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Foreword

In the early 80's the importance of wavy basic state (WBS)
barotropic models was demonstrated by various workers. Within the
framework of the cooperation between the Cooperative Institute of
Climate Studies (CICS) and KNMI the need for a WBS baroclinic model was
recognized. At KNMI ideas for such a model had been developed by the
author in the beginning of 1983. In 1984 KNMI submitted a research
proposal to CICS in which it was proposed to develop, test and conduct
preliminary experiments with a two-layer WBS model. This resulted in a
subcontract between CICS and KNMI under grant from NOAA (NABLAA-H-
00026).

The period of this contract lasted from September 1, 1984 until
February 1, 1986. The research was largely carried out at KNMI, with the
exception of October and November 1985 when the author visited the
University of Maryland.

This report contains a detailed derivation and description of the
model as well as the main results of the preliminary experiments.

The research was carried out under the supervision of dr. J.D.
Opsteegh.



Part I Description of a baroclinic wavy basic state model

Introduction

In this part of the report a technical description is given of a
linear baroclinic wavy basic state model for the planetary scales in the
atmosphere, i.e. a model in which the equations are linearized around a
zonally asymmetric basic state. It is a global 2-layer steady-state model
based on the primitive equations. The model variables describe the
anomalous zonally asymmetric as well as symmetric circulation in the time-
mean atmosphere as a response to prescribed anomalous forcings. The model
is semi-spectral: the variables are expressed in wave components in zonal
direction, whereas a gridpoint representation is used in meridional
direction.

The methodology of the wavy basic state model is similar to that of
the 2-layer linear steady-state primitive equations model described by
Opsteegh & Van den Dool (1980), hereafter referred to as OD. Apart from
the waviness of the basic state these models differ in the fact that the
wavy basic state model contains a zonal mean meridional circulation. It
also describes anomalies in zonal wavenumber 2zero as a response to zonal

mean forcing as well as zonally asymmetric forcing.



Model formulation

The derivation of the model equations is extensively described in

Opsteegh & Van den Dool (1980) and will not be repeated here. They arrive

at a set of linear equations formulated in terms of the asymmetrical part

of the anomalies in the time mean flow. Here these anomaly (or

perturbation) equations are also used to calculate the zonally symmetric

part of the anomalies. They are expressed in curvilinear coordinates with

p as vertical coordinate. With the addition of terms describing the

interaction of perturbations with the zonally asymmetric part of the basic

state as well as with the climatological zonal mean meridional circulation

they are:

Zonal momentum balance
u ~9U Ju ~3u ou ~du
U— —_— + V— + y— + O— +
ax  Yax T oy T Vay T %p T Y3p
_ . tang 7 -
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Meridional momentum balance
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U— — — — — + y—
ax ¥ “ax * Vay ¥ VBy ¥ Qap “ap
vy + 2, oy, LAN0 ¢
oy a W E
y y
First law of thermodynamics
oT ~aT oT ~9T - -
— + U— + V— + v— = gw + 6T =
Usx " Uax T Vay T Vey T

o|o>

ol

(1)

(2)

(3)



Continuity equation

-~

., v _tang 7, do _
% oy a ' ° op 0 ()

Hydrostatic approximation

8_p= - (5)

pa = RT (6)

The basic state, around which the primitive equations are linearized,
consists of U, V, 9, T and ¢ (static stability). These are functions of

height, latitude and longitude, except for ¢ which depends on latitude
only. The model variables for the anomalies (depicted by ) are u, vV, w,

- A -~ ~ -

T, ¢ and a. These symbols have their usual meaning. Fw , Fw are
dissipation terms. These will be discussed below. 6§ is : NewZonian cooling
coefficient. EE ’ EE and aE are the anomalous transient eddy forcing
terms of moment:m ang heat. A description of these terms is given in Kok

and Opsteegh (1985). Q is the anomalous diabatic heating.
In order to prevent numerical instability small terms proportional to
the second derivative with respect to latitude of u, v and T have to be

added in the zonal and meridional momentum equation and the thermodynamic

equation respectively.



Vertical discretization

The vertical discretization of the model is shown in Figure 1. The

difference between the isobaric levels can be chosen arbitrarily.

200mb =0 0

400 e 1

600 L 2

800 LY 9, 3

1000 2 "
Figure 1

The momentum and continuity equations are applied at levels 1 and 3,
whereas the thermodynamic equation is applied at level 2. The hydrostatic

approximation and the equation of state are combined to eliminate the

~
~

~ P
anomalous temperature T2 in the thermodynamic equation: T2 = = ﬁg %%)2.
The model has a rigid upper boundary at 200 mb (mo = 0). The lower
boundary condition at 1000 mb where the vertical velocity is that produced

by the horizontal surface winds over the mountains:

- - oH oH



where p is density, g is gravity and H is topographic height. Indices

refer to model levels.

The friction terms in the momentum equations have the following form:

P = Ko Kl - ug)
X 1
1
Fw = Kw 3 - KD(u1 - u3)
X 3
3
(8)
F =K ° S,
wy1 Wy v, KD(V1 v3)
F =K ° S,
_K -
wy3 w3 v3 D(v1 v3)

Kw and KD are the friction and (small) vertical diffusion coefficients

respectively. For the time being they are constant in zonal direction.

The vertical derivatives of perturbation quantities

We take
i S S S R
ap 2Ap 2Ap 4ap
ou ) uu- u2 o u2 L u1+ u§
3p  2Ap  2Ap YAp
av1 3v3
Analogous expressions hold for 3 and 0"

%, 657 0,
“op " 2ip



Finally
% Y2
op 2Ap
8w3 i Wy~ W,
op 2Ap

A

These latter two discretizations will be used to eliminate m2 from the

equations. With (9) the continuity equations at level 1 and 3 are both

equations in w

2:
T e 2 (10)
9X Ay a 1 2Ap
8u3 ) Bv3 _ tane ; ) w, . fﬂ_ (11)
ax oy a 3 2Ap 2Ap

Elimination of w, is now obtained by using the sum of (10) and (11) and by

a

substituting w, from (10) into the zonal and meridional momentum equations
(eq. (1) and (2)) applied at level 1 and into the thermodynamic equation

(3), and by subsituting W, from eq. (11) into (1) and (2) applied at

level 3.

Finally, the vertical derivatives of basic state quantities are written as

Yiwe
op Ap ' :
U3- U1
For instance U1P = —=———— and U3P = U1P, etc.



Model equations

Applying the above to eq's (1) to (6) leads to a set of 6 linear equations

in the variables u1, v1, ¢1, u3, v3, ¢3:
Ju ou Q ~ ou
_ 1 1 2 tang 1
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In these equations diffusion terms are added.

Horizontal discretization

- 2 s
03) + =58, 03) -

30
3
ax)
(16)

A ~
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All variables, forcings and basic state quantities are expanded in Fourier

-

series along latitude circles,for instance up o=

L, u, (¢e

Imd ith u
m

complex. Products of (derivatives of) perturbation and basic state quantities

are developed in single Fourier series. Details are given in the next section.

In meridional direction we use a gridpoint representation with a resolu-

tion of 2.5 degrees of latitude. Central differences are used for derivatives

in meridional direction.



T NP

Figure 2

One major disadvantage of the way we discretized the set of equations is
that the zonal mean components of the perturbation quantities 51 and ¢, cannot
be solved. This is evident from egs. (12) - (17) which show that the zonal

mean perturbation heights only occur in terms proportional to

3 ° 3 7 3 - N
B_y $ys ﬁ $5 and 3z (¢, d3).

This means that we can determine the zonal mean ¢, and ¢, only up to an
arbitrary constant which does not depend on latitude and height. Therefore we
effectively have 5 instead of 6 zonal mean unknowns (we can for instance

replace ¢, and ¢, by T,).



10

Horizontal boundary conditions

In wavenumber zero (m=0) we choocse at both poles:

=0
¢ =0
9% _
ay_o
Inm =1
3u
W—O
oV _
S 0
6 =0
Inm > 2
u=2~0
v =20
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©
"
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3. Products of wavy basic state quantities and model variables

In this section we discuss the Fourier expansion along latitude
circles of products of (derivatives of) perturbation (¥, e.g.) and known

basic state (B) quantities which are themselves expanded in Fourier

series. Let

imi

v(Xr,¢) m=§m v (e)e

B(X, ) imx

= Eo Bm(d))e

-~

Bm and Vi are complex coefficients depending on latitude ¢ (and on

vertical coordinate p), A is longitude.

-m m
B =3B (18)
~m m .

in which the overbar denotes the complex conjugate. The caret, 7, will be

omitted form now on.

Only terms like Bv and B%% are discussed. All products of a model
variable and a basic state quantity appearing in the model equations (12)
to (17) can be reduced to terms proportional to these forms by using the

discretization in y or p direction.

= Oi Y. e (193.)

with v = § B _ v, (19p)
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[t follows, making use of (18), that

- ks-o B-Q-kvk T kE-ow B—1+kv-k = kiw Bg-kvk = Yz (20)

indicating that the coefficients of the expansion of Bv in negative powers
can simply be obtained from those belonging to positive powers. Therefore
Wwe consider only the Fourier series of Bv for £ > 0 (Bv+). We separate the
complex coefficients into real and imaginary parts denoted by subscripts r

and i respectively.

(Bv), = 220 Yzeiﬁk _ gzo{kg_m oY k}eilx
- zz BlvoeilA . lzo k§1{52_kvk N B1+kv—k}eizk
= lmo(Bzr iBzi)voreilx

Zo[kz1{(8(2-k) By~ k)l)(v v, )+(B(l+k)r+iB(Z+k)i)(v-kr+iv-ki)}]eizk
= T (B, + iB_.)v o121

2 o &r 2i° "or

+

Zo[kz1{(B(Q-k)r Bamor ke T CBlaayt * Bluek) i) Vit !

(B iga

LB g1 Bl

fie8
—_

)v + (B )v }]e

(2-k)r ~ Bask)r

® . ifa
QEO(BQP * lBli)vore (21)

T[T ((B 182

o Eolk B LB et Blag)r Vi * (B

k-2)1" Brken)i)Viilde

igx

+

i TLT {(-B B B - B
221[k£1{( (k-g)i+ (k+2)i)vkr + (k=2)r (k+$2,)r')vki}]e



13

In the latter expression £ = 0 is omitted in the imaginary part.

A similar expression can be obtained for terms of the form B%%. Again
only the positive part of the Fourier expansion is considered.
With v = ¢ v elmx, vV =YV + iv_ . it follows that (with R is the
m m m mr mi
earth radius)
v 1 v 1 ima

imi v v
. L imv e = I{(=) + i(=) le
9x  Rcos¢ dA Rcos¢ m m m 3x mr ax mi

Thus

(EX) ="

ox'mr  Rcos¢ mi

CAOYp— S

ax ' mi Rcos¢ mr

. . 1 . .
Substituting Rcos$( kvki’ kvkp) for (vkr’ vki) in (21) therefore gives the

. v
expression for (85;)+'

ov 1 o w i)
(B3x)+~ Rooss 2ZolkE KB y1* Breagyi Vir™ B =gy Blren)r Vil le
tieea— F 0 k(B - B ).+ (B - B w, 1lettr (22)
‘Recos¢ 2=1"k=1 (k=2)r  “(k+2)r’"kr (k=2)i “(k+R)i’ ki’
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Numerical Organization

All terms in the model equations (12) to (17) - including the r.h.s.
terms - can now be written in Fourier series along latitude circles. The
negative powers of the expansion do not have to be taken into account so
the system of equations just has to be solved for zonal wavenumbers

£ = 0, until fmax only. For each wavenumber the equations are separated

in real and imaginary parts.

—

For each gridpoint the system can be written in the form Mx = F, or

rather,

—

Mlj xj = FQ (23)

with ¢ and j = 0, ..., %max.

FQ is the forcing vector in wavenumber &, consisting of subvectors

-— — -—

For’ F]r’ F1i’""F(lmax)r’F(Rmax)i' xj is the perturbation vector

—

’ x1.,..., X(Qmax)i' Each subvector

consisting of subvectors xor’ X i

1r

contains the appropriate real or imaginary component of the model

variables u1, u3, v1, v3, ¢1, ¢3 for wavenumber j, i.e.

- (3) (3) (J) (J) (J) ()
xjr - (u1r v Ugp 0 Ve Vap 1 ¢3r )
- (3 (J) (J) (3) (3 (3)
Xyp = (W70 Ugy™ T Vit Vet 60T 057D

Each subvector of Fg and §} has 6 NRP elements, with NRP is the number of

gridpoints between the poles.

ng is an "interaction" matrix which determines the contribution to x.
J

from forcing in zonal wavenumber %. If the waviness of the basic state is



real part of / - {-
eq's for 1=0 || "Moo 1 "o2 \"or For
real part of ( \{ \ X \ !F \
vg's for 1=1 ' r 1T

M1D M11 M12 _ R
imag. part of X X, e = F..
eq's for 1=1 ‘ 1lJ 11}
real part of (; {?Zr\
eq's for 1=2 2r

"20 M2 P N .
imag. part of X5 F2.
eq's for 1=2 J ) t\ N ) “ l)}
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excluced all elements of sz’ £ = j are zero. Then the set of equations

can be solved for each zonal wave separately. This was the case in Oob. If
the basic state is asymmetric the system has to be solved for all
wavenumbers combined.

Separated in submatrices and subvectors (23) has the following form

(for Lmax = 2):

Figure 3

The interaction matrices Mij contain terms proportional to the basic

state quantities Bk and BE with k - j = |
and 2 + j = i,
All linear terms are contained in Miyj» 1 = 0,..., max.
The choice of imax determines which Fourier coefficients of the tasic

state have to be taken into account in solving the equations. These

coefficients are, as can be seen from (21) or (22) (wWwith summations
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truncated at fmax and using that the number of variables kmax = the number

of equations fmax):

B(1-9.max)r" B(1-2max)i’ T B(22max)r’ B(25Lmax)i

For numerical purposes they have to be assigned to an array number (also

dependent on fmax):

B(1), ..., B(6&max).

This means that

B +> B(2%max ~ 1 + 2m)
mr

B . » B(2%max + 2m).
mi

The same transformation is made for the model variables. With these

transformations (21) becomes
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fmax i%
(Bv), = T "{B(2%max-1+20)+1B(2kmax+22) }v(2emax-1)e "+

fmax_fmax
+

oLo [k§1 {(B(2omax=-1+2k-22)+B(24max-1+2k+2%) ) v (2max-1+2k)

+(B(28max+2k-22) +B(20max+2k+22 ) )v(2Lmax+2k) } Je - -}

Amax _fmax

12§1 [k§1 {(-B(2&max+2k-22)+B(2max+2k+24) )v (28max-1+2k)

iga
+ (B(2&max-1+2k-22)~-B(28max=1+2k+28) )v(2%max+2k)} Je

fmax iga
= QEO {B(2%max~-1+24)+iB(2max+24%) }v(28max-1)e
fmax_Udemax
+ B(k-1-2 k=1+ -
lzo [k=§lmax+2{ (k=1-22)+B(k=1+22) }v(k-1)
K even
Yomax iLa
+ B(k- k
k=2Emax+2{ (k=22)+B(k+2%) }v(k)Je
k even
Amax _Ufmax
+ 1 % {-B(k=-22)+B(k+22%) }v(k-1)
=1 "Kk=28max+2
k even
Yomax iga
+ B(k=1-22)-B(k-
k=§2max+2{ (k=1-22)=B(k=1+22) }v(k) Je
k even
Lmax igA
= lgo {B(2$Lmax-1+29.)+iB(22max+22)}v(29,max-1)el
max_Udomax iga
v 2L 3 {B(k+22)+B(k-22) }v (k) Je
=0 "k=2%max+1
fmax_U%max-~-1
B(k+1+2%)-B(k+1-2
o1 [k=§zmax+1{ ( 2)-B(k+1~-22) }v(k)
k oneven
4omax iga
+ {-B(k=-1+22)+B(k=1-22)}v(k)Je . (24)
K=28max+2

even
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In the same manner (22) becomes

ov fmax_4¢max-1 k=-22max+1
(B—) = 1T [ —————{B(k+1+22)+B(k+1=-22) }v(k)
ax + L=0 k=2f{max+1 2Rcos¢
K oneven
4omax k=-2%max LA

- ———— {B(k=1+22)+B(k-1-24 K
k=§lmax+2 2Rcos { ( )+B(k- ) v ( )]e
kK even

fmax_Udfmax-1 k=2 %max+1

- {-B(k+28)+B(k~-2 Kk
=1 [k= gmax+1  2Rcos¢ {-B(k+20)+B(k=22) }v (k)
k oneven
Uemax k-2%max 1A
-k ———— {B(k+2%)-B(k-2 K 5
k=3imax+2 ~2Ros 5 (Blk+2R)-B(k-22)}v (k) ]e (25)

This can also be obtained from (24) by replacing

k-22max+1 . .
V(k) by W V(k+1) if k is odd
v(k) by k-2imax v(k=1) if k is even,

2Rcos¢

From the last two expressions it is easy to determine in which column MII

of the matrix M the coefficients belonging to terms proportional to Bv and

B%l have to be placed.

Recall that v(2&max-1) corresponds to Vor?
v(2%max+1) Vip?
v(28max+2) Voo

11
etec.

_ 1) (1) (1) (1) (1) (1)
and Vie = (u ir * Y3p 2 Vip 2 V3p s Op ¢3r » ete.
If we further define IVAR = 1 for v = u1r and v = u1i
IVAR = 2 for v = u and v = u_,
3r 3i
IVAR = 6 for v = ¢3r and v = ¢3i

then the coefficients of v(k) in eqs. (24) and (25) should be placed in
the matrix in column MII = 6(k-22max) + IVAR if k > 2%max+1.
If k = 24max-1 then MII = IVAR. The position of terms in the equations

which are not proportional to Bv or B%% is trivial.
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The rows of the matrix are filled with the real and imaginary parts
of the equations (in the order of (12) to (17)) for wavenumbers 0 until
fmax. This is depicted on the left in Fig. 3. Our system of 6(2%max+1)
linear equations for each gridpoint is solved with a matrix-technique

described by Lindzen and Kuo (1967) and Simmons (1981).
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5. Continuity of the basic state

The wavy basic state has to fulfill the continuity equation. If we

assume, as we did in section 2, that

0 2,9
3y, _ 2 Ry, _ 4 "2
Gp)1 T zap 39 (5p)3 = 2pp then
U v Q
1 1 _ tang 2.
ax + ay S V] + 2Ap 0 (26)
Vv Q
U3, 3 tang, _ %2 (27)
X 3y a 3 2Ap 2Ap

One possible way to meet these requirements is to derive the U and V

fields at level 1 from observations. Then (26) can be used to calculate
QZ.
The inbalance that results in the 1l.h.s. of (27) if we also obtain U3 and

V3 from observations can be attributed to 94’ which does not show up in

the model.

An alternative way is to derive 92 from

9y - (v - _ tang o _ 2 _ 4
BX(U1 U3) + 3y(v1 v.) 2 (V1 V) + = (28)

3 3 Ap  24p
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Part I1. Preliminary experiments

1. Introduction

In orauer to test the wavy basic state (WBS) model a few experiments
have been performed. The experiments are chosen in such a way that the
results can be compared qualitatively witn simiiar experiments with
barotropic WBS models and models with a zonally symmetric basic state.
In all cases an anomalous diabatic heating of an elliptical shape is
used at 600 mb with a maximum of 3.9 K/day. The position of this heat
forcing will be shifted witn respect to basic states of various
meridional and longitudinal complexity. In most experiments also results
are shown for the zonally symmetric case, in order to emphasize the
differences between the WBS model and the zonally symmetric model
described by Opsteegh and van den Dool (1981).

Only geopotential height responses at 400 mb are shown, in one case
accompanied by the response in the same field at 800 mb. For reasons
stated in section I.2 the response in zonal wavenumber zero (m = 0) is
not included 1in tne figures. However, forcing 1in the zonal mean
component does contribute to this zonally asymmetric response.

All pictures consist of m = 1 until 6 only. The inclusion of nigher
wavenumbers did not have a noticeable effect on the results in this set
of experiments. In all experiments the basic state vertical velocity was
calculated from the basic state (zonal and meridional) wind fields using
the continuity equation as described in § 1.5. Unless otherwise statea
the linear friction coefficients were chosen to be rather small in order

to emphasize remote effects of the heat forcings. At the top level (400
7 1

mb) this coefficient is 10 s » whereas at the bottom level (800 mb)
6 6 _1

it is 10 or 2 x 10 s . The value of the Newtonian cooling
-7 _1
coefficient is in all cases 4 x 10 s

In all but the last experiment we will use basic states which are
modifications of the idealized northern hemisphere (NH) wintertime
zonally averaged basic state consisting of zonal winds and temperature

only. Between 30°N and 30°S the idealized zonal winds are described by
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Uy = 8.5 + 13.5 cos (6¢ - w) (m/s)
2

U2 —EU] _O-b

U3 = § U1 - 1.0

Poleward of 30° zonal winds at alli levels decrease exponentially with
latitude to a value of about 1 m/s near the poles. The zonally averaged
temperatures at 600 mb are given by

T, = 255.5 + 18.5 cos 2¢
In the last experiment we have taken the three-dimensional observed

normal January basic state consisting of m = 0 to 6 of 2zonal and

meridional winds and temperatures at the appropriate levels.
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2. Experiments

Experiment 1

In the first experiment (Fig. 4) we consider the remote midlatitude
response to an elliptically shaped heating at two locations on the
equator. The basic state outside an equatorial strip between 10°S and
10°N is the (idealized) equivalent barotropic Northern Hemispheric
wintertime zonally symmetric basic state consisting of zonal winds and
temperature only. This idealized basic state is described in section
II1.1. Meridional winds are taken equal to zero. The zonal winds in the
equatorial strip also have a zonal wavenumber one component. Its
amplitude is chosen in such a way that a tropical "duct" in which the
winds are westerly, is created between 120°E and 120°W at all model
levels. The easterlies are hatched in the figure. This basic state is
adopted in both hemispheres.

In Fig. 4a the equatorial heating is centered at 0° longitude and
lies almost completely within the belt of easterlies. In Fig. U4b the
heating is centered at tne dateline. The midlatitude geopotential height
response at 400 mb (given in decameters) differs by a factor of four
between tne two cases. Since the background flow is exactly the same
outside the latitudes of tne forcing this difference is solely due to
differences in the basic state at the locations of the forcing itself.
This behaviour of the WBS model is consistent with the fact that
meridional energy propagation is suppressed by the presence of local
easterlies. Increasing the latitudinal extent of the easterlies in the
vicinity of the heating leads to a zero response at midlatitudes.

This experiment shows the importance of incorporating zonal
structure in the basic state. Taking only the zonally symmetric part can
be highly insufficient for assessing the stationary midlatitudinal

effects of tropical heat sources.
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ktxperiment 2

In the second experiment - displayed in Fig. 5 - we will study the
remote effects of a heating which is located at midlatitudes. In this
experiment we use exactly the same basic state as in experiment 1. For
comparison we also show the response for the zonally symmetric case
(Fig. 5a). The heating is located between 25°N and 45°N and centerea at
150°E in Fig. 5a and b. Comparison between these two figures shows that
if the tropical zonally asymmetric basic state includes a duct in wnich
the winds are westerly energy can easily propagate from one hemisphere
to the other. It appears that only waves of zonal scale less than the
zonal scale of the westerly duct can reach the opposite hemisphere.
That's why the response in middle and high latitudes of the southern
hemisphere in Fig. 5b is strongly dominated by m=3. Its ampli-ude is
highly determined by the strength of the westerlies in the equatorial
duct. (Note the different isoline distance in the southern hemisphere.)
This can be understood in terms of the dispersion characteristics of
forced Rossby waves. It can be shown that the horizontal group veloczity
of the aisturbance increases rapidly with the westerly windg speed (sece
e.g. Hoskins and Karoly, 1981). So if the westerly winds in the duct are
weak the perturbation will be dissipated before it reaches the strong
westerlies in the southern hemisphere.

The cross-equatorial propagation appears largest if the centre of
the forcing is located approximately 30 degrees to the west of the
centre of the duct (displayed in Fig. 5b). Since in our case tne duct
has a width of 120° a shift of the forcing of approximately 60¢ in
longitude will lead to almost exactly the opposite response at nigh
latitudes in the southern hemisphere. This is shown in Fig. 5c¢ and 4 in
which the centres of the heating in the NH are located at longitudes
130°E and 180°E respectively. The amplitude and phase of the response in
the Nh is hardly affected by the loss of perturbation energy to the SH.

If the forcing is 1located at longitudes with easterlies to the
south then the responsc is constrained to lie poleward of the source and
there will be hardly any cross-equatorial energy propagation. These
situations resemble the zonally symmetric case depicted in Fig. b5a.

The above-mentioned results are in excellent agreement with earlier

studies by Webster and Holton (1Y82) and branstator (1983). Webster and



Holton obtained their results with a non;inear model based on the
shallow water equations with a time-mean wavy basic state zonal wind
field. Brunstator used a steady barotropic moael iinearized around a
basic state which varied in latitude and longitude. The vertical

structure we used in our experiments 1 and 2 is equivalent barotropic.

Experiment 3

In experiment 3 we will study the effects of the relative position
of midlatitude troughs and ridges of the basic state Wwith respect to a
wavetrain excited by an equatorial heating. We adopt the same zonally
symmetric component of the basic state as in the previous experiments,
except equatorward of 10° N where we assume weak westerly winds of 5 m/s
at all levels in order to obtain appreciable remote responses. Only
north of 15° N the zonal wind field includes a zonal wavenumber one. The
vertical structure is again equivalent barotropic. The amplitude of m =
T'is 1 m/s at 400 mb, 0.75 m/s at 600 mb and 0.5 m/s at 800 mb. We shift
this wavy basic state in eastern direction in steps of 60 degrees and
consider the responses to the equatorial heating which is fixea between
30 and 90°E again (Fig. 6b to 6g). Longitudes at which the zonal winds
are strcngest are indicated by an upward directed arrow at the bottom of
each panel. For comparison also the response is shown in case the zonal
structure of the basic state is absent (Fig. 6a).

A number of interesting features can be noticed. First of all in
all figures a wavetrain can be seen originating from the area of the
forcing following a route up to 70°N and extending all the way around
the hemisphere. There is also an indication of a second Wwavetrain to the
south. Comparing Fig. 6b to Fig. 6g it is evident that the distance
between two consecutive extresna in the 400 mb geopotential height is
smallest when the local background flow reaches its smallest value.

This results can be compared with the ray tracing analysis of
Hoskins and Karoly (1981). They applied kinematic wave theory and ideas
from geometrical optics to the linearized nondivergent Dbarotropic
vorticity equation on the sphere. They showed that, using a Mercator
projection of the sphere, along a wave ray the "stationary

wavenumber", m? + 12, is equal to BM/ GM' Here m and 1 are zonal and
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meridional wavenumber respectively, BM is cos¢ times the meridional
gradient of the absolute vorticity on the sphere, and UM is the Mercator
basic 2zonal velocity. Therefore the wavelength of the stationary wave
will increase (decrease) with increasing (decreasing) local zonal winds.

Although the analysis by Hoskins and Karoly was for zonally
symmetric basic states one still can apply their results to models with
zonally varying basic states provided that these longitudinal variations
are small. (This was shown e.g. by Branstator, 1983.) Since our basic
state consists of m = 0 and a small amplitude m = 1 the above-mentioned
theory can be applied tc¢ our experiment and inueed qualitatively
explains the general features of the response.

This experiment exhibits a new phenomenon, not found in the earlier
experiments. For in this experiment there appears a strong enhancement
of the midlatitude response at distances very far from the equatorial
source if this source is located at certain positions with respect to
the phase of the basic state zonal wavenumber one. This is most apparent
in Fig. 6g, in which the amplitude on the western hemisphere is a factor
of 3 larger than in the swallest amplitude case (Fig. 6c¢)

So not only the path taken by the energy is affected by the
background flow, as was shown in the previous experiments, but
apparently it can also provide an additional source of energy for the
midlatitude pattern. The importance of the interaction between
perturbation wave and basic state was shown earlier by Simmons (1982),
Branstator (198%) and others.

Shifting the phasc of the m = 1 wave of the zonal flow from 1z0°
(Fig. 6c) to 360° (Fig. 6g) shows a gradual amplification of the remote
response, indicating an increasing amount of energy being extracted from
the zonal flow. From 360° to 120° a more abrupt decline in amplitude is
noticeable. Maximum values of the geopotential height perturbations
always occur about 90° west of the longitude of the maximum winds with
the exception tnat the area between 0° and 100°E appears to be haraly
affected by changes in the background flow. In this area the equatorial
heat anomaly presumably is the primary source of energy.

Comparing finally the asymmetric cases with the symmetric one (Fig.
6a) it appears that the amplitudes are larger in all cases with zonal

asymmetry with the exception of Fig. 6c. This case resembles the

Symmetric one most.



28

Experiment 4

In the previous experiments we have taken basic states with very
simple horizontal and vertical structure. Horizontally it consisted of
zonal winas of zonal wavenunbers 0 an 1 only, =zonally symmetric
temperatures and no meridional winds . Basic state vertical velocities
were calculated using the continuity equation for the bpasic state
quantities (8 1.5). In all cases the vertical structure of the zonal
winds was equivalent varotropic: maximum winds occurred at the same
longitudes at all levels. It is not surprising that the structure of the
remote responses shnowed a predominant equivalent barotropic structure in
all cases (not shown).

In this final experiment we take the observed normal January basic
state consisting of m = 0 until m = 6 of zonal and meridional winds at
400, 0600 and 800 mb, and temperatures at 600 mb. Basic state vertical
velocities are calculated by means of the continuity equation again. The
linear friction coefficient at the top level is 10_6, at the bottom
level 2 x 10_6. We will study the responses for several locations of an
equatorial neating.

In Fig. 7 the 400 and 800 mb basic state .onal winds are alsplayed
in the way they are used in this experiment. At both levels on the NH
the winds present strong zonal asymuetries. In the top panel the
midlatitude jetstreams can be recognized. The Asian or Pacific Jet is
the strongest one witn windspeeds exceeding 40 m/s. A second jet is
located over the south of the United States. It is smaller and weaker
than the Asian jet. Another local maximum in the zonal winds is
noticeable over North Africa. In large parts of the equatorial region
the winds are easterly. The SH shows much less zonal structure.

First we show the geopotential height responses at 400 and 800 mb
to an elliptically shaped equatorial heating between O and L0°W after
the zonal asymmetries in the basic state are removed (Fig. 8a and b). &
wavetrain is evident, in particular at 400 mb (top panel), with rapidly
decreasing amplitude following the ray. It is restricted to longitudes
up to some 100 degrees downstream of its source. The amplitudes are
rather small because in this zonally symmetric case most of the heating
is embeddeu in an easterly background flow. This is especially true for

the SH. The vertical structure of the anomalies is baroclinic close to
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the source and equivalent barotropic at more remote distances. This is
well known from numerous studies with zonally symmetric models.

In Fig. 9 the m = 1 to 6 geopotential helght responses at 400 mb
are shown when the waviness of the basic state is included. In Fig. 10
the corresponding fields at 800 mb are displayed. The longitudinal
extent of the equatorial heating is indicated on top of each panel.

The most conspicuous feature in rig. 9 is the almost complete
insensitivity of the structure of the NH midlatitude response %o the
longitudinal position of the tropical heating. Placing its centre
anywhere in the region ranging from Y0°E eastward to about 90°W the
mialatitude response only differs in amplituae and haraly at all in
phase (Fig. 9 b,c,d,e). Even outside this region the responses are
reminiscent of this patiern. Apparently the normal January basic state
in the way we used it appears to have a stationary mode that can be very
easily excited.

Highest values occur when the centre of the heating lies near the
centre of the Pacific (Fig. 9d). Note that the response is large even in
the case when the nortnern hemispheric part of the heating lies almost
completely in a region with local easterlies (Fig. 9c).

Similar behaviour was noted by Simmons et al (1933) who found that
their barotropic model, linearized about the climatological January 300
mb flow, also possessed regions of preferred response to tropical as
well as subtropical forcings. Structures which resemble the observed
Pacific North America (PNA) pattern noted by Wallace and Gutzler (1981)
tended to recur in their responses. The areas of preferred response
corresponu to places where the perturbation waves can extract energy
from the basic state most efficiently.

We can also compare our results with those obtainea from a similar
experiment performed with a GCM by Blackmon et al (1983). In their
experiment an anomalous sea-surface temperature (SST) wWwith the
distribution of Rasmusson and Carpenter's (1982) E1 Nino-Southern
Oscillation composite (but with twice its amplitude) was intrcduced into
the NCAR Community Climate Model (CCM). Our recurring northern
hemispheric pattern of Fig. Y resembles to some degree the asymmetric
part of their anomalous 1200-day average 200 mb height field. The main
differences are that their anomalous pattern lies more to the south and

the height anomaly near 50°W 75°i is missing.
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Geisler et al (1985) found that the structure of the CCM
midlatitude response to tropical Pacific SST anomalies 1is rather
independen. of the longitudinal position of the anomalies. Branstator
(1985) could not reproduce this finding with his barotropic model
linearized about the CCM 500 mb wavy basic state. Our results indicate
that a model linearized about the full three-dimensional January basic
state is capavle of reproducing the insensitivity of tne response to the
location of the forcing. However, this insensitivity appears to be far
too large in compurison with the results of Geisler et al. Apparently
our normal mode is extremely dominant, i.e. there is one eigenvalue with
a much larger growth rate than all others.

It is interesting to note that if the heating is located south of
the very weak parts of the subtropical jet the Nu midlatitude responses
are small (Fig. 9a, f) whereas strong responses occur when the heating
lies south of the Asian or North American Jet. This agrees with earlier
findings of for instance Simmons (1982) and Navarra (1985) who also
found strong enhancements of midlatitude responses when the heating was
located closely to the main jet streams.

The above-mentioned phenomena for the NH can to a much lesser
extent be noticed in the southern hemispheric midlatitudes also.
However, the most important difference is the much smaller amplitude of
the responses in the SH. Since the basic state has much less
longitudinal variation in this hemisphere (Fig. 7) the responses do not
exhibit as much enhancement with respect to the zonally symmetric case
depicted in Fig. 3.

In Fig. 10 the geopotential height responses at the bottom level
are shown for the same positions of the anomalous heating. Again the NH
midlatitude amplitude is by far the largest. Comparison with Fig. 9
shows a predominant barotropic structure with highest values occurring
in general at the top level. However, there are a few striking
exceptions. Over the Northern Pacific and North America there are also
places where the response is highly baroclinic. This is regardless of
the distance to the heating. The possibility of baroclinic remote
responses 1s a typical feature of wavy basic state models which are not

be encountered in zonally symmetric models.
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3. Summary

In this part of the report a description is given of a few experiments
performed with the steady state baroclinic wavy basis state model
(described in part I). Only responses to isolated anomalous heatings are
considered. The position of these heat forcings has been shifted with
respect to basic states of various meridional and longitudinal
compiexity.

The experiments show that incorporating zonal structure in the
basic state at the location of the heating can be very important. Taking
only the zonally symmetric part can be highly insufficient for assessing
the stationary midlatitudinal effects of tropical heat sources.

Incorporating in the tropics a longitudinally asymmetric basic
state which includes a duct in which the zonal winds are westerly, can
have a large influence on the cross-equatorial propagation of forced
waves. It is shown that waves of zonal scales less than the zonal scale
of the westerly duct may propagate from one hemisphere to the other. The
amplitude of the response in one hemisphere to forcing in the opposite
hemispnere depends strongly on the magritude of the westerlies in the
equatorial duct. It is also found that in case of zonally symmetric
basic state zonal winds and temperature the cross-equatorial propagation
can be affected by the inclusion in the basic state of (zonally
symmetric or asymmetric) meridional wirds in the tropics. This latter
result has not been discussed in section II.Z.

The ray tracing analysis of hoskins ana Karoly (1981) for zonally
symmetric barotropic basic states can also be applied to equivalent
barotropic basic states which contain small longitudinal variations. For
instance the wavelength of the stationary wave is strongly dependent on
the amplitude of the local background flow.

Another important feature apparent from the experiments is that the
background flow can provide an additional source of energy by
interacting with the perturbation waves. This is most evident in the
experiment in whicii we studied the responses to a heating which was
placed at various locations along the equator using the three-
dimensional normal January basic state. Apart from the large amplitudes
that occur in some cases in the northern hemisphere the most conspicuous

phenomenon in this experiment is the almost complete insensitivity of
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the structure of the northern hemisphere midlatitude response to the
position of the equatorial heating. Apparently the January basic state

possesses a stationary mode that can be excited very easily.
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Figure captions (part II)

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4 Geopotential height response at 40U mb to an anomalous heating
centered at the equator at longitudes 0° (a) and 180° (b). The
elliptically shaped heating is indicated by the dashed-dotted
lines. The basic state is described in tne text. The areas where

the zonal winds are easterly are hatched.

5 As in Fig. 4, except that the centers of the anomalous heatings
are located at 35°N and at longitudes 150°E (a and b), 130°k (e¢)
and 180° (d) respectively.

6 Geopotential height response at 400 mb to an anomalous
equatorial heating located between 30° and 90° E when the basic
state is zonally symmetric (a) and when the zonal winds of the
basic state also have a m=1 component which is shifted in eastward
direction in steps of 60 degrees (b to g). Longitudes at which the
zonal winds are strongest are indicated by an arrow at the bottom

of each panel.

7 Observed normal January zonal winds (m = 0 until 6) at 400 mb
(a) and 800 mb (b).

8 Geopotential height response at 400 mb (a) and 800 mb (b) to an
anomalous heating located at the equator between 0° and 60° W,

using only the =zonally symmetric part of the normal January

climatology.

9 Geopotential height responses at 400 mb for six positions of the
equatorial heating (which are indicated on top of each panel). The

three-dimensional normal January basic state is used.

10 As in Fig. 9 but for 800 mb.
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