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Abstract

It is observed that some data reduction problems in meteorology may
be solved by graph theoretical methods.

The solution of a problem in a graph theoretical context corresponds
to the solution of the original data reduction problem.

Three such problems come under review: a plotting problem, a super-
observation problem and a profile problem.

All these problems being optimization problems admit a solution but
computational algorithms generating these solutions are known for the
plotting and profile problem only. As to the super-observation problem an
algorithm is proposed which is believed to generate solutions close to the
best possible solution. Super-observations are studied using the
clustering observations provided by AIDS/ASDAR during three proximate
flights.

With respect to the profile problem some applications are described
using rawinsonde and aircraft meteorological observations.

The method proposed in this paper leads to a 30% reduction in the
number of significant levels compared to the WMO method. Similar results

for the plotting and super-observation problem are obtained.



Introduction

In meteorological practice when handling observational data it is
often required to reduce the volume of data available in order to cope
with some technical limitations and other externally prescribed
conditions.

Data reduction may be required when 1) the frequency of data sampling
in automatic operational observation systems becomes so high that the
available data volume tends to surpass a critical limit of manageability,
2) when the data must be distributed over communication channels of
limited capacity and 3) the data representation should meet certain
conditions of display quality.

Advanced automatic systems of observation like satellite observations
(SATOBs, SATEMs), automatic aircraft meteorological observations (ASDAR,
ACARS) are in the foreground now and their pre-processing puts a high
demand on methods and techniques of data reduction.

Even conventional systems like rawinsonde observations need to
undergo such a data reduction when transmitting the available data in
suitable code messages. Numerical weather prediction is another area
requiring the introduction of reduction techniques.

The volume of observational data may be controlled mainly through two
options, i.e. omitting observations or replacing a group of observations
by a representative so-called super-observation.

In both cases the process of data reduction will entail a certain
loss of information content. It will be a general goal to restrict the
loss of information content to at least a practical minimum.

It occurs in practice that identical reports of observations arrive
via separate communication channels, for example an aircraft report

received via a ground satellite station through the ASDAR system and



received via the normal WMO/ICAO channels as an AIREP. The elimination of
such (semi)identical reports from the information flow is considered a
trivial case of data reduction and will not be discussed further.

The purpose of this publication is to pose some problems of
optimization in meteorological data processing schemes and to search for
their solution by graph theoretical means.

The optimization of the data reduction presupposes that some
normative measure is assigned to the information content of the data and
in addition a suitable objective function is defined which needs to be
optimized.

This is a difficult matter. It has not been explored so far in
meteorology. Therefore, to simplify the discussion we will concentrate
upon some realistic problems in which a maximum or minimum is sought for
an objective function. The problems we will examine here are:

. the pictorial representation of information on meteorological charts

(plotting problem).

. the fusion of locally dense observations (super-observation problem).
. the search for significant levels in wind, temperature and humidity
profiles (profile problem).
The optimization problems here are of such a nature that in order to solve
them, it will be necessary to make an excursion into the mathematical
discipline of graph theory.

We will use only general concepts and elementary principles from this
theory. For an introduction to graph theory the reader is referred to
textbooks like BERGE [1], BUSACKER-SAATY [3], CHEN [4], CHRISTOFIDES [5],
HARARY [7].

As to the problems to be described we may formulate these in graph
theoretical sense as follows: given a collection of points or vertices

(denoted by the set X) and a collection of lines or arcs (denoted by the



set A) joining all or some of these points, a graph G is then fully
described by the doublet (X, A). .

The vertex set X usually involves the points of an observational
network. The set of lines A links the points which are connected or
related to each other. The lines A may have a direction which is shown by
an arrow. The graph G then becomes a directed graph and may be described
by the set X and a correspondence T called a mapping of the set X in X:
G=(X, I

Solving an optimization problem of data reduction then is equivalent
to a search for special subgraphs or paths in the graph G meeting an
optimization criterium corresponding to that of the original problem
setting.

To find a solution of the original data reduction problem the main
task will be to associate the problem with a graph theoretical problem and
subsequently to reformulate the problem in graph theoretical terminology
and to seek for a graph solution.

Although at first sight the problems presented here are of a purely
academic interest they certainly have a practical meaning because all
solutions can be generated by means of suitable algorithms which have

proven to be easily executable on today's fast and powerful computers.



Plotting problem

In the pictorial representation of meteorological data use is made of
symbols. As to a surface observation all elements are plotted around the
station circle in accordance with a standard plotting model. Furthermore,
some rules are given concerning the symbols to be used for the plotting of
various elements figuring in a graphic representation of the data (cf.
Manual on the Global Data Processing, WMO No. 485).

The plotting of data on meteorological charts is presently done
automatically by computer-driven plotters. This has made a lot of
painstaking handwork obsolete now and it is generally agreed that the
display quality is excellent.

However, there are also a few shortcomings. One complaint is the
relatively low density of plotting due to lack of space in the chart. This
may cause a considerable number of useful data to be discarded or to be
placed elsewhere in an empty space of the chart.

In the discussion to follow it is assumed that the meteorological
chart projection (stereographic, Lambert conformal conic or Mercator
projection) is presented in an orthogonal coordinate system and that the
necessary co-ordinate transformation has been applied in order to express

the station locations in Cartesian co-ordinates.

Each plotting model requires a plotting space to be defined. For the

plotting model of synoptic observations the plotting space practically is

a circle (Fig. 1).

It is a rectangle when a single scalar value needs to be plotted like

minimum temperature, total amount of precipitation, etc.
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FIG L. PLOTTING MODEL AND PLOTTING CIRCLE

For legibility of symbols plottings should not overlap, the stations
should not be too close. When the dimensions, projection and scale of the
meteorological charts are known this immediately confronts us with an

interesting problem: given a network of observation stations and a

prescribed plotting space what can maximally be plotted on a meteoro-

logical chart?

Obviously the plotting problem is a simple data reduction problem. It
is also an optimization problem. Let us describe it in mathematical terms
as follows: given a network of stations or set of points X and a set of
not necessarily disjoint plotting spaces around these points (circles,
rectangles), which subset S ¢ X yields a maximum number of stations with
mutually disjoint plotting spaces?

Fig. 2a and 3a show specimens of such point sets in case of a circle

and a rectangle as plotting space (n = 40).
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In case of a circular plotting space, the problem may also be
visualized as a 'dime' problem: throw a handful of dimes on a table; some
of them are disjoint, others partly cover each other. Take dimes away in
such a way that all dimes left are disjoint and the total number of dimes

left is a maximum or the number of dimes removed is a minimum.

Note: in case the dimes are replaced by rectangles and these
rectangles are elongated to the length of little sticks of 1 or
2 decimeter pointing in an arbitrary direction then the game of
the dimes shows much resemblance with the Japanese playgame

known as Mikado.

3.1 The plotting problem viewed as a graph problem

The plotting problem is closely related to a graph problem. The graph
G is composed of a set X of observing stations and a set of links A which
express a connection of those stations which have disjoint plotting
spaces. The graph G (X, A) is undirected.

In case the plotting space is a circle a link (€A) exists when the
distance between the stations i and j is greater than the diameter of the

circle.

The graph G is a complete graph provided a link exists between all

elements of X. The corresponding plotting spaces then are all mutually
disjoint. Evidently the solution of the optimization problem here should

be sought among the subgraphs which are both complete and maximal.
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A maximal complete subgraph of G is a subgraph based on the set S of

vertices which is complete and which is maximal in the sense that any

other subgraph of G based on a set HD S of vertices is not complete.

There is a whole family Q of maximal complete subgraphs or so-called

cliques in a graph.

0f course we are most interested in the maximal complete subgraph

with the highest number of elements or highest cardinality. The highest

cardinality is called the clique number or density. The higher the clique

number the more dense the chart is plotted.

The complete subgraph corresponding to the maximum cardinality is a

maximum complete subgraph. The solution of our plotting problem is

therefore to be found in the maximum complete subgraph of G with maximum

cardinality or clique number.

Some concepts and definitions may be clarified by giving an example.

Fig. 4 shows a network of 4 stations and corresponding plotting

circles.

FIG.4 4-POINTS NETWERK
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The sets {1, 2}, {2, 3} and {1, 3}
define complete subgraphs but these are
not maximal.

Q = {Xl, XZ}’ where X, = {1, 4} and X2
= {1, 2, 3} defines the family of
maximal complete subgraphs.

X, = {1, 2, 3} is a maximum complete
subgraph (in this case unique)

clique number = max |X;| = 3.
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Is the solution of the plotting problem an unique solution, in other
words is there only one configuration of stations whose cardinality equals
the clique number or density? The answer is in the negative. In many
optimization problems of graph theory the objective function takes on an

integer value resulting not in one solution only but in a multiplicity of

solutions.

There is in general no formula known for the multiplicity as a

function of IXl, |A‘ and other graph attributes.

How many clliques can a graph G have? The largest number of cliques

(f(n) say) that a graph G with n vertices can have, as shown by MOON and

MOSER [101, is:

3 /3 if n=0 (mod 3)
4.3 (3 e 0 L (mod 3)
2.3 (D3 e 02 2 (nod 3)

and the only graphs G which achieve f(n) are the following:

a) if n

0 (mod 3) then G consists of n/3 triples,

b) If n

1 (mod 3) there are two possible classes of graphs. Either
G consists of one quadruple and (n-4)/3 triples or G conslists of
two pairs and (n-4)/3 triptes.

c) if n =2 (mod 3) then G consists of one pair and (n-2)/3 triples,
It Is to be understood that In these so-called Moon-Moser graphs triples,
quadruples and pairs are groups of points per se,

Fige 5 Tllustrates the Moon-Moser graph for n = 47. The graph conslists
of 15 triples and one palr and the set A of lines consists of 1035 |inks
between points of disjolnt groups. Hence the dark shade over the computer
produced figure. The number of cliques Is f(n) = 2.3 45/3 . 28697814, 1t is
remarkable that all cliques X

i here are not only maximal complete subgraphs

but that they are all maximum complete subgraphs as well and ‘X“ =

max lXiI = 16.
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3.2 Computational method (Bron-Kerbosch algorithm)

The best method of computation of all cliques or maximal complete
subgraphs of a graph G is probably that due to BRON and KERBOSCH [2].

The method is a systematic enumerative tree search method which
computes all cliques in almost constant computation time per clique,
independent of the size of the graph. The algorithm is close to the best
possible (see Appendix A). The algorithm generates also all maximum
complete subgraphs associated with the maximum cardinality or density. In
Appendix A the ALGOL program listing is given. An excellent tool to test
the program listing is the use of the Moon—-Moser graphs (section 3.1).

A special property of the method is that it tends to produce the
larger cliques first but it is unknown whether the algorithm really

generates a clique of maximum cardinality directly after the start.
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Since there is no expression known for the multiplicity and maximum
cardinality (clique number, density) of the solutions, their magnitudes
can be determined on}y empirically by counting them during the execution
of the algorithm. The method, when exhaustively continued to the end, soon
becomes computationally unwieldy in view of the potentially gigantic
numbers of cliques present in networks of moderate and big size. The
algorithm of Bron-Kerbosch is therefore terminated as soon as the rirst
(and most probably a largest) clique has been delivered, keeping the
computational time within practical bounds especially in large networks.

When the Bron-Kerbosch algorithm is tried out on a Moon-Moser graph,
such as depicted in Fig. 5, then the (first) clique produced, as expected,
contains a representative vertex of each quadruple, triple or point pair.
The clique is a maximum complete subgraph. Recall that the total number of
cliques is enormous, here f(47) = 28697814.

Let us turn now to some less exotic examples. Fig. 2b and 3b depict
the results of runs of the Bron-Kerbosch computational algorithm when
applied to the figures shown in Fig. 2a and 3a after generation of the
first clique. In Fig. 2a the original network consists of 40 points. An
upper bound for the number of cliques is here according to Moon—Moser
£(40) = 4.3 36/3 2125764. Experience shows that in arbitrary graphs this
upper bound is far from being reached.

The number of elements of the resulting subgraph is 15. When compared
with the original subgraph (n = 40), the reduction of data amounts to

about 60 per cent., In Fig. 3b this percentage is about 40 per cent,

Method based on lexicographic ordering

When a network of stations is fixed e.g. the WMO global network of
synoptic stations, one can determine a maximum complete subgraph once and

for all and apply this universally in a standard plotting program.
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However, when a network appears to be dynamic i.e. the network contains

observations of moving platforms (aircraft, satellites, drifting buoys) or

the network is subject to mutations, then an optimum network configuration
\

changes all the time making its re—computation most desirable.

In current practice the plotting routine seeks for one complete
subgraph by applying (alphabetic/lexicographic) ordering. Upon reception
of a report, it is tested whether the plotting space is disjoint relative
to all those reports plotted earlier. If disjoint the report is plotted,
if not, it is dropped or plotted elsewhere in the chart where space
permits. This process is continued until the last report is received
before an agreed cut-off time. The process does not guarantee that the
subgraph is a maximal complete subgraph or clique let alone that it is a
maximum complete subgraph. Reports received early and far apart from each

other have the best chance to be plotted.

Key stations

When for some reason certain stations in the network should always be
plotted on the chart, the Bron-Kerbosch algorithm takes care of this by
assigning first a virtual link between these key stations and all other
stations in the graph G(X, A).

As a matter of fact, the algorithm starts by absorbing first those
elements of X which have the highest number of links in A. As a
consequence the key stations will all be present in the solution, at least
when the plotting spaces of these stations themselves are mutually
disjoint. Fig. 3b shows how the 6 "priority" stations, indicated by darker

rectangles, indeed participate in the optimal solution.
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Super—observation problem

The amounts of Qbservations from some global observing systems may be
so overwhelming that the flow of information must be regulated carefully
by the operator and the data received by the user be subjected to a
process of data reduction in order to keep the volume of data manageable.

Fig. 6a is a section of a chart valid for 27 April 1982, 12 cMT,
depicting the positions of stations from the low density W. European
radiosonde network and the positions of the high density, over land,
AIDS/ASDAR data series, collected from three transoceanic flights. The
aircraft departed from international aerodromes in Switzerland. The
flights were approximately 20 minutes apart, they followed the same airway
and the cruising altitude was 31000 feet. Fig. 6b shows the reported
observations plotted in the 300 hPa chart.

Over France the observations cluster strongly and the legibility of
plottings in the chart is poor. It is conceivable that here the use of
data reduction would be profitable. One could for instance group together
observations which are so close in space-time that they allow the
substitution by one representative observation. Groups of close data

values are then compressed into so-called super-observations. The total

information content altogether will be somewhat diminished but the fusion
of observations promotes the data manageability and their pictorial
representation.

The introduction of super-observations may also be described as
follows: each observation is considered to represent the state of the
atmosphere in the direct vicinity of the observation point, within a given
action radius. It is assumed that a group of observations whose

"influence" circles partly cover each other will be replaced by a super-

observation.
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Note: a '"super obs! of a rawinsonde observation is obtained when the
observation made during the ascent on the balloon would be

pooled with the observation made during descent on parachute.
\
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FIG.6A POS'TIONS OF RANIN STATIONS AND RIDS/RSORR FIG.6B 300 H PR CHART OBSERVATIONS
DATA SERIES ON 27 APRIL 1882 .12 Z PLOTTED FOR DATR POINTS OF FI5G.6R
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FIG.6C CLIOUES GENERRTED BY THE [TERATIVE PROCESS Fl1G.6 H PR CHART .SUPER : HoE
USING THE RLGORITHM OF ERON-KERBOSCH 16-60 300 SUPER OBSERVATIONS INCLUOED 1J

The problem of super-observations is then: given a measure of

closeness or action-radius for "proximate" observations what is the

maximal reduction of data when replacing proximate observations by super-

observations.
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The way in which the group of observations is replaced by a super-
observation is not so relevant here. But it is quite apparent that one
will determine (weighted) averages of all the elements and assign these to

\
the representative super-observation in the gravity point of the group.
Apparently the problem again is an optimization problem which hopefully

may be solved when interpreted as a graph problem.

The super-observation problem viewed as a graph problem

The super-observation problem is related to the following graph
problem: the graph is composed of the set X of observation stations and a
set of links, A, expressing which points of X are adjacent in the sense
that they are close within a given distance (action radius). The obser-
vations X5 which are mutually so close that they allow a super-observation
to be substituted define a subgraph which needs to be both complete and
maximal. Complete in the sense that all vertices in Xi are adjacent and
maximal in the sense that any other subgraph containing X; 1is not com-
plete. It is obvious that the solution of the super-observation problem
should be sought among these maximal complete subgraphs or cliques.

The graph problem corresponding to the super-observation problem is:
find the family of cliques whose sets X; have no vertices in common

(Xif\Xj = 0, 1 # j) and for which the total number of vertices is maximal

bl
Z’X I maximal.

i i

The intersection condition Xf’\Xj = 0, 1 # j, expresses that the cliques
providing for the super-observations should not have vertices in common.
This in general is not the case when viewing all cliques of a graph

G(X, A), complicating the solution of the problem considerably. The
problem is easily solved and quite trivially when all cliques are

"disjoint" but the solution is unknown in the general case when the

intersection condition is not fulfilled.
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A nice example of disjoint cliques Is encountered in complementary

Moon-Moser graphs. Given a graph G(X, A) the complementary graph G(X, K)
\
is composed of the set X and the set A of links which are not In A. Figs 7
represents such a complementary graph for n = 47, |t is the graph
complementary to the Moon-Moser graph of Flig. 5. In general the cliques in
such a complementary graph comprise the complete graphs whose vertices are
the quadruples, triples and pairs In the original Moon-Moser graph. They
are all disjoint.
The solution of the super-observation problem in this case is
trivially the set of all these cliques and ;lXJ = ]X’equals the number n
i
of vertices in the original graph. In Fige 7 the number of cliques and

therefore the number of super-observations Iis 16.
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4.2 Iterative method for solving the problem

A practical approach which is believed to come close to the solution

of the super-observation problem is the following.
\

Activate the algorithm of Bron-Kerbosch in the original graph
G(X, A). As soon as the first clique is found, eliminate its set X, from X
and re-activate the algorithm. Determine again the (first) clique and its
set XZ in X - X1 and so on until after N steps XN is obtained from the set
X-X - X) —eee Xy-1 and no more disjoint cliques are found in the next
step. The number N of disjoint cliques found and igl‘xil’ the total number
of vertices specify the total reduction of data. N is the number of super-
observations to be substituted.

As the Bron-Kerbosch algorithmic computation generates the larger
cliques first at each step (cf. section 3.2) there is a good chance that

N
the sum total izllx‘\is maximal or close to a maximum.
=1 i

When this Iterative process Is tried out on a complementary Moon-
Moser graph it Is easy to see that the process generates indeed the known
(tfrivial) solution: cliques related to the quadruples, triples and palirs,
The sum total of number of vertices equals the number of vertices of the
origlinal graph., See Fig. 7 with 15 triples and one palr defining 16
disjoint cliques. Notice the small set A of Ilnes here. A counts only 46

elements as agalnst 1035 In the Moon-Moser graph of Fig., 5.

When applied to the network, displayed in Fig. 2a, where the circles
are interpreted now as influence circles with action radius r, the
iterative process generates 11 cliques in succession, all being
appropriate, to replace their observations by super-observations (see

Fig. 8).
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FIG.8 CLIGUUS SENIRATED §Y ThE ITERATION PROCESS USING THE
ALGIRITHM CF BSRON-KERBO3CH IN THE NETKORK OF FIG.2A

The iterative method was also applied to the observational data
presented in Fig. 6a and b. The cliques are generated successively in 5
steps involving all triples except for the first one which is a quadruple
(see Fig. 6¢c). The projection of the charts in Fig. 6 is stereographic
with standard latitude at 60°North and the scale is 1:12.5 x 106. The
action radius is 75 km. Fig. 6d portrays the plottings of data in the 300
hPa chart including the super—observations which are attached to the
gravity points of the 5 cliques and which are obtained by averaging the
original observations of the cliques. The legibility of the plotted data
has much improved after fusion of the clique observations into super-

observations.

Notes: 1) The legibility of plotted observations depends of course on the
action radius chosen, scale and projection of the chart,
plotting model etc. When the action radius is adjusted to the

radius of the plotting circle there is a correspondence between



2)

21

the plotting problem and the super—observation problem as can
been deduced from their graph theoretical equivalences. But in
general thgy need to be studied separately.

It is noted that in principle one can formulate a wide range of
optimization problems with super-observations involved. All
these problems have some meaning in a given context. For
example, to find as few disjoint cliques as possible and fuse as
many observations as possible, or to find as many disjoint
cliques as possible and fuse as many observations as possible,
etc. For all these problems solutions are unknown. This is still

terra incognita in graph theory.
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Profile problem

In meteorological practice various measurements take place, in situ,
along trajectories og moving platforms (balloons, aircraft, parachutes) or
remotely along scanning paths (satellites, radar). Vertical profile
measurements of humidity, temperature and wind are standard. More and more
horizontal, trajectory and scanning path profile measurements come into
use (ASDAR, satellites). The sampling period is sometimes in the order of
seconds. As a consequence the data volume puts a high demand on data
handling, processing and reduction. Coding and distribution pose their own
requirements.

The data reduction is partly accomplished by searching for
significant levels in the data profiles which results in a minimum of
reports to be compiled and encoded and a maximum of information to be
distributed.

In the discussion to follow attention is paid to the techniques of
data reduction applicable to trajectory profiles in general.

Using fast electronic computers effective methods of data reduction

can be developed. These have experimentally been tried out on profiles

provided by rawinsondes and ASDAR.

Polygonal approximation of profiles

The profile curves, displayed in diagrams, depict a physical para-
meter versus a monotonically increasing or decreasing function such as
time, height, pressure altitude, geopotential or track distance along the
trajectory. The parameters are single-valued functions over the whole
range of measurements. In current practice the profiles are being

approximated by polygons connecting the vertices of significant levels.



23

The significant levels alone should make it possible to re-construct the
profiles with sufficient accuracy for practical use.
The polygonal aPproximation should meet certain aperture conditions.
For example, the absolute or average profile departure from the polygon
should stay within given bounds. The departures may be scalar or vectorial
depending on the type of observed parameter.
In rawinsonde observations the following bounds are standard:
humidity : the departure of the humidity in "humidity polygons"
obtéined by linear interpolation between adjacent
vertices shall not be more than 15 per cent relative
humidity from the observed values.
temperature: up to 300 hPa or the first tropopause whichever is
reached first, the departure should not be more than
1°C, not more than 2°C above that level.
wind : the departure with respect to the wind-direction profile
should not be more than 10° and the departure with
respect to the speed profile should not be more than
5 ms .

The central problem of data reduction is here to approximate a profile

curve by a polygon connecting a minimum number of vertices meeting

prescribed aperture conditions.

A computational procedure to construct a polygonal approximation for
wind profiles which is recommended for international use is to be found in
the Manual on Codes, WMO No. 306. Details and weaknesses of the method are
described in Appendix B. The WMO procedure is specially designed to
facilitate the search for significant levels manually with the help of
simple graphical representations. It is evident, however, that the
proposed method is not optimal. Using the WMO-procedure the set of

significant levels need not be minimal.
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To develop a method which produces a minimum set of significant
levels we again may formulate a specific optimization problem and try to

solve this by finding a graph theoretical counterpart for it.
\

The profile problem viewed as a graph problem

The points X of a profile can be labeled by a ranking number. This
implies that the profile problem is closely related to the following
directed graph problem.

The graph G(X, I') is composed of the set X and a correspondence T
mapping every point X; in points xj (j > i) for which along XjX4 one or
more aperture conditions hold. The graph is also acyclic since the
existence of a cycle would imply that the parameter under consideration
would be multi-valued.

We extend the directed and acyclic graph by imposing to every link
xixj an arclength equal to unity if the aperture conditions along xixj are

satisfied. Then the optimization problem will be solved by finding in the

graph G(X, T) the shortest path from a starting vertex to an ending
vertex. The shortest path corresponds to the desired polygonal solution
whereas its total minimum length, because of the unity "length" along
every arc, takes on an integer value, precisely equal to one less than the
(minimum) number of vertices in the polygon solution.

In a somewhat cumbersome manner, the profile problem therefore proves
to be associated with a shortest path problem in graph theory. In a
directed acyclic graph there exists always a shortest path solution but in
view of the integer value of the length of the shortest path the solution,
as in so many graph problems, is not unique; there are multiple solutions.

In the original problem setting this simply means that there is a
multitude of polygons solving the profile problem and having the same

(minimum) number of vertices or significant levels.
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5.3 Algorithm for the generation of the shortest path(s)

DIJKSTRA [6] developed an algorithm which solves the shortest path

problem in general arc weighted graphs, imposed with positive arc lengths,
\
very efficiently.

Here we will indicate the main features of this algorithm when
applied to directed and acyclic graphs, arc weighted with positive arc
lengths (=1). On the one hand the algorithmic steps become simpler in such
a specific graph but on the other they just become more complicated, in
view of the multiplicity of solutions. A detailed program listing used by
the author is given in Appendix C.

The process of Dijkstra is iterative and based on vertex labelling
where at the end of the k-th iteration the labels represent the lengths of
the shortest paths from the starting point, containing k+l or fewer arcs.
In order to label vertex X with the length E(xj) of the shortest path

from the starting point to X the following operation is performed:

2(xj) = min {z(xi)+1}
x, € 1‘(22)
At the same time the vertex X5 is provided with a label m(xj) representing
the multiplicity of shortest paths between the starting point and x,.
During the operation the label m(xj) is obtained according to the rules:
if the path length l(xi)+1 is increased: m(xj):= m(xj)

if the path length is decreased : m(xj):= m(xi)

if the path length remains unchanged : m(xj): m(xj)+m(xi)
Once the final values of the vertex labels l(xj) and m(xj) are known one
can find the paths themselves as follows:

If the shortest path is unique this path can be obtained by a back

tracking method based on the label l(xj) and a recursive application of
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the condition
Z(xi) = l(xj) -1
If the solution is not unique the information of the totality of shortest
\
paths can be summarized using both labels Q(Xj) and m(xj), (for details
cf. Appendix C)

This can concurrently be done by inserting all path information in a
tableau. The columns of this tableau provide for the vertex sequences of
the (multiple) path solutions. The number of columns equals the
multiplicity of solutions. Ultimately, the whole family of path solutions
is present in this tableau.

Such a tableau is a simple tool to use when deciding to select a
particular member out of the family of solutions such as the most regular

spaced solution (cf. Appendix C).

Profile curves produced by rawinsonde observations

5.4.1 Wind profiles

The polygon approximation of wind profiles by means of the
computational procedure as proposed in the WMO Manual on Codes, WMO
No. 306 is not optimal (cf. Appendix B). This can be remedied now by
utilizing the computational algorithm based on the shortest path
method using a computer (appendix C).

Fig. 9a is a plot of minute-points of the wind speed versus time
derived from radar after release of the sonde on 30 November 1984,
12 Z and a plot in the same diagram of the minute-points of wind
direction. The speed and direction profile curves serve as input
material for the algorithmic computation, outlined in Appendix C,
using precisely the WMO limits (wind direction 10°, wind speed

5 ms_l). The algorithm was not activated for the wind speed and wind
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direction profiles separately but instead was run meeting both limits
simultaneously.

To that aim the graph G(X,T) was defined consisting of the set X

\
of profile point(pairs) and a correspondence [ which to each
point(pair) x4 links those points xj(j>i) for which aloag an arc
(xixj) both the 5 ms'-1 and 10 degree aperture limits are satisfied.
The results are shown in Fig. 9c. Between the surface and the top
(61 minutes) there are 9 optimal polygon solutions each having 15
significant levels. Not less than 12 points are pivot-points, being
common points in all solutions. The multiplicity = 9 and cardinality
= 15.

The result can be read from the tableau below, summarizing the
information of the totality of 9 solutions. The columns give the
ranking numbers of the vertices of the solutions,

1 1 1 1 1 1 1 1 1
5 5 5 5 5 5 5 5 5
10 10 10 10 10 10 10 10 10
18 19 20 18 19 20 18 19 20
37 37 37 37 37 37 37 37 37
40 40 40 40 40 40 40 40 40
46 46 46 47 47 47 46 46 46
49 49 49 49 49 49 50 50 50
52 52 52 52 52 52 52 52 52
54 54 54 54 54 54 54 54 54
57 57 57 57 57 57 57 57 57
58 58 58 58 58 58 58 58 58
59 59 59 59 59 59 59 59 59
60 60 60 60 60 60 60 60 60
61 61 61 61 61 61 61 61 61

Which of the 9 solutions to report, encode and distribute is a
matter of choice., In order to select a member of the family of 9
solutions one can subject these solutions to an additional
constraint. For example, find the solution with most regular spacing

of the vertices. As the vertex x; is specified here by a ranking

number or co-ordinate X4 along an axis the most regular spacing is
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found when analytically:

cardinality -1

\ i£1 (xi+1— Xi) is a minimum.

This special profile solution is represented in Fig. 9d. Fig. 9b
depicts a graph showing the (minimum) cardinality or minimum number
of elements of the optimal vertex sets of the polygon solutions
between the surface and the time elapsed after release. The graph
also depicts the multiplicity of these solutions. It can be observed
that the cardinality is a non regular step function. The multiplicity
is sensitive to the end-point chosen and is very erratic.

When not resolved in its components the profile for the wind may
be conceived as a vector profile and the shortest path algorithm be
generated based on a vectorial departure. Such an approach is
feasable only by- computer. We propose to take an upper bound for the
magnitude of the difference vector between the linear interpolated
wind vector and the actual profile wind. As upper bound for the
vectorial departure we chose 7.5 knots.

Then subjecting the data of Fig. 9a to the shortest path
algorithm results in the generation of 36 solutions through 8
vertices between the surface and the top. Fig. 10a depicts all these
solutions in a normal wind speed curve. There are 4 pivot points, the
maximum wind is one of them. Within the family of 36 path solutions

we selected the one with most regular spacing, see Fig. 10b.
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5.4.2 Temperature and humidity profiles

In modern fully automated rawinsonde observations special
process computers take over the convential graphical and manual
techniques in search of the set of significant levels in temperature
and humidity profiles. The physical parameter values are recorded at
intervals of a few seconds as a function of time elapsed after
release. By elihinating time as an intermediary the data may also be
given as a function of log pressure, height or geopotential.

When the data during the observation are stored on a suitable
medium they may be searched for the set of significant levels by
applying a suitable path finding algorithm. The utilization of a
shortest path algorithm is feasible but given the large volume of
data the process time may become quite uneconomical.

Fig. 11 is a simple computer plot of a hypothetical temperature
profile diagram, T versus height, involving a sampling interval of 6
seconds (~ 35 meter). The profile has been obtained by introducing a
vertex set of 17 significant levels adding data through interpolation
and using a random generator. The resulting graph comprises 453 pro-
file points. Next the shortest path algorithm was applied to see to
what extent the original vertex set was reproduced given an aperture
of 0.2°C. In Fig. 11 the reproduced levels of an optimal solution are
indicated to the left of the original levels. The agreement of both
vertex sets is excellent but the process time on the computer
appeared to be impractical (on the Burroughs B6800: 30 minutes).

To avoid inadmissable computer process times in practical
operations a simple pathfinding algorithm is used. This algorithm is
based on the lexicographic ordering of the profile points. Directly
after the release of the sonde the process computer examines the

correspondence I' to the effect that with each incoming signal it is
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checked that the aperture condition, e.g. 0.2°C, is still fulfilled
in regard to the foregoing vertex selected. As soon as the condition
does not hold any more the last point is added to the vertex set and
the process is continued until the top is reached and added as last
profile vertex.

For humidity profiles the same procedure can be followed as for
temperature profiles utilizing a humidity aperture of about 5 per

cent. And lastly when both the temperature and humidity profiles are

explored simultaneously a "compound" aperture statement may be used.

5.5 Results of experiments

The vertex set of optimal polygonal solutions for wind profiles is

very sensitive to real meteorological fluctuations, instrumental noise,

measurement range and aperture criteria. In this respect strong upper

winds are easier to handle than weak winds: with weak upper winds the

fluctuations and noise dominate and these will considerably enlarge the

vertex sets of optimal solutions.

In order to get an impression of the overall efficiency of the data

reduction when generating optimal vertex sets we have subjected the data

of four ascents daily (00, 06, 12 and 18 GMT) at De Bilt in a 6-day period

to the following computation methods:

a)
b)
c)

d)

e)

£)

WMO-method on the speed profile (aperture 10 knots)

Shortest path method on the speed profile (aperture 10 knots)
WMO-method on the wind direction profile (aperture 10 degrees)
Shortest path method on the wind direction profile (aperture 10
degrees)

Merging of the vertex sets of the WMO methods a) and c)
Shortest path method on both the speed and direction profiles

(10 knots, 10 degrees)
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The 24 cases having been calculated we compared the results 7a and b,
¢ and d and e and f. The comparison of the WMO and shortest path methods
(a and b, ¢ and d) gives an indication of the overall data reduction
capability when solving the optimization problem. The extra reduction in
data attributable to the shortest path method, applied to the wind-speed
profile curve (cases a and b) ranged from 0 to 66 per cent, with an
average of 31 per cent. Applied to the direction profile it ranged from
0 to 33 per cent, on the average 11 per cent,

In Appendix B it is explained that when merging the vertex sets of
case a and c the union set need not satisfy the imposed criteria for wind
speed and wind direction anymore.

Setting this aside for the moment it is interesting to investigate
the extra gain in data reduction when the data are subjected to the
shortest path algorithm using both the aperture criterium for the wind
speed and direction (cases e and f). The extra reduction of data ranged
from 6 to 39 per cent, on the average 23 per cent.

A number of experiments was carried out using the simple criterium
for the wind vector departure. Here a direct comparison with the
traditional method is not well possible. A vector departure of 5 to 7.5
knots appears to be well matched with the known WMO standards of 10 knots
and 10 degrees.

It is a relevant question to ask what bounds are really the best with
regard to the aperture or tolerance width. Are the WMO standards them-—
selves adequate? Current observational techniques do suggest that the

aperture criteria could best be adapted directly to the observational

error statistics or to a quantitative measure of the accuracy of the

measurement. When this principle is followed the bounds should be
variable. For example when processing rawinsonde observations these bounds

should at least be height dependent. Experiments underlying this principle
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performed on winds showed a reduction of the optimal vertex sets in the

upper (stratospheric) layers.

As to the simple method based on lexicographic ordering the number of
elements of the corresponding vertex set proved to lie somewhere between

that of the WMO method and the shortest path method.

Special cases

All pathfinding algorithms, the shortest path algorithm incliuded,
have the weakness that very pronounced levels like tropopause, maximum
winds, inversions may be reproduced unsatisfactory or be missing from the
vertex sets of significant levels. This is simply because of deficiences
inherent in the methods (cf. Appendix B). To be sure that such pronounced
levels are present in the vertex set, one can simply call the routines in
subranges bounded by these obligatory levels, for example the subrange
between the starting point and the maximum wind and the subrange between
the maximum wind and the ending point,

In the subranges themselves multiple solutions are possible, Evident-
ly the obligatory levels in the final vertex set are pivot points in the
multiple "compound" solutions.

It may be required that the vertices should not surpass a given
spacing. This will enlarge the vertex set with some dummy points. Then, in
order to solve the profile problem, the aperture conditions need simply to
be extended with an extra spacing condition when the set A of the graph
G(X, A) is specified.

A direct consequence of the spacing restriction is that the process
time on the computer is reduced drastically. For example when applied to
the temperature profile of Fig. 11, limiting the spacing of vertices to 3

or 4 km, the process time is merely a 10 per cent of that without a

spacing restriction.
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The cardinality of the vertex sets or sets of significant levels
appears to be strongly variable. In particular when the upper winds are
weak the vertex sets may become too large making the PILOT and TEMP
messages too extensive for encoding and distribution. A whole gamut of
artifices may be tried out to remedy this so that the number of
significant levels stays within practical limits. One of the means to
accomplish this is by iteration: change at each step the aperture
conditions so that the cardinality of the vertex set falls withia a
certain range. As the cardinality is an integral step function of the

aperture value this requires a special technique (see Fig. 12).

CARDINALITY

| I I | | I | | [ I
i 2 3 4 5 6 7 ] 9 84
RPERTURE
FIG-12 [TERATIVE METHOD.SEE TEXT
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When requiring the cardinality to stay within a certain interval
<a, b>, the following iteration method can be proposed: generate the
shortest path algorithmic computation based on an arbitrary aperture value
to start with. Let the cardinality of the corresponding vertex set be
denoted by the point Cl, If the aperture value is zero the corresponding
cardinality equals the number n of data points in the original data set,
point CO in Fig. 12. Connect Cl and CO and determine the intersection
point Dl of COCl and a boundary line a (or boundary line b). Re-activate
the algorithm using the aperture belonging to the intersection point DI. A
new vertex set is found and cardinality denoted by the point C2. Connect
CO and C2 giving point D2 and continue until the point Ci is in the
interval <a, b>. If Ci never arrives in <a, b> there is no solution. The

last point Ci is then a compromise solution.

There 1s a class of profile problems which involves more than one
option at a time e.g. the class of aircraft meteorological observations.
Temperature, pressure and wind data are known in a sequence of positions
along the flight track. The scope of the data reduction problem becomes
narrower then, its solution is more straightforward because the aperture
conditions for entirely different options can be summarized in one logical
expression such as the aperture conditions for temperature and wind. This
case will be elaborated further in the next section using a sequence of
AIDS/ASDAR observations. Incidently, this will hightlight also the use of

data reduction methods in other than vertical profiles,

Data reduction in a series of AIDS/ASDAR observations

In the framework of the first GARP global experiment a number of
prototype ASDAR units was built and tested. This was followed by a new

generation of ASDAR units built to production standards in 1985. Prior to
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the international co-ordination of the ASDAR programme one could already
have access to a category of ASDAR-type data stored on magnetic media,
called AIDS (Aircraft Integrated Data System).

The sampling rate applicable in AIDS/ASDAR data is potentially very
high. The exchange of high frequency data with a sampling period in the
order of seconds is at the limit of the capacity of satellite communi-
cation. This necessitates a drastic preselection and reduction of the data
to be carried out.

The new ASDAR unit will be a version developed from that used during
FGGE. There will be substantial improvements however. The temperature will
be of higher accuracy (1-2°C). In normal flight data will be collected at
seven minute intervals, in ascent and descent they will be collected at
50hPa intervals except for the 100 hPa layer adjacent to the ground where
they will be collected at 10 hPa intervals.

When in the future a great number of aircraft will be equipped with
ASDAR or ASDAR-like systems the supply of data may be so copious that
further data reduction is required.

Individual ASDAR data series define trajectory profiles including
ascent and descent. Such profiles may be approximated by polygons in the
same way as those of rawinsonde observations under the condition that the
data are given as a function of a monotonically increasing or decreasing
parameter value. Time or distance suit the purpose here. The aperture
conditions refer to two options: temperature and wind. They can be grouped
together in one logical expression.

Although easy to perform along the whole flight, we used the shortest

path method only for the en-route portion of the flight between top of

climb and top of descent.
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FIG.13E OPTIMAL VERTEX SET PRODUCED BY SHORTEST PATH
METHOO BASED ON WIND APERTURE ONLY.

Fig. 13a depicts a plot of the meteorological data as drawn from an
AIDS data cassette describing a flight from Amsterdam to Toronto. As wind
vector departure we took 20 knots and a temperature departure of 2°C.

These are quite coarse values but this is justified by the somewhat
relaxed data requirements of ICAO in aviation and the relatively poor
accuracy of temperature reporting in the prototype ASDAR equipment.,

First a transformation is carried out converting the geographical co-
ordinates into Cartesian co-ordinates. The directed acyclic graph
G(X, I') is here composed of the set X of data points along track and the

correspondence T adding to each vertex x;

i those vertices xj(j>i) for

which |aT} € 2°C and {av] € 20 knots along the arc Xixj'

AT and AV are departures of the observed values from the linearly
interpolated data along the connection xixj in the Cartesian co-ordinate
system. Fig. 13b shows the (optimal) vertex set generated by the shortest
path algorithm. The cardinality of the set is 17, Wind-maxima, troughs
ridges and other pronounced features are clearly discernable,

Using this optimal vertex set the trajectory profile may be

reconstructed by interpolation. The result of this 1s represented in
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Fig. 13c. The algorithm could also have been put in action for the graph G
when the correspondence T would have been based on a temperature aperture
criterium only or a wind aperture criterium only. The resulting vertex
sets could then have been merged producing one union set. Fig. 13 d shows
a plot of the vertex set corresponding to an algorithmic computation based
on the temperature aperture condition only ( |aT] { 2°C). The cardinality
of the set is 18. Fig. 13e is a plot of the vertex set obtained when run
for the wind vector aperture condition only (|A¢| £ 20 knots). The union
set (cardinality = 22) is not represented here. This set is not
necessarily identical to the optimal set of Fig. 13b acquired with the
"compound" aperture condition. The union set in general is larger then the
optimal set. The aperture conditions need not be fulfilled anymore in the
union set for the same reasons as experienced in the profiles produced by
rawinsonde observations,

The data reduction technique such as described above can be carried
out also for the total flight provided that the profiles are given in
terms of time or distance. Characteristic navigational points may be
introduced as compulsory points and the spacing of vertex points may be

restricted just as with radiosonde profiles.

Discussion and conclusion

By formulating a problem in graph theoretical terms we incur the
limitations and pitfalls, as well as the advantages, of graph theory.

Here we cite HARARY [8]:"While it is very interesting to have
accurate estimates of the order of magnitude of a solution, as well as
lower and upper bounds, these will not be regarded as settling the
problem. There is also plenty of room for differences in opinion among

enumeration experts themselves. At one extreme there is the function

logician who regards all such problems as trivial since each involves only
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a finite number of steps, and hence can be settled by brute force. Then
there are some physicists who consider the question closed when the first
few cases are calculated. The computer—oriented type feels that all is
right when a program has been written for the problem. Another more strict
viewpoint does not accept recursion relations as embedded in cycle indices
of presentation groups but insists on explicit and elegant formulae only.
And finally there is the purist who demands not only a formula for the
number of graphs of each kind, but also all the diagrams of the graphs
themselves. His needs are a bit more difficult to satisfy".

One of the characteristic features of graph theory is that many
problems have multiple solutions. The multiplicity of solutions was
manifest in all problems we have examined in this report. It is always a
challenge to explore which member of the family of these solutions rivals
the others when putting forward a certain aspect.

In the profile problem for example, the most regular spaced solution
was sought. We could have done the same in two dimensions with respect to
the plotting problem.

When we impose to each vertex or link of a graph a number Cy» the
"costs", we may ask for the minimal cost solution. Costs in metaphorical
sense referring to some or other attribute (capacity, real costs, length,
probability). A famous problem of this kind in graph theory is the
travelling salesman problem: seek amongst all Hamiltonian paths or
circuits, provided these exist for the given problem setting, the one
having the lowest link costs.

Should, by way of example, "costs" in the vertices of a graph of the
plotting problem relate to a normative measure of the information content
of weather reports, then it would be very interesting to seek for that
member of the family of solutions which provides for a maximum of

(meteorological) information.



note: this surely enhances the importance of the way charts are
plotted especially when a critical weather situation
prevails. The selective information may be represented by
I
the expression -k} p log p (x ), where Py is the
i1 i i
probability of occurence of the state X; and k is a
conversion factor (towards number of bits). The summation

is over all reported physical states.

The matrix, directly involved in the definition of a graph G and
describing it completely, is the incidence matrix. Denoting this matrix by
A its elements ajj are equal to one when there is a link between the
vertices 1 and j, otherwise they are zero.

A close inspection of the graph problems reveals that this incidence
matrix is a powerful tool in trying to solve graph problems.

Let we consider the profile problem. Then it can be shown that all
non-zero elements of the matrix AK = AxAXx ... A(k times) define the
point-pairs in the graph for which path solutions exist consisting of k
links. The value of the element in Ak precisely equals the multiplicity of
solutions between the point pair. When for a certain n An+1 is the null
matrix, A" is the matrix containing the path information (point pairs and

multiplicity) of all shortest paths composed of maximally n links.

note: The matrix A" still lacks information on the identity of
the paths themselves., To fill this gap one may relate the

problem to the famous random walk problem. There the matrix

A may be modified in such a way that A" also contains
information on the paths themselves. For more details cf,

HARARY [8] and KASTELIJN [9].
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When new data reduction techniques are considered for operational use
in meteorological practice it is obviously necessary to assess practically
useful tolerance widths or apertures. These need to be determined
empirically. WMO limits established for encoding reports of upper winds
need to be reviewed as soon as it is decided to introduce new reduction
procedures. A method such as proposed for the data reduction of upper

winds based on a vector departure probably requires a value of 5-7.5 knots

for this departure.
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Appendix A

Algorithm of Bron-Kerbosch for the generation of all cliques in a non-directed

graph.

We present here the ALGOL program listing of the Bron-Kerbosch algorithm, For
an explanation we advise the reader to consult the exposé& in the original

paper: 1973, Communications of the ACM, Vol. 16, No. 9, pg. 575-577.

Algorithm
procedure maximal complete subgraphs (connected, N);
value N; integer N;
Boolean array connected;
comment The Input graph is expected in the form of a symmetrical Boolean
matrix connected. N Is the number of nodes In the graph., The values of the
diagonal elements should be true;
beglin
Integer array ALL, compsub [1:N];
integer c;
procedure extend version (old, ne, ce);
value ne, ce; Integer ne, ce;
integer array old;
beglin
Integer array new [1:ce];
integer nod, fixp;
Integer newne, newce, i, J, count, pos, p, s, sel, minnod;

comment The latter set of Integers Is local In scope but need not be
declared recursively;
minnod: = ce; I: = nod: = 0;
DETERMINE EACH COUNTER VALUE AND LOOK FOR MINIMUM:
for 1: = 1 + 1 while | $ ce A minnod # 0 do
beglin
p: = old [il; count: = 0; Jj: = ne;
COUNT DISCONNECTIONS:
for j: = j + 1 while J & ce A count < minnod do
if connected [p, old[j]] then
begin
count: = count + 1;
SAVE POSITION OF POTENTIAL CANDIDATE:
pos: =
end

TEST NEW MINIMUM:
1f count < minnod then

begin
fixp: = p; minnod: = count;
if | ¢ ne then s: = pos
else
begin s: = I; PREINCR: nod: = | end

end NEW MINIMUM;
end i;
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comment |f fixed point initially chosen from candidates then number of

disconnections will be preincreased by one;
BACKTRACKCYCLE:
for nod: = minnod + nod step - 1 until 1 do
begin
INTERCHANGE :
p: = oldls]; oldlsl: = oldlne + 11;
sel: = oldlne + 1]: = P;
FILL NEW SET not:
newne: = {: = Q;
for i: = 1 + 1 while i < ne do
If connectedlsel, oldli]] +then
begin newne: = newne + 1; newlnewnel]: = oldli] end;
FILL NEW SET cand:
newce: = newne; I: = ne + 1;
for i: = 1 + 1 while 1 < ce do
If connectedlsel, old[1]] then
begin newce: = newce + 1; newlnewcel: = oldl[i] end;
ADD TO compsub:
€: = c¢ + 1; compsublcl: = sel;
If newce = 0 then
begin
Integer loc;
outstring(1l, 'clique = ')
for loc: = 1 step 1 until ¢ do

outinteger(1, compsublliocl)
end output of clique
else

1f newne < newce then extend version (new, newne, newce);
REMOVE FROM compsub:

c: = ¢ ~- 1;
ADD TO not:
ne: = ne + 1;
If nod > 1 then
beglin
SELECT A CANDIDATE DISCONNECTED TO THE FIXED POINT:
S: = ne;
LOOK: FOR CANDIDATE:
St =5 + 1;

if connected [fixp, oldls]] then go to LOOK
end selection
end BACKTRACKCYCLE
end extend version;
for c: = 1 step 1 until N do ALL[c]: = C;
c: = 0; extend version (ALL, 0, N)
end maximal complete subgraphs;

Notice that during the extension of the subgraph always a point outside the

subgraph is added that has the most connections with other points of the
subgraph.
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Appendix B

Polygonal approximation of the "wind profile"

(See FM 32-V PILOT, FM 33-V PILOT SHIP, FM 35-V TEMP, FM 36-V TEMP SHIP)

Criteria for significant levels in the wind profile are given in code
regulation 32.3.1.1. of the Manual on Codes, WMO-No. 306. In a NOTE a
computational procedure is recommended which may suit most national practices.

The regulation and NOTE read as follows:

32.3.1.1

Significant levels

The reported significant data alone shall make It possible to reconstruct

the wind profile with sufflicient accuracy for practical use, Care shall

be taken that:

(a) The directlon and speed curves (in function of the log of pressure or

altitude) can be reproduced with thelr prominent characteristics;

(b) These curves can be reproduced with an accuracy of at least 10 for

direction and flve metres per second for speed;

(c) The number of significant levels Is kept strictly to a necessary

minimum,

NOTE: To satisfy these criteria, the following method of successive

approximations Is recommended, but other methods of attalining equivalent

results may sult some national practices better and may be used:

(1) The surface level and the highest level attained by the sounding
constitute the first and the last significant levels,
The deviation from the Iinearly Interpolated values between these two
levels Is then considered. If no directlon deviates by more than 10
and no speed by more than five metres per second, no other
significant level need be reported. Whenever one parameter deviates
by more than the Iimit specifled in paragraph (b) above, the leve!l of

greatest deviation becomes a supplementary significant level for both

parameters,
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(2) The additional significant levels so Introduced divide the sounding
into two layers. In each separate layer, the deviatlons from the
linearly interpolated values between the base and the top are than
considered., The process used in paragraph (1) above is repeated and
ylelds other significant levels. These additional levels in turn
modify the layer distribution, and the method is applied again unti!
any level Is approximated to the above-mentioned specified values,
For the purpose of computational work, it should be noted that the

values derived from a PILOT report present two different resolutions:

(a) Winds at significant levels are reported to the resolution of

5. in direction and one metre per second in speed;

(b) Any interpolated wind at a level betwesen two significant levels
Is Implicitly reported to the resolution of + 10° in direction

and t 5 metres per second in speed.

The method of successive approximation is generally used in manual and
automatic means of processing of rawinsonde observations. It should be
realised however that the method has the following weaknesses:
(i) we cannot be certain that the method affords strictly a minimum
number of significant levels.
(ii) the method is no guarantee that the reported significant levels

alone make it possible to re-comstruct the wind profile with

accuracies as prescribed under items (b) and (c).

For, let Sl be the set of data meeting the 5 rns_1 speed criterium and let
S, be the set of data meeting the 10° direction criterium.

Then the set S obtained by merging S1 and 82 is the final set of
significant data to be entered in the code.

In so doing it is tacitly assumed that the set S will meet both the speed
and direction limits of 5 ms—l in speed and 10° in direction provided that S1
and S2 did meet already the criteria for speed and direction separately.

This is not necessarily true, however. It may be easily shown
theoretically and it has empirically been confirmed that after merging S, and
S the deviation from the linearly interpolated values in the set S may in
some cases suddenly surpass one or both of the prescribed limits.

The difficulties arise here when the vectorial wind is resolved in its

components and the wind profile is split up in a separate direction and speed
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profile. It seems a better approach to handle criteria in a wind vector
profile directly.

A further complication is that the recommended method does not guarantee
that the real maximum wind level(s) are included in the set Sy for significant
wind-speed data, for the following reason: when the speed value at the highest
level attained by the soundings is considerably higher or lower than the speed
value at the surface level the slope of the straight line connection may cause
the greatest deviations not to be found at the maximum wind level, cf.

Fig. Bl. The wind speed curve consists of the minute-points of the speed
versus time. The coded maximum wind is different from the real maximum and

caused by the steep slope of the straight line connection between the top and

bottom levels.
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Appendix C

Finding all shortest path in a directed acyclic graph

Description
In a general arc-weighted graph G(X,I) with 'arc lengths' specified by a
matrix, the shortest path problem is the problem of finding the shortest path
from a specific starting vértex s X to a specific ending vertex t X,
provided that such a path exists i.e. provided t is an element of the
reachable set of the vertex s. The elements of the matrix are positive here
(we are considering the case where the elements are unity) so that the
shortest length is simply a count of all arcs constituting the shortest path!

DIJKSTRA [6], in a one-page note in 1959, proposed a computational
procedure for such graphs which, since then, has proven to be one of the most
efficient procedures.

In particular, when the graph is directed and acyclic the algorithm may
be simplified.

It is assumed that the vertices are numbered such that an arc XyX g is
always directed from Xy to a higher numbered xj. The starting vertex is s, the
ending vertex t. To label vertex x. with Z(Xj), the shortest path length from

J

s to X4 perform the operation

l(xj) = min{l(xi) + 1} o)

xi S F_l(xj)

Then continue to label vertex X341 using this expression until the ending
vertex t is labelled #(t). 2(s) is initially set to zero. Obviously, when
labelling vertex x:, the labels z(xi) are all known for the vertices

x4 € F—l(x ). The label 4(t) is the length of the shortest path from s to t.

]
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When there is only one solution the arcs forming the path itself may be found
in the usual way by tracing backwards so that arc (Xixj) is on the path if and

only if
l(xj) = E(xi) + 1 c(2)

Starting with X5 equal to t, X5 is set at each step equal to the value of
X; say Xi* satisfying the last equality C(2) recursively until Xi* =5, i.e.
the initial vertex has been reached.

As the label z(xj) represents a count and takes on an integer value, the
problem has in general a multiplicity of solutions. Then there may be more
than one point X4 satisfying the recursive equation C(2).

In this case one could either make an arbitrary choice of x4 for one
specific solution or one could try to find a method to obtain the totality of
solutions.

With the last option in mind it is worthwhile to attach to each vertex x.
an additional label m(xj) representing the multiplicity of all shortest paths
from s to Xy The "bookkeeping" of this multiplicity label m(xj) takes place
together with the 6peration C(1) as follows: if the length of the path between
s and X via Xy = F_l(xj) increases in respect to a foregoing path between s
and X5 the multiplicity does not change. If it decreases then m(xj): = m(xi)
and when it remains the same m(xj) = m(xi) + m(xj).

At the start m(s) 1is set equal to 1.

Note: Considerations of symmetry make that one could equally well ask

for the label denoting the length of shortest paths from x, to

the ending point t. Let we indicate this label by 2'(xj). Then

apparently the property holds that for vertices along a shortest

path solution:
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C(3) 2'(xj) + z(xj) = constant = £'(s) = 2(t) C(3)

As the shortest paths all comprise the same number of graph vertices the
paths can be registered in the column sets of a tableau with the number of
columns equal to the multiplicity and the number of rows equal to the path

length plus one.

-1
Starting with the ending point t one determines first all x & 7(t) for
J

which Q(Xj) = 2(t) - 1.
*
The vertices, say Xj’ satisfying this condition are substituted in the

last but one row of the tableau.

"

* * C %
When'fxj stands for "for all Xj , the property holds Z* m(x.) = n(t).

Vx

J

*
The vertices xj are recorded in the tableau and copied in the row a

*
number of times equal to m(xj).

This goes on so that at a certain step of the backtracking program one

seeks for the points X; for which

* y *
Q(Xi) = E(xj) -1, xj C(4)

It should be remarked here that the same point xy; may correspond to

%
different points xj as many times as it satisfies C(4). This of course holds

*
for the totality of points xj.

*
The vertices X, satisfying the condition C(4), denoted by x,, are stored

i

in the corresponding row in the tableau and copied a number of times equal

*
to m(xi) in there. For the totality of vertices X, the equality

* *
.92* m(xi) = Z* m(xj) = m(t)
Xi X,

3
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holds. The process is continued until finally the starting point s is reached.
Once the substitution is finished the tableau indeed contains all
information required for identification of all the shortest path solutions
between s and t. The information is available in the form of ranking numbers
of the vertices of the paths in the columns (cf. 5.4.1, page 28).
The ALGOL 60 implementation of the vertex labelling of shortest paths and
the preparation of the tableau presenting the information of the totality of

solutions is given below.

Algorithm
beglin Integer array multiplicity, minlength [1:N];

Boolean array connected [1:N]
comment The Input graph is expected in the form of a Boolean matrix connected.
N Is the number of vertlices in the graph. The values of the diagonal
elements should be false;
procedure netpath (s,t); value s, t; integer s, t;
comment s Is the index related to the starting vertex; t Is the Index
related to the ending vertex;
beglin Integer 1, j, mint, length;
for I: = 1 step 1 untit N do
multlipiicitylil: = mialengthlil: = 0;
minlengthlsl: = 0;
multiplicityls): = 1;
for I: = s step 1 until t do
begin
minl: = minlengthli];
for j: = 1 + 1 step 1 until t do
begin
length: = mint + (lf connected [i,j1 then 1 else 2xN);
1f length < minlength then
begin multiplicityljl: = multiplicityli] +
(1f tength < minlength [j] then 0 else multipliicity [j1);
minltength [j]l: = length;
end;
end |;
end i1;
begln integer I, m, p, po, pil;
Integer array pathtableau (0: mintengthlit], 1: multiplicltylt]];
I = minlength (t);
m = multiplicity (t);
RE-USE OF BOOLEAN MATRIX CONNECTED FOR TOTALITY OF SHORTEST PATHS:
for I: = 1 step 1 untli! N do
for j: = 1 step 1 until N do
If minlength {11 + (if connected [1,j] then 1 else N)
= minlength [j} then
connected [j,i]: = true else false;
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PREPARATION TABLEAU "PATHTABLEAU" FOR TOTALITY OF SHORTEST PATHS:

for I: = 1 step 1 until m do
begin pathtableau [I,i]: = t;
pathtableau [0,1]: = s;
end;
for j: = 1-1 step -1 until 1 do
begin label iteration; po: = 0;
iteration: if po < | then
begin pl: = pathtableau [j+1, po + 1};
for I: s step 1 until t do
if connected [p1,i] then
for p: = 1 step 1 until multiplicityli] do
pathtableau [j, po: = po + 1]: = i;
go itteration;
end;
end j;
end;

end netpath;
end,



