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Abstract

The World and Regional Meteorological Centers are currently producing
and disseminating high—quality forecasts for several days ahead. It is
becoming increasingly difficult for the smaller National Centers to
produce competitive forecasts in the traditional way. Therefore, it seems
worthwhile to seek alternative methods which use the available data and
forecasts in a complementary rather than competitive way. One such
approach is described in this report.

The basic idea of Updating is to see where the early forecast is
going wrong, and to amend later forecasts accordingly. Suppose we have a

series of forecasts starting at time t,. Using later data, at time t, we

can calculate the error at that time. Then, if we know how the error
evolves, we can estimate it at a later time tos and use it to amend or
update the ty-forecast.

If a forecast is analysed into its normal modes, the error dynamics
of each component are relatively simple. By making reasonable assumptions
about the behaviour of nonlinearities, it is possible to estimate the
errors, and to amend each component separately. The components are then
resynthesized to give an updated forecast.

A long-standing problem with all forecasting models is their rapid
initial error growth-rate., It will be shown that in certain circumstances
the errors in updated forecasts grow more slowly than the errors in normal
forecasts starting from the same data time. Since updating is
computationally undemanding, the technique can provide short-range
forecasts which are both more accurate and more economical.

The updating procedure is applied in the context of a simple

one-dimensional model. It is found that updated forecasts using data valid



6 or 12 hours after the initial time are more accurate than corresponding
forecasts starting at these times, right out to 48 hours after the initial
time, Their small initial error growth-rates are in accordance with
theory.

The application of updating in a general context is considered, and
difficulties which can be foreseen are discussed. More work is required

before the operational feasibility of the technique can be assessed.
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I INTRODUCTION

Motivation

Predicting the future course of the weather from its present state
has been the central goal of synoptic meteorology since its beginnings.
Vilhelm Bjerknes first recognized, early this century, that the
physical principles governing the atmosphere could be used to deduce
its evolution from a known initial state. The hydrodynamic and
thermodynamic equations expressing these physical laws form a
determinate system which allows us, in principle, to derive a solution
from known initial conditions.

The initial value approach is at the heart of present-day numerical
weather prediction (NWP). The equations of motion are integrated
forward in time from specified initial conditions to predict the future
state of the atmosphere. Such integrations are now carried out
routinely at a number of forecasting centres. The larger national and
international centres (ECMWF, UKMO, NMC, etc.) are currently producing
and disseminating high—quality forecasts for several days ahead.

The production of numerical forecasts is extremely expensive in
computational terms. The large centres have computers capable of
hundreds of million operations per second. Computational resources in
the smaller national meteorological centres (NMC's) are much more
modest. Since forecast accuracy is strongly dependent upon computer
power, and since the large centres frequently upgrade their
computational facilities, it is becoming increasingly more difficult
for the smaller national services to produce competitive forecasts in

the traditional way (i.e. by solving an initial-value problem using an

NWP-model) .



(a)

There are several excellent reasons why national services should
continue to engage in numerical prediction using Limited Area Models
(LAM's); these are discussed, for example, by Janjié (1984),.
Nevertheless, the increasing availability of high—-quality products from
the World- and Regional-Centres is a reality which provides us with
cogent and pressing arguments for reviewing our forecasting methods.
Specifically, we should seek, as alternatives to the initial-value
approach, methods which use the available observations and forecasts
less extravagantly and with greater effect., One such alternative is

discussed in this report,

Methodology

The forecasts available internationally are of high quality;
nevertheless, they do contain errors. Observations which are made later
than the initial time of a forecast contain new information which has
not been used in preparing the forecast. The forecast and later
observations are available concurrently in the national weather
services. It seems that it should be possible to combine these two
types of information in such a way as to produce a better forecast.
This can be done either subjectively (by a human forecaster) or

objectively (by a computer); we will discuss each method in turn,

Holistic Amendment of Forecasts

Consider how the forecaster amends an old forecast in the light of

new data. He compares today's analysis with yesterday's forecast for

today. He makes a 'holistic analysis' of the weather chart into



(b)

'components' such as low pressure systems, fronts, jet streams, etc. He
assesses the error of each component: low centre misplaced or not deep
enough; cold front moved too slowly; wave overdeveloped; jet stream too
slack. With this knowledge he can re-draw tomorrow's forecast, making
'holistic amendments': move the front further on; deepen the low;
tighten the jet. He does not think purely in dynamical terms, but more
in terms of patterns or isobaric geometry, and mostly in two
dimensions. Nevertheless, he can make significant improvements to a
forecast by this process of kinematic extrapolation, provided he has
access to more up-to-date data.

The forecaster uses the following tools: (1) His synoptic
experience, which embodies knowledge of atmospheric statistics,
together with details of many specific case studies; (2) Various
rules—of-thumb, and mechanistic models, e.g. the Norwegian model of a
frontal depression; (3) Personal intuition (no two forecasters will
produce identical prognoses). The laws of atmospheric dynamics enter
only indirectly - there are no 'holistic equations of motion' which
describe the dynamics of a low or a front as a single component or

entity.

Automation of the Amendment Procedure

It seems worthwhile to try to simulate the activities of the
forecaster in an automatic procedure. Since the computer operates
quantitatively, can extrapolate more accurately and can assimilate more
observational information, it should be possible to improve upon the

subjective approach, and to 'beat the forecaster at his own game'.



The computer must operate in a 'reductionistic' way, since it cannot
recognize patterns such as highs, fronts, etc. (at least, not with the
data stored in conventional spectral or gridpoint form), But the
reduction of the data to components of some sort (normal modes, EOF's,
gridpoint values, etc.) allows us to amend each component separately.
The amendment may be based on dynamical, statistical or empirical rules
goverining the errors, and all the new observational data can be
utilized. Thus, we may hope that the automatic amendment may be

superior to the subjective one.

First let us consider a direct simulation of the human approach,
Given the gridpoint values, we can calculate the error field at a
particular data-time, t;. Individual 'patches of error' may then be
assumed to advect along some trajectory with an appropriately chosen
velocity, until a later time, ty. The resulting error field can then be
used to amend the ty-forecast. A system of this sort is under
development by Roodenburg (1984). The advantages of the approach are
its simplicity and its local nature: we can concentrate on a specific
region of interest. The main drawback is that we do not have
quantitative information about the behaviour of the errors: the
equations governing the errors at a gridpoint are more complicated than
the original forecast equations! Therefore, we can do little more than
advect the errors passively with an assumed 'steering' flow.

An alternative approach, considered in detail in this report, is to
analyse the meteorological fields into components which behave in a
simple and predictable way, and to amend each component separately. The

normal modes of a system are the basic components of its linear

dynamics, and are governed by (formally) simple equations., The
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structure of these equations suggests appropriate approximations which
make it possible to derive a relation for the error in each component.
These relations can be used to amend the individual components. The
residual error can be examined quantitatively; in the case of linear
dynamics the method yields exact results. Allowance is made for both
amplitude- and phase-errors. The method is discussed in more detail in
the following section. A schematic comparison between the subjective

and automatic amendment techniques is illustrated in Box 1.

Forecast Updating: Normal Mode Approach

The basic idea of Updating is to see where the early forecast is

going wrong, and to amend later forecasts accordingly. Suppose we have
a series of forecasts starting at time t . Using later data, at time
ty, we can calculate the error at that time. Then, if we know how the
error evolves, we can estimate it at a later time to, and use it to
amend or update the to-forecast. (We will refer to the three times as

the initial time, t,, the data time, t], and the update time, t;).

We consider a simple case first: a system consisting of a single
component which is governed by a linear equation. The error in the
model simulation of this system is also governed by a simple linear
equation. If we know the error at two times, say t, and t;, it can be
calculated at any other time. Thus, we can correct or update the model
solution exactly at any later time, tj.

We next consider a single-component system, governed by a nonlinear
equation. The error dynamics are also nonlinear. However, by making a
hypothesis relating the true and model nonlinearities we can derive a

relation for the error, which is formally similar to that in the linear



Method

subjective/holistic

objective/reductionistic

Elements

Correction

Guiding

Principles

Critique

Mental analysis of chart
(2-dimensional) into components

(Lows, fronts, jets, etc.)

Amendment of each component
(Movement of a front; deepening

of a low; etc)

(1) Experience, (2) Rules-of-

thumb (3) Intuition

Very little dynamical content.
There are no 'holistic equations
of motion' which describe the
dynamics of a low or front as a
single entity. Intuition is

unreliable.

Spectral analysis of atmosphere
(3-dimensional) into eigenmodes

(Hough—functions, EOFs; etc)

Amendment of each component
(e.g. correction of the phase

and amplitude of a mode)

(1) Dynamical, (2) Statistical,
(3) Empirical rules governing

errors,

Quantitative method with sound
theoretical basis, The
components are governed by
known equations. Analysis of

residual errors is possible.

Box 1

Comparison between subjective and automatic methods of amending

forecasts,
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case. This allows us to update later forecasts. Because of the
approximations made, the updated forecasts are not perfect, but under
certain circumstances their errors grow more slowly than those ¢f a
normal forecast starting at the data time, t1. In these conditions it
is better to update the old forecast (from t,) than to do a fresh
forecast (from t1). It is also computationally much cheaper.

Numerical forecasting models have many degrees of freedom. We cannot
expect that a particular value (e.g. the surface pressure at one
gridpoint) is governed even approximately by a simple linear equation.
However, the linearized model equations have simple solutions called
normal modes. A general solution can be analyzed into its normal mode
components. We can apply the updating procedure, outlined above, to

each individual component, and then re-synthesize an updated forecast

from them.

Overview of this Report

The general theory of updating is developed in Chapter 11, and the
behaviour of the residual errors is examined. A simple one-dimensional
model, DYNAMO, is described in Chapter III, and its normal modes are
derived. The application of the updating technique is formulated. The
results of this application are presented in Chapter IV. Finally,
Chapter V, comprises a review, and suggestions for future work.

Readers who are satisfied with the general description of updating
given above, and who are not concerned with the mathematical
technicalities, may wish to skip now to the results described in

Chapter 1IV.
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IT THEORY OF UPDATING

A Simple Example

Consider a one-dimensional linear advection equation governing

non-dispersive propagation on a periodic domain:

%?:3+ c%$= 0, ¢(0,t) = ¢(L,t). (1)

Since ¢ is constant the spatial dependence can be spectrally analysed,
and the wavenumber, k, is quantized by the periodicity. The coefficient

X = X(t) of a single component, exp (ikx), is governed by the equation

X+ iAX =0, (2)

where A = A k) = kc is the frequency. If X, is the initial value of X,

the solution of (2) is

X = X0 exp (-iit). (3)
Now suppose that the numerical counterpart of (1) involves a
phase-error, such that wavenumber k is advected at a speed ¢' = c¢'(k).
The corresponding coefficient of the model solution, X', will be

governed by the equation

'+ i A X =0 (4)



where )' = kec¢', so the solution with initial value X' _ may be written
’ o y

X' = X'0 exp (-iA't). (5)
We define the error ratio E by

E(t) = X(t)/X'(t). (6)

Using equations (2) and (4) it is easily shown that E is governed by

the equation

=X d-2) a0 7

so that the solution with initial value E, is
E = Eo exp [-i(x-1")t]. (8)

Suppose now that we are given the initial values X, and X', and the

values X; and X';, at time tj}, of the true and model solution. If the

model solution at t; is amended by the change
X' —=> E, X'

we retrieve the true solution. Given the model solution at some later

time, ty, how can we amend it so as to obtain to true solution? From

(8) it is clear that

t/t1
E(t) = Eo(El/EO) . €D

This allows us to amend the component at any time. In this simple
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Figure 1 Schematic depiction of the true solution, X, and the model solution,

X', governed by the linear equations (2) and (4).
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linear case we retrieve the exact solution X. Note that we have not
used the values of X and A' explicitly in (9).

In figure 1 the state of the system is represented schematically by
a point in a (here 1-dimensional) state—space,}b which moves linearly
in time. We assume that X_, X',, X;, X'; and X'y are known. The problem

is to estimate X9 We write

tz/tl
= v . = v, =
Eo xo/x o El xl/x 13 E2 Eo(El/EO)

and amend the model value at t) by
X'z-—+ E2 X'2.
This turns out to be the exact solution.

If each component of the model solution is amended as above, we
retrieve the true solution of (l1). Note from figure 1 that the amended
solution is better than the model solution which starts from the
correct value at t; (the dashed line in figure 1). The phase of each

component is corrected. The systematic error inherent in the model has

been overcome, and its dispersive nature has been counteracted.

More General Systems

We can represent the state of the atmosphere by a vector X(t) whose

evolution is governed by a nonlinear vector equation

X+ 1X+ N =0, (10)

where L is a constant linear operator and N is a nonlinear vector
function., If the eigenvectors of L are known, the system can be

diagonalized, and a single component, X, will be governed by an

equation of the form
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R+ iXX + N(X) = 0. (11)

We write the numerical counterpart of (11) as

R' + 1X'X' + N'(X') = 0, (12)

where X' is the component of the numerical solution. There is an error
(A'=)) in the frequency and also an error in the nonlinear term,

Suppose we consider the linear case, where N = N' = 0. The
components X and X' of the true and model solutions then behave as
wave-like normal modes with well-defined phase-speeds, governed by
equations like (2) and (4). Thus, the error ratio is given by equation
(9), and has an exponential behaviour in time (this would not be so,
for example, if X, X' were grid-point values). So, in the linear case,
each component can be corrected just as for the simple example in

section II.l.

Consider now the nonlinear case: we write equations (11) and (12) in

the form
X+ ip(t) X=0, u = A+ N(X)/iX (13)
X' 4+ 4ip' ()X =0, u' = A"+ N'(X')/iXx'. (14)

We define mean values for the quantities yu and p':

=

—_1 .t — t
w==1Jo wddn W= )7 w(ndr.

Then, the solutions of equations (13) and (14) can be written
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X(€) = X exp (-iut); X'(t) = X! exp (-ip't)
where X, X', are the initial values. (In fact, these are not explicit
solutions, but nonlinear integral equations for X and X', since the

integrals p and p' involve the unknown quantities., However, they may be

treated formally as though they were explicit solutions.)

If we now define
o= u(e ) o= ()
n n n n

for n = 1 and 2, the true and model solutions are

-ip t
X =X(t)=X e 0N
n n o
(15)
-iy' t
X' =X'"(t ) = X' e nn
n n o
From these we see immediately that
t
X, (u2 2/ultl)
X = %&) (16)
o
't 't
Xy (u2 2/ul 1)
Xé = Xéfiz) (17)

To procede, we make a hypothesis about the relative changes in | and

ET with time: it is reasonable to assume that
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U ) u u
2 5-—% or equivalently —%-5 "% (18)
ST B W

Using this to eliminate (uz/ul) in (16), and dividing by (17) we get

't /ut
E (n ) 2/u ) 1)

g3
N
11
—
gl
~—
e
=1
o
—
=
—
N—’
i
i<

(19)
2 o 2

Now from (15) we know that

-ip't -ip't
171 272
Vv = . VI =
Xl/Xo e ; XZ/XO e

from which it follows immediately that the exponent in (19) is

L] | 1]
- (uztz) ) 10g(X2/Xo) (20)
= 1 = [] ] .
ultl 1og(xl/xo)

The equations (19) and (20) allow us to calculate the estimate B

9 of

Ey from the quantities (Xo, Xl; Xé, Xi, Xé). We can then estimate the

true value Xy at ty by the amendment
(21)

This will be exact (XZ = XZ) if (18) holds exactly. Allowance has been

made for the nonlinear terms, and also for their non-constancy in time;

the approximation (18) involves essentially an assumption that the mean

functions yu, ' change with time in the same way.
H, g y
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i 1 »

Figure 2 Schematic depiction of the true solution, X, and the model solution,
X', governed by the nonlinear equations (11) and (12). (Dashed lines

indicate the corresponding linear solutions.)
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Note that in the above updating formulae, (19) and (20), no use has
been made of the values A, A' and no explicit evaluation of nonlinear
terms is required.

In figure 2 we represent the true and model solutions schematically
by points in a l-dimensional state-space, Z. e phase-speeds are not
constant in time, so that simple extrapolation of errors is

insufficient; we must allow for the time-dependent nonlinear terms.

The Growth of Forecast Errors

A simple way to measure the accuracy of a forecast is to calculate
the root-mean-square (RMS) difference between the actual and forecast
fields. Usually the error grows quickly at first, and gradually levels
off as the forecast progresses., We will try to explain why this is so,

and how the updating process can lead to a slower initial error growth,

Errors in the original forecast
Consider a single wave, forecast by a model with an inherent phase-

error. We have seen in section 2 that the error-ratio is
E = exp[-i « t]

where « = (A-A') is the frequency error, and the initial error is zero
(Eo = 1). Thus, the phase-error is kt; the true and model waves move
into and out of phase with a period (2m/k). The RMS error, o, is easily
calculated, and is proportional to Isin %Ktl (see figure 3a). In

particular, note that the initial growth of the error is linear in

time; we can show that
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¢
(a)
o
(b)
e — ¥ —
c

(c)

Figure 3 Behaviour of the RMS error in time for (a) a single component, (b)
Many components with different frequencies and phase-errors, and (c)
the nett resulting error for a many-component system. (Note that the

variances (02) are additive componentwise.)
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>4

o = f7%) kt, for small t (22)

where X, is the amplitude of the wave,

In general there are many wave components present, each with a
different phase error (Figure 3b). The initial error will still be
approximately linear, dominated by the components for which ¢ in
equation (22) is largest. After a time the components will tend
alternately to cancel and reinforce each other in a more-or-less random
manner (the variances o2 are additive componentwise). Therefore, we
would expect the error ¢ to level off at some saturation level, and not
to change much when t is large (see figure 3c). The shape of the
o-curve may be approximated by a function of the form

o= S(l-e_O‘t

)
where S is the saturation level and (Sa) is the initial slope.

The discussion in the previous paragraph was naive in that
non-linear interactions between wave components were ignored. In
reality these interactions result in the transfer of errors between
different scales, and may result in more rapid growth of initial
errors. A glance ahead to figure 5(b) on page 30 confirms this: the
dashed line is the error for a linear model run and the solid line is
the corresponding error for a non-linear run. The latter has much more
rapid error growth rate. On the other hand, Boer (1984) has examined
the errors of the Canadian Meteorological Centre operational forecast
system, and has separated the consequences of initial and model errors.

In Figure 4 (redrawn from Boers paper) we show the total error at
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various times, and the estimated contribution due to the initial error
(eo), the model error (shaded), and the non-linear production term.
Clearly, the model error dominates the growth of error in the early
stages. At later times the nonlinear production term becomes more
important. The best way to reduce the error in short-range forecasts is
to reduce the model error; reducing the initial error €0 alone would
not have much effect. The updating technique is designed primarily to
counteract the effects of model error; the error remaining after

updating is discussed next.

(b) Errors in the Updated Forecast

We write the true and model solutions in the form

X = XO exp(—iu(t).(t—to)) ; X' = Xé exp(—iu'(t).(t—to)) (23)

(where the overbars on y and u' have been dropped for notational

simplicity). The original error ratio is

E = E_ exp(-i[u(t)-u' ()] (et )) (24)

So, the initial phase-—error grows linearly with time. The basic
approximation in the updating technique is equation (18), which we

write here as

AT STATE (25)

The exact error ratio (24) is estimated using (25), resulting in

equation (19) which we write here as
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3

Figure 4 Total error (10~ J m—2) of the Canadian Meteorological Centre

forecasting model, and contributions due to the initial error (€0),

the scurce term or model error (shaded), and the non-linear

production term (stippled). (After Boer, 1984).
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U
E-xg exp(—i[CE%)u'- W lCe-t)), (26)

and the updated value is defined by X = ¥ X'.
We can now estimate the residual error, i.e. that error which

remains after the updating process has been performed. We have
e = X/X = EX'/EX' = E/F,

and using (24) and (26) this is

U
e = exp(il (D u-ul(e-t ) (27)
1

Clearly, if (25) is exactly true, E is equal to unity, i.e. no error

remains.

Suppose now that (t-tl) is small; in words, the update time is close

to the data time. We can expand u(t) in a Taylor series about ty:

dul
u(t)=u+(tt) +0(tt)

and similarly for u'(t). Then the exponent in (27) becomes

[ - g e e (28)

where squares and higher terms in (t—tl) have been dropped.

The initial phase-error in the updated forecast, %, is proportional
to (t—tl)(t—to). When (tl—to) is small, this is approximately quadratic

in time, in sharp contrast to the linear error growth of the original
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model error (compare equations (24) and (28)). Thus, we may hope that
the updated forecast value, X, is not only better than the original
one, X', but even better than a fresh forecast starting at t,,

2t least

during the initial hours (when (t—tl) is small).

When the data-time t1 is much later than the initial time we have

initial error growth at t1 proportional to

(t=t,)(t-t ) = (e=t (e =t )
and since (tl_to) is large, the error will grow rapidly. Thus, updating
from a late data-time is unlikely to be useful.

The theoretical behaviour of the errors outlined above will be seen

to be in accordance with the actual results described in chapter 1V,
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III THE ONE-DIMENSIONAL MODEL

In order to test the usefulness of the idea of updating forecasts,
we apply it in the simplest context: two forecasts are made using a
one-dimensional model, with two different grid-resolutions. The
fine-grid forecast is regarded as representing the 'true atmosphere',
and is used as a reference against which the coarse grid or 'model'
forecast is measured.

In order to apply the method of updating we need to know the normal
modes of the model. These are described in section IIT.l. The effects
of discretization are also discussed. The formulation of the updating

is developed in section III1.2.
The model DYNAMO; Normal Modes

The model used in this study is a simple one-dimensional
shallow-water model. It is described in detail in Lynch (1984). The
momentum equations are differentiated to form vorticity and divergence
equations: this makes the B-effect explicit, and all further latitude

dependence is supressed.
The basic equations, which are nonlinear, may be written
g, + (uc)X + f§+ gv =0 (29)

5.+ (u8) - fc+ Bu+4>x1= 0 (30)

o, + (ug) + 98 =0 (31)
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(all notation is conventional - see Lynch (1984) for details).

The vorticity and divergence are related to the winds by

To investigate the simple types of wave-motion supported by the
above system the equations are linearized about a state of rest and the

perturbation quantities are assumed to be harmonic in x and t:

' A
z z
X = § | - explik(x—ct)]
X %

Then (29), (30), and (31) become three homogeneous equations for the
amplitudes (z, 6, ¢). The condition for a non-trivial solution is that

the system determinant should vanish. This gives a cubic equation for

the phase-speed:

c(ets/k?)? - c(FHE/DP) - (8/k3)F = 0 (32)

The three roots may be estimated by making simple assumptions about the
magnitude of the phase-speed. These assumptions can then be justified a

posteriori.

If ¢ is small the cubic term in (32) is neglected, giving

= —(8/x%) /1 14£2 /K53

C=CR_
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This is the Rossby wave phase-speed. Equations (29) and (30) then tell
us that this solution is in approximate geostrophic balance for v and
that u is much smaller than v, i.e. the wave is quasi-nondivergent. The
Rossby waves always travel westward relative to the mean flow.

If we assume that Ic! $>|CR| the constant term in (32) is negligible

and we get the two roots:
e =+ V(g%

which are the phase-speeds of the gravity-inertia waves. The gravity
waves travel in both directions with relatively large phase-speeds.
They are divergent motions and typically have fairly small vorticity.
. , T T T T, T . .
There is an eigenvector, Z, = (§,, ¢, , ¢k) , associated with each
~k k> “k
eigenvalue ¢ = c;, where T indexes the root of (32) and k indexes the

wavenumber. Its components are related by:
T o (ien/ayaT o T _ — 20y 1T .
8, = (ike/9)o 5 g = (fc/¢(ctB/k )4, . (33)

An inner product is defined as follows:

*
3¢ 9
_ [ Li—, * * 1 2
Zl ’%2 - '{O [¢(6162+C1C2)+ Ix ° ax] dx

where asterisks denote complex conjugates and the integral ranges over

T

K can be shown to

a periodic channel [0, L]. Then the eigenfunctions 2
be orthogonal:
2

Tt k T
Ze s B T 0 Gk'“ 2
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We can expand a general state, z= (s, g, ¢)T, in the eigenmodes

N
A

and the coefficients are given by the generalized Fourier coefficients
T _ T * T 2
a = (2 .2/ “ZkH . (34)

In the application of the model, (32) is solved numerically for the
eigenvalues, and the eigenfunctions are constructed using (33) and
stored on disk.,

We discretize the periodic channel as follows

{xo =0, X, = ARy e0e, x = nAX,.ee, X = NAX = L},

N
Then ¢, § and ¢ are specified on this grid, and u and v at points half
way between these gridpoints. A function q(Xy) has N degrees of freedom

(note that 4o = qy by periodicity) and may be expanded in a Fourier

series

M
q(x ) = L q exp(2mimx /L)
n m=-M m n

*
where M = [N/2]. If q is real, as in the present case, then 9p = 9

and only half the coefficients are needed.

The finite difference scheme which approximates the equations (29),

(30) and (31) is described in Lynch (1984), The differencing and

averaging operations involve discretization errors. If we repeat the
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normal mode analysis as in the continuous case, but take account of the
spatial discretization, we find the results are identical provided only

that we make the substitutions

k > k'

sin(3kax)/(}Ax)

w
¥

T
Il

cos($kAx).B

Then the eigenvaluesare obtained from (32) as before, and the eigen-—
vectors from (33).

It was found that the use of the continuous eigenmodes (those for
Ax = 0) evaluated at the gridpoints led to results very similar to
those obtained after using (35). Which set to use appears to be a

matter of expediency.

Formulation of the Updating technique

The model DYNAMO was used to make two parallel series of forecasts.
The forecast domain was a channel of length L = 104 km. The fine grid
has 50 gridpoints with Ax = 200 km, and the coarse grid has 25 points
with Ax = 400 km. Forecast duration was 48 hours. An Adams—-Bashforth
timestepping scheme was used; to avoid errors associated with time-

discretization, a very short timestep (At = 15 sec,) was used for all

runs.,

A number of nondimensional combinations occur in the model; we

define length and velocity scales L and V and form
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R = (V/fL) : R = (BL/£); R = 9/ (£L)2.
o} B F

The choice of parameters is such that they take the values

- 3 _ln -—
R, = 10 75 Ry = 1.6 x 10 °; Ry, = 10,

The initial conditions were defined by setting
o)
¢ = ¢ (x )= X a cos{(2rk.nAx/L) + wk} (36)

where the amplitude ay is determined by requiring that the fields have

a specified spectral density and the phase ¢% is chosen randomly. The

-5/6 . .
k » giving a spectrum of

-2/3
kinetic energy-per—-unit wavenumber proportional to k / . Other choices

were a =ag k-4/3 and a = a_ k_2 giving the minus five-thirds and

results presented below are for ap o

minus three spectra more typical of atmosphere flows (see e.g.

Tennekes, 1978),
Geostrophic winds were derived from

) o o o
v, = (¢n - ¢n_l)/Ax; Uy = 0.

The fields were then initialized using the Laplace transform technique
(Lynch, 1985). This led to slightly different fields on the two grids.
The initial fields and the forecast values after each hour were
stored on disk, to serve as input files to the updating program. The
root-mean—-square (RMS) error in the coarse grid geopotential, vorticity
and divergence fields were calculated each hour (by_g££g£ we mean the

difference between the two forecasts, with the fine-grid values
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regarded as the truth). Plots of the errors in ¢ and ¢ are shown in
Figure 5. The solid curves are the errors for the full nonlinear
forecasts and the dashed lines show the scores when the nonlinear terms
are switched off in both cases. The initial error in ¢ is due to the
initialization acting differently on the two grids; since rotational
modes are unchanged by initialization, there is little difference
between the initial vorticity fields. The divergence errors are
somewhat noisy, but very small relative to the vorticity errors, and
will not be considered. The errors in the linear runs grow relatively
slowly, and at a more-or-less constant rate; the nonlinear errors have
a greater initial growth rate, and reach saturation level somewhere
between one and two days.

The updating was done in the following way: the initial time t, and
"data-time" t; were chosen, and the fine-grid and coarse-grid fields
valid at these times were spectrally analysed into components using the
model normal modes described in section III.l. The initial error in the

mth component is defined by

Em - Xm/x'm
(0] o o

where XM represents the fine-grid value and X'™ the coarse grid
coefficient., The error at time ti» the data-time, is
m

I
El XI/X1 .
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We wish to estimate the true, or fine-grid, value at a later time, ty.

m

To do this, we estimate E, = Em(t=t2) by the method described in

section II.2. The exponent P is calculated using only coarse-grid

values at the initial time, data—-time and update time:
= oy m ymyo,m
P log(X 2/X 0)/log(X l/X o)
and equation (19) is thenapplied as follows
o= ENEY/ED) " (37)
2 Tor71' o’ e

The updated value is then given by the modification

X'r;_) ET; X'

N8
imn
N

(38)

The actual values used in this procedure are contained in the set

{Xﬁ, X'E; XT, X'T; X'?}. Note that, despite the nonlinear nature of the
equations, no explicit evaluation of non-linear terms is required; we
do not even need to know the form of these terms.

The updated fields are now constructed by synthesizing the updated

components:

% Zn (39)

where Em are the eigenfunctions of the system. In the linear case %2
will be equal to Xy. The approximations made in the nonlinear case mean
that some error still remains. However, as we saw, the growth of this

error may be of a different character to that of a normal forecast

error.
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The updating procedure is applied for a series of 'update-times' ty
v

in the range (tj, tp,y), and the error of Xy relative to X, is

calculated. This is compared to the original error, and also to the

error in a hypothetical forecast starting from the data—-time 1. The

latter is assumed to be identical in form to the former, but translated

in time by (t_ -t ).
1 o
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IV RESULTS

We consider the case of initial data with a minus two-thirds kinetic
energy density spectrum (so that the amplitudes of the components of the
geopotential fall off as a, = ag k_5/6). The initial fields are balanced
by the Laplace Transform initialization technique (Lynch, 1985). This
causes differences to arise between the initial fields on the two grids;
these differences are clearly seen in the error of the geopotential, but
hardly affect the vorticity field (see Figure 5). Since they are of
peripheral interest in this study, we will concentrate mainly upon the

errors in the vorticity.

The data time t,, is taken to be 12 hours after to (tO and t1 are the
only times at which fine-grid information is used in the update
procedure)., The coarse grid forecasts for each hour between t; = 12 hours
and tp,, = 48 hours are now updated by the method of section III.2, and
the scores (or errors relative to the fine-grid values) of the updated
forecast are calculated.

We will discuss the root-mean-square (RMS) error, o, in the vorticity.
In Figure 6 the error in the original forecast is shown by curve 1. The
error grows rapidly during the early forecast, and levels off between one
and two days. The initial error-growth is linear, in accordance with the
theoretical discussion in section II.3(a). We assume that a fresh forecast
starting from time t; would behave in a similar way, as shown by curve 2
(this is curve 1 translated in time by 12 hours). The errors in the
updated forecasts for t1 <t K tmax are shown by curve 3. We see that they
grow much more slowly at first (for t close to tj) and that curve 3
remains below the other curves out to 48 hours. This small initial

error-growth is consistent with the theory outlined in section II.3(b),

and is of crucial importance from a practical viewpoint. It has the
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Figure 6 Error curves for an update from t; = 12 hours. Curve 1: RMS error in

original forecast. Curve 2: Error in forecast beginning at 4] (this

is curve 1 translated by t;). Curve 3: Error in updated forecasts

for t, < t {t = 48 hours.
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Figure 7 As Figure 6, with t1 = 6 hours.
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following implication: if we are given the original series of forecasts
(X'(t)), and the new data at 12 hours (X(t;)), then the updated forecast
for any time between 12 and 48 hours is more accurate than a normal
forecast starting from the data at 12 hours. This is so because the normal
forecast error grows rapidly during the initial hours. So, it is better to
update the old forecast than to do a fresh one. It is also computationally

much cheaper,

When the data time t; is chosen to be six hours after to, the results
are as shown in Figure 7. They are qualitatively similar to those for t; =
12 hours. Note, however, that the initial growth of the error in the
updated forecasts is even smaller in this case. From the results of
section II.3(b) we may argue that the initial growth-rate tends to zero as
the data time t) approaches the initial time toe

In Figures 8 and 9 we show the scores for forecasts updated from data
times 24 and 36 hours respectively. The curves are numé}ed as before. The
updated forecasts have faster error growth in these cases. With ty = 24
hours updating still has an advantage over a fresh forecast out to about
44 hours (after t,), and improves the original forecast (from ty) out to
almost 48 hours. When ty = 36 hours, the errors in the updated forecasts
grow faster initially than those of a standard forecast starting at that
time. Updating appears to be of little use in this case.

The behaviour of the updated forecast errors is seen clearly in Figure
10, where we show the curves for data times every six hours from 6 to 42
hours after ty,s The earlier the data-time, the smaller the initial error
growth-rate; thus, we obtain the most advantage by updating using data
which is valid as soon as possible after the inital time of the original

forecast. There is not much to be gained from further updates using later

data.
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Figure 10 Error curves for the original forecast (heavy) and for the updated

forecasts for various data-times (every 6 hours, for 6 £ t] § 42

hours).
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Figure 11 As Figure 10, for initial data with spectral density proportional
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To check the representativity of the above results, the numerical
experiments were repeated with different initial data. The results for

initial fields with a minus five—thirds kinetic energy density spectrum
-4/3

(ak =a k ) are shown in Figure 1l. Since the smaller scale components
o
are less important in this case, and their nonlinear interactions weaker,

the error growth rates are smaller than those in the previous case.

However, the general character of the error-curves is the same as before.
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V  DISCUSSION AND REVIEW

General Remarks

The changing international scene has a direct bearing on forecasting
activities in the National Meteorological Centres. Continuing
improvements to the models of the large forecasting centres make it
more and more difficult to compete locally. New methods are needed,
which use the available data and forecasts in more effective ways.

Locally-run Limited Area Models offer a number of advantages. The
integration domain is reduced so that higher resolution may be
possible, yielding more refined short-range forecasts in the smaller
synoptic scales. Such autonomous systems can be run several times a
day, with earlier availability of the output. Still, these systems are
expensive to run. Furthermore, they suffer from the same drawback as
the global models, viz. rapid initial error growth-rate. This seriously
curtails the advantages of more timely forecasts.

Forecast Updating, as described in this report, offers an
alternative means of providing short-range forecast guidance. Updating
is computationally undemanding, may have better error-growth
characteristics, and can remove systematic model errors. Improvements
resulting from advances in global forecasting techniques are

automatically reflected in the update: perfect input forecasts result

in perfect output.

It is a far cry from the results presented in this report to a
demonstration of the operational feasibility of updating. Nevertheless,
the results are sufficiently encouraging to make a more thorough
investigation worthwhile. Some possibilities for future research are

suggested below.



V.2

40

Future Work

The results of the updating experiments described in chapter IV are
impressive enough if taken at face value. However, the context in which
they were derived is open to criticism; a simple one-dimensional model
is a pale shadow of the atmosphere. It cannot be claimed that results
for such a case have any direct implications for more complex
situations. Therefore, rather than make extravagant claims for
updating, we should apply it to the output of a realistic forecasting
model.

The European Centre (ECMWF) has been producing medium-range
forecasts daily for several years. The global analysis and forecast
fields are routinely archived in the form of spherical harmonic
coefficients. Since the normal modes of the stream—function are of this
form for horizontally non-divergent flow, these coefficients may serve
adequately as input to a global one-level updating system,
Alternatively, the Hough-mode coefficients may be derived and the
updating done in three dimensions. (Since the results in the case of
DYNAMO were not unduly sensitive to the precise modes used, nor to the
effects of discretization, the simple use of spherical harmonics may
well suffice).

In general, forecasts are required for a relatively small area.
Medium range forecast models are, of necessity, global; but updating
need only be done locally. It is not trivial to adapt the normal mode
approach to a limited domain (this difficulty also arises in the case
of initialization for LAMs); neither is it obvious how well such a
system will function in this context.

The mathematical formulation in section II is not unique. As an
alternative, we have treated the nonlinearities as forcing terms, so

that they appear in the solution as convolution integrals,
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Approximating these integrals iy one way or another, we arrive at other
estimates of the error ratio. These were found to be inferior to the
approach finally adopted. Furthermore, they involved explicit use of
the eigenfrequencies, and calculation of the nonlinear terms. Still, we
should not abandon the search for other simpler and more accurate
formulations of the updating technique.

Finally, we must make a remark about analysis., Most currently
operational analysis systems use optimal interpolation; this technique
is essentially local in character, and it has been shown (Cats and
Wergen, 1982) that such a method is not especially suited to the
analysis of large scale normal modes. In an operational updating system
it may prove necessary to modify the analysis method so that it
provides the required spectral components in an optimal way. Little

more can be said without further investigation.
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