process the right hand side functions U and V are being
adjusted each substep, using the interpolated values of the velocity
field.

Unlike the Second Moment Method (see section 2.5) no special adminis-
tration is kept in order to maintain the form of the concentration
profile.

Boundaries do not cause problems for the method: at all boundary

points new "particles" are being released with a specific user prescribed

11



concentration if there is a net discharge into Q.

Since the classical Runge=Kutta Y4 method has very good amplification
and phase error properties (see also the CF method) the advection of the
squares will almost be optimal and positiveness and mass conservation are
guaranteed.

The specific properties of the method with respect to stability and

storage requirements are:
- stability: |Y| s /8 (see Praagman (1979));

- storage: for each particle extra files are needed, which contain:
- X resp. y coordinate of the barycenter of the square;
- indication in which part (element) of the domain the particle is
situated;
- concentration of each of the species to be considered.
So in total if N particles are used and s species are considered

N * (s+3) positions are needed for storage.

A disadvantage of the method is encountered if the results are needed
on the Eulerian grid. Several smoothing effects are present due to the
fact that the concentrations are given on the squares and not in the nodal

points.
2.10 Results

In this section the results of the numerical experiments are pre-
sented. The tests are performed on a VAX 11/750 computer under UNIX 4.1
operating system. In order to avoid a "lucky choice" of the Courant num-
ber, a Courant number of 0.83 times maximum possible is used with an
upperbound of 0.83. The time step was chosen automatically. In the

presentation the schemes have been numbered as follows,

1A Pseudo spectral (polynomial)a’b
1B Pseudo spectral (decay)d:P

2 Second moment®
3A Chapeau function®

3B Lumped chapeau functionDb

Y Smolarkiewicz (with 2 corrections)b
5  Multidimensional flux corrected transport?
6 Particles method.
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The superscripts "a" and "b" stand for the spatial discretization that has
been used: a = 17 x 17 nodal points, and b = 33 x 33 nodal points,

The methods are compared with respect to accuracy and non-negativity
(theoretical demands) and with respect to cpu-time and storage require-
ments (practical demands).

For the theoretical demands each run was post-processed in order to
obtain 2D= and 3D-plots of the evolution in time of the calculated concen-
tration field. Also plots were obtained of the evolution in time of the
objective criteria of section 2.3. In the latter the length of the
positive vertical axis has unit 1.

For the practical demands in each run the cpu-time was monitored,
while the storage requirements follow from the description of the methods
in the sections 2.4 - 2,9,

In the following four sections the results of the four tests as de-
scribed in section 2.3 are given. First a short examination of the results
in comparison with the theoretical demands is followed by a collection of
the criteria in tabulated form. Next the results are shown graphically. In

section 2.10.5 the comparison with respect to the practical demands is

included.

2.10.1 Molenkamp test (see figures 2.10.1 - 2,10.10)

1A% In spite of the low grid resolution there is a good accuracy. A
slight negativity is introduced (=2%).

1D Almost perfect. A very slight negativity is introduced (=3°/,,).

1B2 Less accurate than 1A%, 2ax ripples are introduced. Negativity about
4.

1By, As 14D almost perfect. Negativity =5°/ ..

2 The maximum is decreasing linearly in time. The radius of the center
of mass is increasing linearly in time.

3A Very good accuracy. Negativity about 1°/ 500

3B A great wave train following the cosine hill with negative concentra-
tions of about 10% is introduced.

4 In spite of 2 corrections there is serious diffusion: the maximum
decreases almost linearly in time and the hill symmetry is disturbed.
Adding more corrections did not result in essentially more accurate
results,

5 The cosine hill form and symmetry is seriously disturbed. The profile

becomes of a shock-wave type. Also, the concentration is smeared out
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in directions perpendicular to the wind velocity. The radius of the

centre of mass is slightly increasing.

6 The projection of the concentration to the Eulerian grid causes a

projection error, which is constant, indicating that the Lagrangian

method itself works perfectly well,

The results for the objective criteria are tabulated in table 1.

Table 1. Objective criteria,
Molenkamp test

1482 1ab 1@ B® 2 34 3B 4 5 6
max 1. 1. 1.1 1. 0.7 1. 0.8 0.7 1. 0.8
min -0.03 -0.004 -0.05 -0.007 0. =-0.001-0.13 0. =0. O.
mass 1. 1. 0.75 1. 1. 1. 1. 1. 1. 1.
| 1, 0.15 0. 0.4 0. 0.55 0.05 0.8 0.5 0.55 0.2
P 0.05 0. 0.3 0.002 0.4 0,05 0.5 0.4 0.55 0.15
1. 0.05 0. 0.4 0.02 0.4 0.05 0.5 0.4 0.8 0.15
radius  0.95 1. 0.9 1. 1.2 1. 1. 1. 1.05 1.
Ad 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
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2.10.2 Source test (see figures 2.10.11 - 2.10.20)

Obviously the grid resolution of 17 x 17 grid points is too low.
Large oscillations with large negative values occur.

This grid resolution yields good results, negative values of about 2%
and reasonable errors. Note the reflexion of the outflowing concen-
tration at the opposite side.

As for TAa, the grid resolution is too low.

Oscillations of higher frequency and amplitude occur. The reflexion
is clearly too large.

Good accuracy. Because the exact solution tends to zero when leaving
the domain small absolute errors introduce great relative errors.
This remark holds for all the methods.

The origin of the great peak at the right and the smaller peak at the
left is unknown. There seems to be no bug in the program. Perhaps the
interpretation of what the numerical formulation at the boundary
should be is wrong. Apart from the boundaries the method performs
good. Slight negative values (~2%) are introduced.

For this steep gradient problem the method performs better than for
the smooth Molenkamp test. Negative values of about 5% are intro-
duced.

The method performs well. The steep gradients are smoothed.

The steep gradients are made still steeper. This shows again that the
method deforms the concentration profile into a shock-wave type
profile.

Obviously too much mass has been introduced. Apart from this problem
the method performs good.

The results for the objective criteria are tabulated in table 2. Here

only the first 5 output results have been used.
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Table

2. Objective criteria,

Source test

142 1A qB® P 2 33 3B 4 5 6
max 1.1 1. 1.1 1.1 1. 3.6 1.05 1.05 1. 1.35
min -0.36 -0.02 -0.15 =-0.05 0. -0.02 -0.05 0. =-0. 0.
mass 0.58 1. 0.65 0.95 1. . 1.05 1.05 1.1 1.5
I g, 0.8 0.2 0.6 0.5 0.05 0.15 0.35 0.25 0.25 0.5
P8 0.5 0.15 0.4 0.4 0.05 0.45 0.3 0.25 0.35 0.5
I ;. 0.3 0.15 0.3 0.6 0.05 3.6 0.3 0.25 0.5 0.6
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2.10.3 Block test, inflow boundary (see figures 2.10.21 - 2.10.30)

Generally, the inflow boundary seems problematic. Surprisingly, for
almost each method only about 70% of the mass enters the region. A run of
the second moment method with Courant number 1 (figure 2.10.25b) showed,
however, that the implementation of the inflow boundary condition was
correct: an almost exact result was obtained.

1A%  The block shape 1s deformed into a hill shape. Peak values introduced
at the beginning are decreased to the correct maximum value of 1.
Negative values of about 6% occur.

1AD The concentration is less smeared out than for 142, Also, from the
2-D plot it is seen that the square shape is better conserved. About
90% mass enters the region. The peak value, however, increases
slightly, and negative values of about 10% occur.

1B2 From this picture one can conclude that this method is totally unfit
for this kind of problem.

18P see 182,

2 Even this method which seems to be well fit for steep and discontinu-
ous data produces large errors caused by the mass deficiency.
Compared, however, with the other methods the results are good. 1t is
the only method that more or less maintains the block shaped
concentation profile.

3A When the block enters the region large negative values are intro-
duced. It is not clear whether this phenomenon is caused for the same
reason as in the source test. The difference is that this is an
inflow boundary problem, while in the source test problems arise at
outflow boundaries (V=0). Compare also figure 2.10.36, where the
block leaves the region (outflow boundary!) and no large negative
values are introduced.

3B Apart from the large negative peak value in 3A this method performs
almost as 3A: a maximum value overshoot of 20% and a maximum negative
value of =9%.

4 Note the diffusive effects of this method: the maximum decreases and
the block shape is deformed into a hill shape that is flat at the
downwind side,

5 The block shaped concentration profile is seriously deformed into a
shock-wave type profile, and the concentration has been smeared out
in directions normal to the wind velocity. Negative values of about
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10716 (machine precision) occur.

6 There seems to be a small lag with respect to the distance that

should have been travelled.

The results for the objective criteria are tabulated in table 3.

Table 3. Objective criteria,
block test - inflow boundary
142 1A 12 qpb 2 33 3B 4 5 6

max 1.35 1.3 2.6 2.7 1. 1.15 1.2 1.25 1, 0.9
min ~0.06 ~0.1 =1.,15 ~1.8 0. ~1.4 ~0.11 0. ~0. 0.
mass 0.65 0.94 0.55 0.8 0.7 0.7 0.7 0.6 0.65 0.55
I g, 0.85 0.55 - - 0.6 0.65 0.7 0.85 0.85 0.6
P 0.65 0.45 1.6 1.9 0.65 0.55 0.55 0.7 0.9 0.6
| | 0.85 0.85 1.55 - 1. 1.8 0.95 0.9 1. 0.9
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182

18P

3A

3B

80

2.10.4 Block test, outflow boundary (see figures 2.10.31 - 2.10.40)

Obviously the grid resolution is too low: large positive peaks are
formed upstream in x-, and y-direction (remember that the method is
fractional) and as a combined effect, but attenuated, in the cross-
wind direction. Note that the errors are only introduced upwind.

The higher grid resolution yields better results, but large negative
errors (=25%) are introduced. Again, as for 1A2, errors occur mainly
upwind.

In contrast to the inflow boundary test the method performs better
than 1Aa, but it is still too inaccurate.

As for 1B2, the method performs slightly better than 1Ab.

The method performs best of all. Note the oscillating behaviour of
the error norms and the mass. This is due to a representation error
by considering only the concentration (0th moment) and not the higher
moments for output. If the time periods for output were chosen such
that an integer number of grids would have been passed, then the
representation would have been exact. Performing this test with a
Courant number of 1 will yield the same result, and performing a test
with a choice for output that fits exact representation will yield an
exact result independently of the Courant number. However, for the
inflow boundary the lucky choise of both Courant number and output
time period is necessary to obtain exact results.

The block shape is deformed into a hill shape with a peak value that
is about 25% too large. Negative values of about 6% are introduced.
Almost the same performance as 3A. Negative values =10%.

The diffusion effect seems to be less than for the inflow boundary
block test.

Again, a severe disturbance of the block shape into a shock-wave type
shape, and smearing of the concentration.

Obviously, there is too few mass (=50%). The peak value can be 25%
too low.

The results for the objective criteria are tabulated in table 4.



Table 4. Objective criteria,

block test # outflow boundary

148 1 B2 B 2 3Z. 3B 4 5 6
max 1.3 1.2 1.5 1.2 1. 1.25 1.25 1.2 1. 0.75
min -0.11 -0.25 -0.12 =-0.17 0. =-0.07 -0.12 0. =-0. O.
mass - 0.45 - 0.4 1.25 0.9 0.9 0.9 1.15 0.55
I 1, - .25 1.5 1.15 0.6 0.8 0.7 0.8 0.65 0.8
P 0.95 0.8 0.95 1. 0.7 0.65 0.5 0.55 0.7 0.75
I 1,. 0.9 0.9 1. 1. 0.95 0.9 0.75 0.8 1. 0.95
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2.10.5 Comparison of practical demands

Time consumption and storage requirements are tabulated in table 5.
The time consumption is in units of cpu-seconds. The storage requirements
are given for s chemical species to be advected in units of the total

number of grid points Ny Ny. In the particles method the number
p = number of particles / total number of grid points

had to be introduced.

Note that for the pseudo-spectral methods with 17 x 17 grid points
the storage requirements are about one quarter of other methods. Also, the
factor p in the particles method is less severe as it might seem when a
low Eulerian grid resolution is applied. In fact, a 17 x 17 grid was used
together with 1000 particles (p=l4), so the storage requirements are about
the same as for other methods. Note also the factor 5 of the second moment
method: for this method the storage requirements are quite severe.

However, concerning the cpu-time consumption, the second moment came
out as one of best together with the pseudo-spectral methods with low grid

resolution and the chapeau function, lumped version, method.

Table 5. Consumption time and

storage requirements

148 1pD g2 b ) 30 3B L 5 6

cpu:
Molenkamp 155 1139 144 1038 185 327 174 2475 45y 626
Source 65 387 U2 313 65 103 55 479 80 185
Block—-in 37 208 36 219 31 75 43 1690 100 324
Block-out 4y 239 33 202 34 72 45 1690 98 213

Storage: s+6  st6  s+t6 s+6 5s+5 s+l s+l s+3  s+5 p(s+3)
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2.11 Discussion

Six different methods are compared on the basis of four test
problems. Three of these methods are strictly non-negative: the second
moment method, the method due to Smolarkiewicz and the particles method.
All other methods introduce negative concentration values during the
calculations, be it that the MFCT algorithm never introduces negative
values less than -1O~16. A relation seems to exist between steepness of
data and the negative values: the steeper the data, the greater (in
absolute value) the negative values. All methods except for the second
moment method essentially deform a block shaped concentration field., The
MFCT algorithm deforms all profiles into a shock-wave type and smears out
the concentration in directions perpendicular to the local wind velocity.

Apart. form the Molenkamp test the second moment method performed best
with respect to the theoretical demands and the practical demand of
computation-time consumption. In order to gain accuracy in problems with
Space-dependent wind fields as e.g. in the Molenkamp test it is proposed
to calculate the transportation of the center of masses in the SMM by a

yth order Runge-Kutta method instead of the forward Euler method that is

used now,
The above considerations lead to the problem of choosing an algorithm

for use in air quality models which include photochemical interactions.

A, Strict non-negativity is demanded.

This rules out three methods. From the three that remain, Smolarkiewicz'
method is very expensive, while it is still quite diffusive. The particles
method lacks an accurate projection procedure onto the Eulerian grid.
Also, the right way for the source definition and for the initial concen-
tration implementation are not well understood yet (source: too much mass;
block-out: too few mass). The only method that rests is the second moment
method which in fact performed best for all tests involving steep data.
Nevertheless, one may have to resort to the two other methods because of
the severe storage requirements. However, considering the enormous

developments in computer architecture this may bte not a problem any more

within a decade.
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B. Slight negative values are acceptable.

In case of steep gradients, only the MFCT algorithm competes with the
second moment method, because the other methods introduce too large
negative values. However, MFCT rules itself out because of its implied
deforming property, which makes the method inaccurate. In case of fairly
smooth gradients, the pseudo-spectral methods with low grid resolution
(small negative values, relative small storage requirements) and the
chapeau function method (very small negative values) are competing.

However, the use of these methods together with smooth inflow boundary

conditions has to be considered yet in more detail.
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