KONINKLUK NEDERLANDS
METEOROLOGISCH INSTITUUT

WETENSCHAPPELIJK RAPPORT
SCIENTIFIC REPORT
W.R, 83 -1

C.A. van Duin

Some general properties of ideal fluids
with regular critical levels

De Bilt, 1983



Putlikatienummer: KeN.M. I W.R. 83-1 (GO)

Koninklijk Nederlands Meteorologisch Instituut,
Geofysisch Onderzoek,

Postbus 201,

3730 AE De Bilt,

Nederland,

UeDeCo: 551°511°32 H

532¢5



SOME GENERAL PROPERTIES OF IDEAL FLUIDS

WITH REGULAR CRITICAL LEVELS

C.A. van Duin



CONTENTS

1. Introduction
2. The Wronskian approach
3. Fluids with one critical level
4. TFluids with two critical levels
5. Neutral stability curves
example 1
example 2
example 3
Appendix

References

12
16
18
18
23
26
28

32



Abstract

The properties of reflection and transmission of internal gravity waves
in planarly stratified, ideal fluids with a parallel shear flow are
investigated. The shear flow and the Brunt-V&isdld frequency are modelled
by arbitrary, smooth profiles. When the fluid has one critical level,
explicit conditions for wave overreflection and for the existence of
singular neutral modes can be derived by means of a Wronskian approach.
The same applies when there are two or more critical levels. The theory
not only applies to fluids with so0lid boundaries but also to :unbounded
flows.

In particular cases, when the profiles of the shear flow and the Brunt-
Véis#dld frequency are such that reduction to an equation of the Fuchsian
type is possible, closediform expressions for the neutral stability curves
can be derived by application of a generalized theorem of Miles, derived
in this work. For a given configuration of profiles the neutral stability

curves determined in this manner prove to be the complete set of curves for

these profiles.



1. Introduction
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In this work the propagation and ducting of linear internal gravity
waves in planarly stratified fluids with a parallel shear flow normal
to the stratification is studied. The model is as follows.

The fluid is ideal and incompressible. The undisturbed density G and
pressure p depend on the height z only; increasing z corresponds to
increasing height. The background velocity or shear flow U depends on

z only and the direction is independent of this coordinate. A.Cartesian
coordinate system is introduced. The x-axis of this system is taken
parallel to the shear flow: U = (U(z),0,0). The gravitational
acceleration has the components (0,0,-g). Rotation of the fluid is not

taken into account.

The Brunt-Véisdl&d frequency N is defined by
N2(z) = -g o b > . (1.1)

The prime denotes differentiation with respect to z. It is assumed that
the undisturbed density decreases with height, i.e. the density distri-

bution is statically stable. The Brunt-Vdis&l# frequency is real in this

case.
The local Richardson number J is defined by

J(z) = N2 (U”)” . (1.2)

The perturbation quantities are time harmonic with frequency w, and the
horizontal phase velocity of the waves is parallel to the shear velocity,

i.e. parallel to the x-axis. The perturbation quantities are independent

of y:
alx,z,t) = q(z)exp{i(kx-wt)} = q(z)exp{ik(x-ct)}, (1.3)

where c=w/k is the horizontal component of the phase velocity.



By linearizing the equations of motion and the continuity equation
in the usual way, and remembering that the fluid is incompressible,
we derive from the resulting equations
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where w(z) is the vertical component of the perturbed velocity.
It will be convenient to transform equation (1.4) into the Helmholtz
form
N? 1 U’ U’
p_p2 - - k? 4
(U-c)2 ° ° e U-c

. (1.5)
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vwhere ¢ is related to w through the transformation

1

w(z) = p;§ g (z). (1.6)
Within the so-called Boussinesq approximation equation (1.4) reduces to
the Taylor-Goldstein equation

NZ ys?

Wl { - - k%} w=o. (1.7)
(U-c)2  U-c

It is assumed that the fluid has at least one critical level, i.e. a

level or height where the shear flow matches the horizontal phase velocity.
We only consider regular critical levels, i.e. the zeroes 2, of U(z)-c
are simple zeroes. Then the singularities of equations (1.4) or (1.5) and
(1.7) are poles of second order in 2=2y i.e. regular singularities.

For an irregular critical level, i.e. if U(zk)=c ard U’(zk)=0, the

singularity at 2y is a pole of fourth order in 2-2, . Such a singularity

is irregular.



Irregular critical levels may be relevant when jet-type flows are
considered.

Since the classical paper by Booker and Bretherton1 on propagation
properties of internal gravity waves incident on a fluid with a shear
flow containing one regular critical level many authors studied this
subject. We recapitulate a number of known results from this literature.
Booker and Bretherton1 have shown that for Jc > 1/4, where JC denotes

the Richardson number at the place of the critical level, part of the
energy of the incident wave is absorbed into the mean flow. For J.>> 1/4
they have shown that the transmission coefficient is extremely small.

The case Jc-i 1/4 has not been treated by these authors. For sufficiently
small values of Jc’ overreflection can occur, which means that the
amplitude of the reflected wave exceeds that of the incident one.

This phenomenon has been discussed by various authors, e.g.2—6. Generally
it is assumed that Jc < 1/4 is a necessary condition for overreflection.
McKenzie3 and Acheson5 made use of the vortex-sheet profile. Such a
profile allows the occurrence of resonant overreflection, which means
that the shear flow, in the absence of an incident wave, spontaneously
emits outgoing waves. The occurrence of this phenomenon has been discussed

7

by e.g. McKenzie3, Lindzen' and Grimshaw . Lindzen and Grimshaw also
considered the vortex-sheet profile. When the shear flow is modelled by
a hyperbolic tangent profile, however, resonant overreflection does not
occur . In our opinion such a phenomenon cannot occur for smooth
velocity profiles.

The so-called neutral stability curves are determined by solving equation
(1.5) with boundary conditions ¢ + 0 for z + + o (or with finite
boundaries, i.e. ¢ = 0 at z = Z45 z2) for real values of c. Any point of
these curves corresponds to an eigenvalue of (1.5). In several cases a

neutral stability curve proves to be a stability bounda,ry9-13

. This means
that when such a curve is known, it is frequently possible to determine
for what values of Jc and of other parameter values the shear flow is
unstable. Howard12 described a technique to test whether a neutral

stability curve is a stability boundary or not.
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However, there are cases known where Howard's technique fails1
A necessary condition for instability is that Jc < 1/4. Note that this
condition is the same as that for overreflection. So when overreflection
occurs, the shear flow may be unstable. This has been confirmed by Jones2
and Van Duin and Kelder6 for pariticular shear flow and buoyancy
frequency profiles. The latter authors have also shown that overreflection
cannot occur for values of Jc for which the shear flow is stable, i.e.
overreflection implies instability. The reverse, however, is not
necessarily true . Acheson5 considering the vortex-sheet profile, has
shown that overreflection can occur even if the shear flow is stable.
However, this model cannot be justified from a physical point of view16

7 and Teitelbaum °~ and Kelder‘%tudied the reflection

Drazin et al.
properties of waves in fluids with two critical levels. The latter authors
have shown that in such a fluid overreflection can also occur.

In this work we will derive some general proper<ies of equation (1.5).
These properties also apply to equation (1.7), i.e. the Boussinesg
approximation to (1.5). We outline the essentials.

The Wronskian of the solutions ¢ (z) and ¢~ (z) of equation (1.5), where
the asterisk denotes the complex conjugate, is independent of z in regions
without critical levels. The Wronskian is related to the Reynold stress.
At the place of a critical level this stress is discontinuousg. In section
2 the Wronskian approach is introduced. The results derived are valid

for arbitrary, smooth background velocity and Brunt-Viis&ld frequency
profiles. It is assumed, however, that the Brunt-Vdisald frequency does
not vanish at one of the critical levels. Throughout we only consider
unbounded flows.

In section 3 it will be shown that the Wronskian approach is suitable to
derive results that are generalizations of results derived by Milesg.

This author examined monotonic background velocities in a fluid with one
critical level. When the fluid has two critical levels, the Wronskian
approach also applies (section 4). In the sections 3 and 4 we will derive
necessary conditions for the occurrence of overreflection and the
existence of singular neutral modes, i.e. eigensolutions of (1.5) for

real phase velocity c. These modes are related to neutral stability

curves.



Section 5 is devoted to the determination of neutral stability curves
for a particular class of profiles for the background velocity and the
Brunt-Véis&ld frequency. The class of profiles considered is such that
equation (1.5) or (1.7) is reducible to an equation of the Fuchsian
type. The latter equation is ordinary and linear, and every singular
point in this equation, including the point at infinity, is a regular
singular point19. By application of results derived in the previous
sections, combined with the theory of Fuchsian equations, it will be
shown that it is often possible to derive closed-form expressions for
the neutral stability curves.

This work is an extension of chapter 6 of the author's thesiszo



2. The Wronskian approach

The starting point of our treatment is the Helmholtz equation

4’ + k2(z) ¢ = 0, (2.1)

where kz(z) is real for real values of z. The prime denotes
differentiation with respect to z.
We observe that if ¢ (z) is a solution of (2.1), the complex conjugate

¢x (z) is also a solution of this equation. We define

W(g, ¢%) = i(g ¢%- 6%4°). (2.2)

\

The expression between brackets is known as the Wronskian of ¢ (z) and

#* (z). When the profile k2?(z) is without singularities, the Wronskian

is independent of z. However, when k?(z) has a singularity at z=0, say,
the value of the Wronskian in the region z < 0 is in general different
from the value in the region z > 0. This is due to the fact that the
point z = 0 is then a branch point of the solutions of equation (2.1).
When equation (2.1) is related to an equation which governs the
propagation of monochromatic waves in a planarly stratified medium with
propagation properties that depend on the Cartesian coordinate z only,
the assumption of real k? (z) means that dissipative effects are not
taken into account.

Now we start from equation (1.5). Through the transformation (1.6) this
equation is related to the equation governing the propagation of internal
gravity waves in an incompressible, inviscid fluid, (eq. (1.4)).

The dependent variable w in (1.4) is the z-component of the perturbed
velocity which is assumed to be proportional to the time factor exp(-iwt).
Throughout we start from the presence of one or more critical levels, i.e.
levels at which U(z) = w/c. At these levels equation (1.4), and the same

applies to (1.7), has a singularity. One of the critical levels is
situated at z=0, say.



Moreover we only consider regular critical levels, i.e. the
singularities are characterized by poles of second order in the
independent variable. The Richardson number at the place of the
critical level situated at 2z=0 is denoted by JC. The Brunt-Véis&ld
frequency N(z) and the shear flow U(z) are arbitrary, smooth functions
of z. It is agssumed that the Brunt-Véisdld frequency does not vanish
at one of the critical levels.

For Jc # 1/4 the general solution of equation (1.5) in a neighbourhood

of the point 2=0 is a linear combination of the functions

+ ' t

¢t (z) = zY (1+8,1t ZH.ee..) = zY x:t (z), (2.3)
where *

+ 1

Y o=dri(g - DA (2.4)

For Jc = § the general solution of (1.5) around z=0 is a linear combination

of the functions

81 (2) z%nzo b 2", (2.5a)

3
62 (2) = 60(2) 10g 2z + Zznzo c 2 (2.5Db)

To make the solutions (2.3-5) one-valued around z=0, we have to introduce
a branch cut in the complex z-plane. When the slope of the shear flow in

z=0 is positive (negative), the branch cut should be taken upwards

(downwards) 1:

We introduce the notations (ef. (2.L))



[N
+
o

-

+ _in s JC>

Yy = { (2.6)
+

where y] and y, are taken positive. The exponents Yt are complex for

J, > 1/4, with Y+ = (v7)¥%, and real for J.< 1/k.

The same is true for the functions x* (z) in (2.3): for J, > 1/4 ve have
x+(z) = {x"(z)} *; for J, < 1/4 these functions are real. The coefficients
t_ and c in (2.5) are real. It will be convenient to replace é+(z),
8(2) vy 8,(2) ana ¢°(2), 62 (2) vy 4, (2).

The total wave ¢(z) is a linear combination of the functions ¢1(z) and

¢2(z):

.

é(z) = A, 8,(z) + A, 6,(z). (2.7)

In the rest of this section we assume the presence of one critical level,

which is situated at z=0. From (2.2) and (2.7) it follows that, for z#0

W(g,8Y) = A ATW(S,, 47) + AATH(S,, 45)

(2.8)
+ AN, 67) + AATH(S,, 47).
For Jc < 1/4 relation (2.8) reduces to
by, Im(A AY), z > 0,
Wg %) = ¢ 0T (2.9)

I Im{A1A§ exp (+ 2imyy)}, 2z < O,

where Im denotes the imaginary part. The plus (minus) sign in the
arguments of the exponential functions must be chosen accordingly as the

slope of the shear flow at z=0 is negative (positive).
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For Jc = 1/4 we obtain the relstions

X
-2 1Inm (A1A2), z >0,

W(d,g") = { (2.10)

12nA2A’2f+2Im(A1A’2‘), z < 0.

The meaning of the symbol + in (2.10) is the same as that in (2.9).
For Jc > 1/4 relation (2.8) reduces to

X , .X
2 Y, (AA7 - A2A2), z > 0,

W(g,4%) = { N .
2 [A2A2 exp(+2my))-A,Ajexp{-(*2my))}],z < o.

(2.11)

.

When we start from the Taylor-Goldstein equation (1.7), the solutions of
this equation in a sufficiently small neighbourhood of the point z=0 are
also of the form (2.3) and (2.5) but with other values of the coefficients
as bn’ and c, Nevertheless, the same expressions (2.9 - 11) for the
Wronskian (2.2) will be derived from (2.7). This is due to the fact that,
for given N(z) and U(z), the solutions of equations (1.5) and (1.7) have
the same behaviour in a small neighbourhood of the singular point z=0
since the term with (U—c)-2 is predominant for z - 0.

Next we write equation (1.5) in the Helmholtz form (2.1). The profile
k2(z) has finite limits k?(+ =) for z > + =, with k2(+ «)# 0. If k?(-=)< 0,
k2(+ ®)> 0 or k%(- »)> 0, k?(+ )< 0, we deal with a reflection problem.
The regions z » -= resp. z > +» are then opaque while the regions z + +w
resp. z » -= are transparent. If kZ(- «)> 0, k?(+ ®)> 0, the incident wave
is both reflected and transmitted for the two cases of incidence in the
positive or negative z-direction since the regions z -+ + = are transparent
in this case. If k?(- =)< 0, k2(+ =)< 0, we have to do with an eigenvalue
problem because we then should require that ¢(z) + 0 for z > + » in order

that the energy content of the wave is finite.
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Let the asymptotic behaviour of the total wave #(z) be of the form

8(z) v g (2), (z >+ =), (2.12)

We suppose that the profile k2(z) is such that

+
¥ & (z >+ =), (2.13)
dz dz

So we suppose that differentiation of the asymptotic relation (2.12) is
permissible.

It will be convenient to introduce the notations

'
]

{ k2(+ m),}’l‘, k2(+ ®)> 0, (2.1ka)

(K2(+ =)}2, K2(+ )< 0. (2. 14b)

ke )
[}

Apart from multiplicative constants the symbols kt and pt determine the
asymptotic behaviour of ¢(z) and its derivative. When the region z +» -
is transparent, the symbol k  denotes the vertical wave number in that
region. When the region z + - = ig opaque, p determines the rate at
which the decreasing part of ¢(z) vanishes as z + - o, When the region

. . + + .
2 >+ » 1s considered, k resp. p denote vertical wave number resp. rate
of vanishing in that region.
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3. Fluids with one critical level

We consider a fluid with one critical level. This level is situated at
2z=0. The slope of the background velocity profile is positive at the
place of the critical level, hence U(z)< ¢ for z < 0 and U(z)> c for

z > 0. The value of the Richardson number at the place of the critical
level is denoted by Jc'

Neutral modes are solutions of equation (1.5) that for real frequencies

satisfy the boundary conditions
¢ =0, (z = 2., 2,). (3.1)

We only consider singular neutral modes, i.e. the critical level is

situated within the interwval (z1, z <0< z..

2 1 2

Instead of the solid boundaries z, and 2, one also considers unbounded

- flows, i.e. boundaries at infinity:

). Consequently, z

¢ >0 as z +> + o, (3.2)

In this section the following theorems will be proven:

(i) For JC > 1/4 overreflection cannot occur, i.e. the absolute value

of the reflection coefficient is at most unity for these values of

J,. For J. = 1/4 total reflection is, at least in principle,
possible provided the region that is opposite to the region of
incidence is opaque, 1.e. there is no transmitted energy.

(1i) The existence of singular neutral modes requires that Jc < 1/h.

(iii) For I, < 1/4 a singular neutral mode, if existing, is proportional

to either ¢1(z) or ¢2(z). For J_ = 1/4 such a mode is proportional

to (2.5a), i.e. proportional to the solution without a
logarithmic singularity.
The theorems (ii) and (iii) will be derived under the assumption of

unbounded flows, i.e. the boundary conditions (3.2) are considered.
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However, when regarding the so0lid boundaries (3.1), these theorems remain
valid. We remark that the theorems (ii) and (iii) are generalizations of

previous results derived by Miles9 for monotonic shear flow profiles.

Proof of theorem 1i.

We assume the incident wave to be propagating in the positive z-direction.
Since the source is placed at the end point z = - =, this implies that

k2(- «)> 0. The amplitude of the incident wave is normalized to unity at

z = - ». In the transparent region z + - », where U(z)< ¢, the zZ-component
of the group velocity of the wave has the opposite sign of the'z-component
of the phase velocity.

We first consider the case k2(+ »)> 0. In the transparent region z +» + o,
where U(z)> c, the vertica} group velocity and phase velocity have the
same direction. Then the asymptotic behaviour (2.12) of $(z) should be
prescribed according to (ef. (2.12))

.+
ik z

-1k 2z ik 2z +(Z) = Te , (3.3)

g (z) =e + Re ’ g

where R and T are the reflection and transmission coefficients,

respectively. From (2.2), (2.13) and (3.3) it follows that

N k' T, z >0,
Wig,é7) = { - (3.4)
2k (RR-1), z < 0.
By equating (2.10), valid for J, = 1/4, and (3.4) we obtain
RRY + (k* / k7) 7% < 1, (3.5)

hence |R|<1. By equating (2.11), valid for J, > 1/4, and (3.4) we obtain
an expression that is similar to (3.5). Note that the minus sign must be
chosen in (2.10) and (2.11).
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Next we consider the case k?(+ )< 0, i.e. the region z > + « is opaque.
Then we must require that ¢(z) vanishes as z > + =, i.e. the function
g+(z) in (3.3) must be proportional to exp(—p+z), where p+ is given by
(2.14b). Consequently, W(é,6%)= 0 for z > 0. For J, > 1/4 we find again
that |R| <1. For JC = 1/4 total reflection is, at least in principle,
possible. This can readily be seen from (2.10) under the assumption that
the coefficient A, in (2.7) vanishes. If A, = 0, however, we find that
|IR| <1 for J = 1/k.

When the incident wave propagates in the negative z-direction, the proof
of the theorem is similar. When k?(- =)> 0, the relation betweén |R| and
|T| is of the form

RRS + (k7 / k') T < 1 (3.6)

When k%(- =)< 0, we find that |R| <1. Again total reflection is in principal
possible for J_ = 1/4, and |R| <1 for J, > 1/h.

Proof of theorem ii.

The boundary conditions (3.2) can only be satisfied if k?(-~ ®)< 0 and
k?(+ =)< 0, i.e. the regions z > + © must be opaque. Hence the functions
g (z) and g+(z) in (2.12) must be proportional to exp(p z) and exp(-p+z),
where p  and p+ are given by (2.14b). Thus singular neutral modes exist

provided Jc’ A1, and A2 are such that

w(g, §%) =0, z#o0. (3.7)

Then it follows from (2.11) that for JC > 1/4 relation (3.7) is satisfied
if sinh (2nY1) = 0. Since Y, > 0, we are led to a contradiction: for

I, > 1/4 singular neutral modes cannot exist.

Proof of theorem iii.

By equating (2.9) and (3.7) we obtain A1A§ sin (2nY2) = 0, from which it

follows that A1= 0 or A2 = 0 since Y2>O.
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For Jc = 1/4 we are led to the necessary condition A2 = 0, cf. (2.10).
This means that for Jc = 1/4 singular neutral modes, if existing, are

proportional to (2.5a), cf. (2.7) where ¢1(z) is the counterpart of (2.5a).

We remark that the expressions (3.5) and (3.6), valid for I, > 1/k,
indicate that wave energy is lost. When there is no critical level, we
must replace (3.5) and (3.6) by

RR* + (k" / k7)) DT = 1 and RR* + (x~ / k%) o7% = 1, (3.8a,b)

respectively. These expressions indicate an energy flux balance.

It is well-xnown that overreflection is in principle possible for
sufficiently small Jc < 1/4. The occurrence of this phenomenon, however,

is not only determined by the value of Jc but also by other parameter
values6.

The Wronskian approach is not suitable to derive more explicit criteria

for overreflection. This is due to the fact that the absolute value as
well as the argument of the complex product A1A§ are not known for Jc < 1/k

(A1 and A, are the coefficients in relation (2.7)). For fixed Yo this
product determines the values of the Wronskian (2.9), i.e. the absolute
values of the reflection and transmission coefficients.

To be more specific, we consider an incident wave propagating in the
positive z-direction. By equating (2.9) and (3.4) we find that |R| and |T|

are uniquely determined by A1A; when the wave numbers at infinity, i.e.
k*, and Y, are fixed (Y2 is determined by J,» cf. (2.4) and (2.6)).
When the region z + + » ig opaque, A1A; is real. Then the sign of RR'-1

is determined by the sign of A1A;, i.e. |R| <1 for A1A; <0 and |R| > 1
X

for A1A; > 0. As has been mentioned before, however, A1A2 is not known.
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b, Fluids with two critical levels

The critical levels are situated at z=0 and z=d, where 4 is the distance
between these levels. The symbols Jc1 and ch denote the Richardson
numbers at z=0 and z=d, respectively. The expressions (2.9 - 11} for the
Wronskian (2.2) as determined from (2.3), (2.5) and (2.7), where Y, and
Y, are defined by (2.4) and (2.6) with J, replaced by J_,, are now valid
in the regions z < 0 and 0 < z < d. We assume that the slope of the
background velocity U(z) is positive at z=0. Hence U(z)> ¢ for 0 < z < d
and U(z)< ¢ outside the interval[0d). To determine the value of the
Wronskian in the region z > 0 we proceed as follows.

The solutions of equation (1.5) around the point z=d are denoted by
¢1d(z) and ¢2d(z); these s@lutions are taken as the counterparts of the
solutions ¢1(z) and ¢2(z) as defined in section 2.

The total wave #(z) is a linear combination of ¢1d(z), ¢2d(z):

#(z) = B1¢1d(z) + B2¢2d(z). (4.1)

The expressions for the Wronskian (2.2) as determined from (L.1) are now
given by (2.9 - 11) with Ak replaced by Bk; Y, and Y, are to be expressed
in the parameter Jc2' The resulting expressions are valid for z > 0, z # d.
Since the slope of U(z) is negative at z=4, the plus sign must be taken

in (2.9 - 11). Note that the vertical components of the phase velocity and
the group velocity of the wave have opposite signs in the regions z + + =
when these regions are transparent. Consequently, when the incident wave
propagates in the positive z-direction,and the region z »+ + = is transparent,
the Wronskian is negative for z > 4.

The existence of (singular) neutral modes requires that W(¢,¢x) = 0 outside
the interval [0,d).Within this interval, however, the Wronskian does not
necessarily vanish. There are two cases known where the Wronskian also

vanishes in the interval [F0,d]:

(a) The profiles U(z) and N(z) are such that the problem described

is symmetric (section 5).
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(b) The special case when Jo1 = Jeo = 1/4, as will be shown in this

section. Note that the "symmetric problem" includes this case.
The proof of the next theorems is rather straightforward. Therefore we
content ourselves to citing them:
(iv) For Joq 2 1/4 and J.o 2 1/4 overreflection cannot occur. For
Joq = Joo = 1/4 total reflection is, at least in principle,
possible provided the region that is opposite the region of
incidence is opaque, i.e. provided there is no transmitted
energy.

(v) For Joq 2 1/4 and Jeo > 1/4 singular neutral modes cannot exist.
The same is true when J i = 1/4 and J > 1/4, where J i and JCk
denote the Richardson numbers at the crltlcal levels.

(vi) For Jaq = Jc2 = 1/4 a singular neutral mode, if existing, is
totally represented by the solutions ¢ (z) and ¢1d(z), i.e.
A, = 0 and B, = 0 in (2.7) and (L.1). Moreover for J 4 =J , =
1/4, the Wronskian also vanishes in the region 0 < z < d, i.e.
there is no net energy flux from one critical level to another
in this special case.

(vii) Under the assumption that the existence of singular neutral modes
implies that the Wronskian also vanishes in the region 0 < z < 4,

01 S 1/4 and

Jc? < 1/L. In other words, singular neutral modes then carnot

a necessary condition for such modes is that J

exist when the Richardson number at one of the critical levels
exceeds the value 1/k.
Under the above assumption a singular neutral mode, if existing,
is totally represented by ¢i(z) and ¢kd(z), where i = 1 or 2 and
k = 1 or 2. The solution with a logarithmic term is excluded, i.e.
the coefficient A, in (2.7) or B, in (4.1) vanishes when Joq = 1/4
or Jc2 = 1/4, For Jc1 = ch = 1/4 see also theorem (vi).
The theorems (v) through (vii) apply to solid boundaries as well as to
boundaries at infinity (unbounded flows).
Finally, we remark that the Wronskian approach is also suitable to
determine reflection properties of fluids with more than two critical levels.
The same applies to finding criteria for the existence of singular neutral

modes. To analyse this problem is beyond the scope of this work.
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5. Neutral stability curves

In this section the Brunt-V&is#ld frequency and the background velocity
will be modelled by profiles which are such that the governing equation,
i.e. (1.5) or (1.7), is reducible to a differential equation of the
Fuchsian type. The latter equation is an ordinary, linear, homogeneous
equation in which every singular point is a regular singular point,
including & possible singularity at infinity19.

When the fluid has one critical level, the resulting Fuchsian equation

has at least three singular points. When the fluid has two cri£ical levels,
the number of singular points amounts to at least four.

The number of singular points in the resulting Fuchsian equation depends
on the number of critical levels and on the shape of the profiles of the
background velocity and the Brunt-Vdis#ld frequency.

It will be shown that application of the results derived in the previous
sections, in combination with the theory of Fuchsian equations, often
enables us to derive closed-form expressions for the neutral stability
curves. This is especially the case when it can be shown that the
existence of singular neutral modes requires that the resulting Fuchsian
equation has polynomial solutions. When this equation has no such
solutions for physically meaningful values of the parameters, this means
that singular neutral modes do not exist for the profiles of U(z) and

N(z) considered. The theory will be worked out on the basis of a number

of specific examples.

We first consider a fluid with one critical level. The profiles are of

the form

0(2) = o _(0)exp(-uz), U(z) = gL (1 + tanh 52-). (5.1)

For this density distribution the Brunt-Vdis#ld frequency is a constant:
2 = i N2
N%(z) = ug : NZ.

Substitution of the transformation

7

n(z) = 3 (1 + tamh 22 (5.2)
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into (1.4), with po(Z) and U(z) given by (5.1), yields the equation

d®w  2n+x-1 aw J-p?(n-a)? 1=x=2n
an? ¥ -1 an t GZ(nea)Z(enZ n(n-a)(n-1)? ¥=0s (5.3)

with the dimensionless parameters

a=c/U, x=ud, p=ki, J-= Ngdz/Ug. (5.4a,b,c,d)

Equation (5.3) is of the Fuchsian type, with singular points

n = 0,a,1, and ». It is a special form of Heun's equation21’22.

The singular point n = a corresponds to the place of the critical level.
Hence 0 < a < 1. The singular points n = 0 and n = 1 correspond to the
end points z = + ® (ef. (5.2)). Note that the point at infinity has no
phjsical significance.

The Richardson number at the place of the critical level is given by

J, = J/a%(1-a)2. (5.5)

Now equation (5.3) is brought into standard form. This is done by means

of the transformation

v =1% (1-0)® (n-a)Y w(n), (5.6)
where

aZ - ya + (1-8)2 J,-p? =0, (5.7a)

B2+ xB + 8% -p? =0, (5.7b)

Y2 -y +J, =o. (5.7¢)
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The standard form reads

2 A +Aq
dV+(1+2a-l + 1+2B8+y + 2;)91 o 1

dn? n n-1 n an * n(n-a)(n-1) = O (5.8)

where
A = (o+B+y-1) x~a2+B2-y2+1-20ry

~a(a?+R2-y2+q+B+r+208) , (5.9a)
A, = (a+B4y+2) (o+B+y-1). (5.9v)

To determine the neutral stability curve(s), we investigate the asymptotic
behaviour of the solutions of (1.4) as z + + = and the behaviour of these
solutions in a neighbourhood of the ecritical level.

The general solution of equation (5.3) in a neighbourhood of the point

n

1 is of the form

=
L1}

n* (n - a)T{A1 (1 - n)B,lvl(n) + A, (1 - n)B"vz(n)} .

The exponents 8) and By are the roots of (5.7b); vi(n) and vo(n) are

power series in 1 - n, with n = n(z) given by (5.2). A, and A, are

constants.
Since n > 1 as z + + » , the exponents B8, and B, determine the asymptotic
behaviour of w as z > + ®»., From the requirement that w vanishes in this

region, it follows that at least one of the exponents must be positive, i.e.

p >ad_, (5.10)

ef. (5.7b). This implies that B1B> < 0, i.e. one of the exponents, Bj say,
is positive and B, < 0. Consequently, the solution of (5.3) with the
exponent B; has the required asymptotic behaviour. Since the solution with

~he exponent B, increases as z + + =, the eigensolutions reduce to

solutions of the form
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wv=nt (1-m8 (n-a)vin), with 8 = 8;,

where vi(n) is a power-series solution of (5.8) in a neighbourhood of the
point n = 1. This series, converging in the domain |1—n[ < 1-a, defines

an analytic solution of n in this domain.

To determine the asymptotic behaviour of w as z + - ®, we can proceed in a
similar way as before. Since n + 0 as z > - =, we determine to that purpose
the general solution of equation (5.3) in a neighbourhood of the point

n = 0. The roots a; and a, of (5.7a) determine the behaviour of the

solutions as z + - ». These roots are real provided

P2+ (x2/4) = (1 - 8)2 J_ > 0. (5.11)

This condition is necessary for the existence of singular neutral modes.
From theorem iii it follows that for Jc < 1/4 & singular neutral mode is
represented by one of the solutions around n=a:

Y, (k)
(1 -8 (n-a) kva (n)y, k=1or2,

where Y) and Y, are the distinct roots of (5.7c). The solution vék)(n) is

a power-series solution of (5.8), with Y = Yo in the domain of convergence
In| < min (1,1-a), defining an analytic solutior in this domain. In the case
JC = 1/b, when Y;= Y, = 1/2, the same conclusior can be drawn. '

Now we first consider the parameter range a > 1/2. It follows from (5.7a)
and (5.10) that &j0p< 0. Then it is possible to take the parameter & in
(5.6) positive. If this parameter is positive, however, the solution of
equation (5.8) must also be analytic in a neighbtourhood of the point n = 0.
From the above considerations we conclude that for & > 0O and B > 0, and by
choosing the value of the parameter Y appropriately, the boundary
conditions can only be satisfied for a > 1/2 if the solution of equation

(5.8) is analytic in a neighbourhood of any of the finite singular points

of this equation.
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Consequently, this solution must be an entire function of n. Since (5.8)

is a Heun equation, however, such a solution is necessarily a polynomial
in n11’20. Substitution of a polynomial of degree n into equation (5.8)
vields a + B+ Y- 1 =-nor Q+B+Y+2=—n. Sincea, B, and Y are

positive, only n = 0 satisfies. Hence

o+B+v=1. {(5.12)

So equation (5.8) must have a solution v(n) = constant. This implies that

Ao = 0 and A1 = 0. Note that A1 = 0 in view of (5.12). From (5.12) it
follows that AO = 0 provided

a =8/ (a+ B). N (5.13)

Combining (5.7), (5.12), and (5.13) yields

J, = r2(1 - r2), r? = hpe/(1 - xe), (5.14)

and
a=3 (1 -x), (5.15)

where r2 < 1 and x < 1. Note that a < 1/2.

The result (5.15) implies that equation (5.8) has no polynomial solutions
for a > 1/2. In other words, singular neutral modes cannot exist for this
parameter range. .

For real a, B, and Y the sets of equations (5.12 - 13) and (5.14 - 15) are
equivalent. Hence equation (5.8) has indeed a solution v(n) = constant for
rhysically meaningful parameter values. In other words, singular neutral
modes do exist if a < 1/2, where in view of (5.15) this parameter is
determined by x, with x < 1. Note that x, as defined in (5.4b), is the

ratio of the scale of the background velocity and of the undisturbed

density.
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The question remains, however, whether the neutral stability curve (5.1k4)
is the only one since this curve is actually determined from the
requirement that equation (5.8) has a polynomial solution. If a1y < 0 for
all physically meaningful parameter values, the neutral stability curve
(5.14) proves to be the only one since the solution of (5.8) must reduce
to a polynomial in this case. However, in view of (5.7a) the product ajo;
is not necessarily negative. We do not pursue this any further.

Teking limits as x > 0 in (5.14 - 15), the results derived previously by
Drazin23 and Miles11 are recovered. The latter results apply to the
Taylor-Goldstein equation (1.7) with the configuration (5.1). '

In the second example we consider the configuration

N2(z)

N2, U(z),= U sech? z . (5.16a,b)
[o] (o] DY

Equation (1.7) with (5.16) is symmetric in the independent variable z.
Consequently, the eigenfunctions of this equation can be distinguished in

even and odd functions.

Substitution of the transformation

n = tanh z_ (5.17)
24

into (1.7) yields an equation of the Fuchsian type with five singularities.
The reduction of (1.7) to such a Fuchsian equation can be accomplished
through various transformations of the independent variable.

The hyperbolic tangent transformation (5.17) is most advantageous for this
purpose. Since this transformation is antisymmetric, the resulting equation
also has solutions which are either symmetric or antisymmetric in the new
independent variable n. An antisymmetric transformation preserves the
symmetry properties of the problem.

By introducing the transformation

w = (n2 = 1)X(n2 - b2)Tg(n), (5.18)
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where n = n(z) is given by (5.17) and with
2 = 1242 _ 2 2 = _
X k<d b<J b (UO c)/UO, (5.19a,b)

Y2 -y + J, =0, (5.19¢)

equation (1.7) with (5.16) reduces to

(n? = 1)(n? - v2) dy_
dn?
+ [y + 201+ 20)) n® - {by + 202(1 + 2¢)}n] dp (5.20)
dn

+ {(2x + 2y + 3)(2x + 2y - 2)n2 + 2y (1 = 2Y) - 2xb2(1 + 2x) +

8b2y(y - 1) + 2} y = 0.

Equation (5.20) is of the Fuchsian type, with singular points n = + 1,+ b, and
=, Note that this equation has indeed even and odd solutions. It is also
possible to reduce equation (1.7) with (5.16) to a Fuchsian equation by

means of the transformation

Y Y2
w=(n2 - 1Xn+1v) (n=-1b) vin) (5.21)

instead of (5.18); where Y; and Y, are distinct roots of equation (5.19¢).
Due to the symmetry of the problem, however, and since n(z) is an odd
function of z, we must require that Y} = Y, = Y in order to be able to
distinguish even and odd eigensolutions.

Equation (5.20) can be further reduced to a Heun equation by means of a
quadratic transformation of the independent variable. This may be of interest
for the determination of reflection and transmission coefficients since
Heun's equation has less singular points than (5.20). For the determination

of the neutral stability curves, however, we start from equation (5.20).
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Due to the symmetry of the problem the existence of singular neutral modes
implies that the Wronskian of w(z) and its complex conjugate not only
vanishes in the regions outside the critical levels but also in the region
between these levels. Physically, this means that there is no preferred
direction of the z-component of the net energy flux. Consequently, there

is no net energy flux from one critical level to another in this case.

Thus the direction of this flux is normal to the z-axis.

The parameter x in (5.18), where x is a root of equation (5.19a), is taken
positive.* Then the boundary conditions w(+ =) = 0 can only be satisfied
if the solution of equation (5.20) is analytic in neighbourhoods of the
points n = + 1. From theorem vii it follows that the parameter Y in (5.18),
where Y 1s a real root of equation (5.190), can be chosen such that the
solution of equation (5.202 must also be analytic in neighbourhoods

of the points n = + b. Consequently, the solution of (5.20) must be an
entire function of n. Since equation (5.20) is of the Fuchsian type, however,
such a solution is necessarily a polynomial in n (Appendix of this work).
From the requirement that equation (5.20) must have polynomial solutions,

the neutral stability curves are uniquely determined.

Substitution of ¥(n) = constant into (5.20) yields the relations
15p2(1-p? 6+Lp?
;. 5p(1-p )’a. I N DA (5.22a,b,c)
€ (3+2p2)2 15

where a and p are given by (5.k4a,c). Through (5.18) the solution ¥(n) =

constant corresponds to an even eigensolution.

r

The existence of singular neutral modes implies that the roots x) and xa
of (5.19a) are real. For complex x; and x; the solution w(z) is

oscillating in the regions z + + o,
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Substitution of ¥(n) « n into (5.20) yields the relations

6lp” (3+hp?)?

ey
1}
P

{5.23a,b,c)

A
N
.

ST - >a= P
° (3+4p2)2  3(3+20p°)

Tne solution ¥(n) = n corresponds to an odd eigensolution.

It can be seen by inspectior that equation (5.20) has no polynomial
solutions of degree 2,3,..... for physically meaningful parameter values.
So there is one symmetric or sinuous mode, with neutral stability curve
(5.22a), and one antisymmetric or varicose mode, with neutral stability
curve (5.23a). The results (5.22) and (5.23) agree with those derived by
Drazin and Howard13. The curves could be determined exactly since the
governing equation is reducible to a Fuchsian equation and the symmetry

of the problem implies that the Wronskian also vanishes in the region
between the critical levels. This also enabled us to determine all possible

neutral stability curves. The same is true for other symmetric profiles,
e.g. the profiles

N2(z) = Ni sechh.g_, U(z) = Uo sech2 z . (5.24a,b)
2d 2d

For a = 0, i.e. when the horizontal phase velocity vanishes (cf. (5.k4a)),

equation (1.7) with (5.2L4) is reducible to & hypergeometric equetion.

Thorpe2h found the curves

J, = hpe, (sinuous mode) (5.25)

J =3+ hpg, (varicose mode) (5.26)
where

J, = b dst / Ui

is a representative Richardson number.
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For a # 0 equation (1.7) with (5.24) is reducible to a Fuchsian equation
with five singular points by means of the transformation (5.17).

Huppert1h found the curve

2p(Lp°-10p+6) 2(2p-1)
J = > a=—? J<pc<i, (5.2Ta,b,c)
1+2p 1+2p
for a sinuous mode, and the curve
2 2
Lp<-8p+ Uhp“+1
g SRS W ey, (5.288,D,c)
° 1+p 2p2+3pt]

for a varicose mode.

Huppert remarked that the results (5.27 - 28) can be verified by direct
substitution. He did not claim to have found the complete solution. With
our methods, however, it can be shown that (5.25 - 26) and (5.27 - 28)
represent the complete solution, i.e. there are no other neutral stability
curves.

We conclude with the remark that when the governing wave equation is not
symmetric in the independent variable, the Wronskian (2.2) not necessarily
vanishes in the region between the critical levels. In that cagse it is not

possible to determine the neutral stability curves by means of the methods
described here.
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Appendix

A differential equation of the Fuchsian type is an ordinary differential
equation in which every singular point is a regular singular point,
including a possible singularity at infinity19. In the next discussion

we only consider Fuchsian equations of second order, with a singular point
at infinity. o

21,22

Heun's equation is an equation with four singular points . If this

equation has a solution that is an entire function of the independent

variable, i.e. regular at any finite singular point, this solution

11,20

necessarily reduces to a polynomial . In this section it will be shown

that the same is true for a Fuchsian equation with five singular points.
The latter equation has been derived by Lamé25 and has been studied in

26,27

detail by Crowson

Any Fuchsian equation with five singular points can be reduced to the

standard form

d2u v ) £ " du
+ { -+ + + }— +
ag? t -1 ¢=-a r-b dg
(A.1)
aBt? + vz + vy
+ u =20,
t(z - 1)(g - a)(g - b)
where
Y+8§+e+yu—-—0o=-B=1. (A.2)

The solutions of this equation may be characterized by the Riemann P - symbol

0 1 a b @
P 0 0 0 0 o e . (A.3)
T-y 1-8 1-el-yu B 1
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which lists the location of the singular points and the exponents relative
to them, as well as the argument.

The P - symbol does not characterize the solutions of equation (A.1)
completely: there are two so-called accessory parameters, namely v; and vy,
The exponents in (A.3) relative to the singular points are not expressed
in these parameters.

To obtain a solution of equation (A.1) in a neighbourhood of the singular

point ¢ = 0, we apply the method of Frobenius, i.e. we substitute the

series

u(e) = Ee ()" (A1)

into (A.1), multiplied by 2(z-1)(z-a)(z-b). This leads to the indicial

equation

AMA - 1) + Ay =0, (A.5)

with roots X1=0, Ay=1-Y. Note that these roots, the exponents relative

to the singular point =0, are indeed indicated in (A.3)

For the solutions in a neighbourhood of one of the other finite singular
points one of the roots of the pertaining indicial equation also vanishes,
cf. (A.3). Consequently, equation (A.1) may have a solution that is an
entire function of f. Such a solution can be represented by the series (A.L),
with A=0. In general, however, the series (A.lL) converges in the domain

lz| < min (1, lal, |b]). Only for restricted combinations of parameter
values, (A.l4) converges in a larger domain. One of the singular points of
equation (A.1) is located on the boundary of this domain, however.

In the previous section we treated examples of reduction of the Taylor-
Goldstein equation (1.7) to a Fuchsian equation with five singular points.
Reduction to such an equation was accomplished through the transformation
(5.17). The extremes n= *1 of this transformation belong to the singular
points of the resulting Fuchsian equation. The other finite singular points

lie in the interval (-1, 1). Therefore this equation is not of the form
(A.1).
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Keduction to this form is possible by means of the transformation
z = 3% (14n), with n=n(z) given by (5.17). Since the original wave equation
has two critical levels, the remaining finite singular points a and b of

(A.1), with a and b real, and a # b are then located in the interval (0,1).

Theorem.

If equation (A.1) has a solution that is an entire function of z, and the
singular points a and b are located such that la| # 1, |[b| # 1, and

la] # |o], this solution is necessarily a polynomial in z.

Before we give the proof, we remark that from the foregoing it ' will be
evident that with the limitation to distinct values of the moduli of the

singularities the theorem remains sufficiently general to our purpose.

Proof of the theorem.

Y

The series (A.k4), with A=0,

u(g) = T c ¢, (A.6)

represents a solution of (A.1) that is analytic in a domain including the
point £=0. On the other hand, any analytic solution in this domain may be
represented by (A.6). Therefore it suffices to show that when the series
(A.6) is infinite, its radius of convergence is always finite. Consequently,
if (A.6) defines a solution that is an entire function of z, this series
necessarily reduces to a polynomial. The proof is based upon the theory of
difference equations and runs as follows. .

By multiplication of equation (A.1) with t(z-1)(z-a)(z-b), and after
substitution of (A.6) into the result, we find that the coefficients .

satisfy a four-term recurrence relation of the form
{abm? + f1m + £,} Creq = {(a+b+ ab)m? + f3m + £,} n

+ {(a+Db+ 1)m? + fgm + fele, - m? + fym + fg} ¢, 5 =0, (A.T)
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The coefficients £, only depend on the parameters oI (A:1).

The recurrence relation (A.7) can also be understood as a linear, third-order

difference equation of the form

Copr tBC, t Rt k Cpp =0, n= 2,3,h,..... (A.8)

where the coefficients of this linear equation have finite limits

_ atb+ab  at+b+1 1
na kl’l’) = (‘ ab 3 ab s = ab )~ X (A())

lim (gn, h

n->co
The polynomial

.

Z 43 atb+ab, 2 at+b+1 1
g (t) =t7 - ( ot 5 - (A.10)

is called the characteristic polynomial of equation (A.8). This polvnomial

has the zeroes

t, =1, t, = 1/a, ty = 1/b. (A.11)

Now we assume that the series (A.6) is infinite. Since the sequence {cn}

of the coefficients of this series is a solution of the difference equation
(A.8), and the moduli of the zeroes of the characteristic polynomial (A.10)
of (A.8) are distinct, the ratio Cn+1/cn is defined for sufficientlyqéarge
n and tends to one of the zeroes (A.11) as n + » (Poincaré's theorem“ ).
From (A.11) and d'Alembert's criterion for convergence it follows that the
series (A.6) has a finite radius of convergence.

This completes the proof of the theorem.
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