KONINKLIUDK NEDERLANDS
METEOROLOGISCH INSTITUUT

WETENSCHAPPELIJK RAPPORT
SCIENTIFIC REPORT

W.R. 81-1
F.T.M. Nieuwstadt

THE NOCTURNAL BOUNDARY LAYER
THEORY AND EXPERIMENTS

De Bilt 1981



Publikatienummer: K.N.M.I. W.R. 81-1 (FM)

Koninklijk Nederlands Meteorologisch Instituut,
Fysisch Meteorologisch onderzoek,

Postbus 201,

3730 AE De Bilt,

Nederland.

U.D.C.: 551.510.522



VRIJE UNIVERSITEIT TE AMSTERDAM

The Nocturnal Boundary Layer

Theory and Experiments

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor in

de wiskunde en natuurwetenschappen aan

de Vrije Universiteit te Amsterdam,

op gezag van de rector magnificus

dr. H. Verheul,
hoogleraar in de faculteit der wiskunde en natuurwetenschappen,
in het openbaar te verdedigen
op woensdag 25 maart 1981 te 13.30 uur
in het hoofdgebouw der universiteit, De Boelelaan 1105

door

Franciscus Theodorus Marie Nieuwstadt
geboren te 's Gravenhage

K.N.M.I.
De Bilt



Promotor : Prof. dr. ir. H. Tennekes

Coreferent: Prof, dr. ir. J.A. Steketee

Dr. J.T.F. Zimmerman



Aan Marion






IT.

IIT.

Iv.

Contents

Voorwoord

General Introduction

The nocturnal boundary layer: a case study

compared with model calculations.

-~ O U1 W

Abstract

Introduction

. Equations of motion; the assumption of horizontal

homogeneity

. Description of the model

. Experimental data

Consistency of closure assumptions

. Results and discussion

. Conclusions

The steady-state height and resistance laws of the

nocturnal boundary layer: Theory compared with

Cabauw observations.

~N O N1 = W

A

Abstract

Introduction

. The height of the stationary, stable boundary layer

Resistance laws for stable conditions

Experimental data

. Discussion

Summary and conclusions

. Appendix

rate equation for the inversion height in a

nocturnal boundary layer

= Ww

Abstract

Introduction

. A rate equation for the inversion depth
. Results

Summary and conclusions

IT.1
IT.2
I1.3

I1.6
II.9
II.11
II.12
II.20

IIT.1
I1I.
IIT.
I1I.
IIT.
IIT.11
I11.17
IT1.18

o V1w N

Iv.1
Iv.2
Iv.3
V.4
Iv.8



VI.

VII.

A rate equation for the nocturnal boundary-layer

height

Abstract

—

. Introduction

. Rate equation for the stable boundary-layer height
. The equilibrium height

. The time scale

. Observations

(02N B =g VS B V]

. Conclusions

Observations of the nocturnal boundary layer during
clear nights measured with the meteorological mast

at Cabauw in the Netherlands.
References

Samenvatting

V.1
V.2
V.3
V.12
V.16
V.20
V.2k



Voorwoord

Dit proefschrift vormt een afspiegeling van vier jJaar onderzoek.
Enerzijds is dit onderzoek uitvoerbaar geweest dankzij de facili-
teiten die het KNMI mij heeft geboden. Dit geldt in het bijzonder
de meteorologische meetmast te Cabauw, waarvan de meetresultaten de
basis van mijn onderzoek hebben gevormd. Anderzijds is een derge-
1ijk onderzoek alleen mogelijk door hetzij directe, hetzij indirecte,
steun van vele collega's. Deze plaats biedt een uitstekende gelegen-
heid om iedereen te bedanken.

Met name bedank ik

mijn promotor, Henk Tennekes, die naast zijn veeleisende taak als
direkteur Wetenschappelijk Onderzoek, deze studie heeft begeleid.

In het bijzonder ben ik Jje dankbaar voor de uitgebreide en minutieuze
kritiek op manuscripten, die niet alleen tot grotere redactionele
vaardigheid leidde, maar vooral de diepgang van mijn onderzoek ver-
grootte;

al mijn collega's van de afdeling Fysische Meteorologie die via
vele discussies tot mijn werk hebben bijgedragen: met name Han van
Dop, Ad Driedonks, Aad van Ulden en Jaap Wisse;

de coreferenten prof. dr. ir. J.A. Steketee en dr. J.T.F. Zimmerman
voor de tijd die zij aan mijn proefschrift hebben besteed. Het doet
mij speciaal genoegen dat ik de hoogleraar, bij wie ik ben afgestudeerd,
in een volgend stadium van mijn opleiding heb mogen betrekken;

al mijn collega's die rechtstreeks betrokken zijn geweest bij de
controle en kwaliteitsbewaking van de Cabauw metingen;

de buitendienst en de medewerkers van Insa zonder wier inzet een
meetproject als Cabauw niet mogelijk is;

de leden van de sectie FM voor assistentie op velerlei gebied;

de secretaresses van FM, wiens vak(type)werk hier is te bewonderen;

de tekenkamer, waarvan de uitstekende producten de volgende blad-
zijden sieren;

de drukkerij, die het vermenigvuldigen van dit proefschrift in

prettige samenwerking heeft uitgevoerd.



I. General Introduction

This dissertation focuses on a specific branch of meteorology:
the study of air flow in the lower part of the atmosphere, usually
referred to as the atmospheric boundary ldyer. Its dominant pro-
cesses are transport of heat, humidity and momentum between the
surface and the overlying free atmosphere. As such the boundary
layer acts as a source or sink of these quantities in the atmospheric
circulation.

Apart from serving a direct meteorological interest, the boundary

layer is also of particular significance because almost every human
activity takes place in it. The results of this study are thus useful
in a variety of fields such as aviation, air pollution dispersion,
agriculture, wind engineering, wind energy, urban planning and ajir-
sea interaction,

Our investigation is restricted to the boundary layer during the
night. What may we expect ir these conditions? To answer this question
we start with a general description of meteorological phenomena in
the atmospheric boundary layer.

Our point of departure is observation. The classical procedure
in boundary-layer studies is to measure meteorological variables,
such as temperature and wind, close to the ground. In recent years,
however, observations at higher levels became available, creating
a more complete picture of the atmospheric boundary layer.

An obvious method to obtain such observations is to extend the
standard meteorological measurements along a mast. A good example
is the meteorological mast near the village of Cabauw in the
Netherlands. This mast has been operated by the Royal Netherlands
Meteorological Institute since 1972. Here measurements are executed
in the first 200 m of the atmospheric boundary layer. As we shall
see in a later stage, these observations are in many cases sufficient
to describe the basic structure of the nocturnal boundary layer.

Only very recently a new instrumental technique to probe the
boundary layer was developed. Its principle of operation is based

on the scattering of sound waves by temperature fluctuations.
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Because of similarity with its electro-magnetic counterpart, the
radar, this instrument is called Sodar (Sound detection and

ranging). We shall use the Sodar primarily to measure the boundary-
layer height. The observations from the mast and the Sodar constitute
the basis of our study of the nocturnal boundary layer.

Before we start with a discussion on what these observations show,

a few remarks should be devoted to atmospheric measurements in

general. Many physical processes are simultaneously at work in the
atmosphere. This makes the atmosphere a poor equivalent of a laboratory,
where generally only one selected physical process is observed at

the same time. On the other hand, theoretical studies of the atmosphere
commonly concentrate on a small number of dominant processes. These are
usually described in terms of idealized models. It must be clear that
comparison of these models with atmospheric data leads unavoidably

to scatter. Our results, especially in chapter III, corroborate that
cenclusion. This handicap of using atmospheric observations for com-
parison can only be compensated by careful interpretation.

One process apparent in all cbservations is the daily cycle. It is
predominantly present in the toundary layer over a land surface, to
which we shall restrict ourselves. The day-time boundary layer differs
drastically from its night-time counterpart. To appreciate and under-
stand the differences we shall describe the main characteristics of
both boundary-layer types. As an additional restriction we assume clear
sky conditionms.

During the day-time the surface heated by the sun warms the adjacent
air, which subsequently starts to rise. This process is known as
convection; every glider pilot is familiar with it. Visible evidence
of convectionare the small cumulus clouds, which sometimes develop
during the afternoon at the top of the boundary layer. Such an observation
also enables us to estimate the height of the convective boundary layer
to be ~1 km. Our mast observations in these conditions show that the
wind is approximately constant with height. In other words, momentum
is uniformly distributed across the boundary layer. The same goes for
heat and humidity. Such distributions can only result from a strong
vertical exchange. Inspection of the rapid dispersion of a chimney

plume supports this statement.
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During the night, however, the situation is reversed. The surface
now cools due to radiation. The heat loss must partly be replenished
by the atmosphere. This causes the development of an inversion, a
condition when temperature increases with height. Profiles in the
boundary layer are completely different from those in the day-time
situation. Apart from an inversion mast observations also demonstrate
that the wind changes considerably with height. The wind profile
is non-uniform. Near the surface the wind is often light, while at
the top of the boundary layer a strong wind prevails, Sodar observations
estimate this top to be at a few hundred meters. The nocturnal boundary
layer is thus relatively shallow. Its non-uniform profiles are symptoms
of weak, vertical exchange. A chimney plume remains coherent for a
long time.

So far for the mere observations. How to put them in physical terms?
For that purpose we have to introduce two features of atmospheric
fluid dynamics: turbulence and stratification.

Turbulent flow means that air motions are irregular in space and
time, as opposed to smooth or laminar flow. The main property of tur-
bulence is its effectiveness in transporting flow properties. As such
it is far more effective than molecular processes. Within the atmospheric
boundary layer turbulence is responsible for all transport of heat,
humidity and momentum, the main transports in the boundary
layer. Now that we have established the importance of turbulence, we
continue by investigating how it is produced. Two production processes
are significant: mechanical production and buoyancy production.

The mechanism of the former is instability of a velocity gradient in
large Reynolds number flow. These conditions are fulfilled in the
boundary layer. Viscosity plays & minor role, which is equivalent

to saying that the Reynolds number is large. A velocity gradient is
present, because the surface retards the air flow above it.

Mechanical production is thus always a source of turbulence in the
atmospheric boundary layer. The other process, introduced as buoyancy
production, is explained shortly.

Let us now turn to the second feature of atmospheric boundary-layer
flow: stratification. By definition stratified flow is a flow affected

significantly by the presence of density variations in a gravity field.
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It manifests itself in the atmosphere by a temperature profile which
deviates from the adiabatic or neutral profile amounting to -1°¢ per
100 m in dry conditions. Stratification has a profound influence on
the structure of the boundary layer. Two cases must be distinguished:
unstable and stable.

In an unstable atmosphere the temperature decreases faster with
height than the neutral profile. The analogy in a liquid is a
density profile which increases upward. Since denser liquid tends
to sink any flow disturbance becomes unstable and is amplified.

In terms of fluid motion this means that flow disturbances produce
kinetic energy. The resulting energy is usually directly transformed
into turbulence. This process we define as buoyancy production.

The opposite case, when the temperature decreases slower with
height than the neutral profile, is called stable. Disturbances
are attenuated. They consume energy because warm, lighter air is
moved downward, while colder, denser air is carried up. The energy
is taken from the turbulence, so that turbulence intensity decreases.
This process is more appropriately referred to as buoyancy destruction.

Now we are ready to explain the observed characteristics of the
day-time and night-time boundary layer in terms of the physical
features mentioned above.

The day-time boundary layer is an example of the unstable case,
because surface heating causes an unstable temperature profile.

Flow disturbances, which in this case take the form of rising air
motions, produce turbulent energy. Therefore, the unstable boundary
layer is characterized by vigorous turbulence. This explains the large
vertical exchange that we noticed in our observations.

We characterized the nocturnal boundary layer by a temperature
inversion. Such a temperature profile clearly means that conditions
are stable, The turbulence intensity is now small due to buoyancy
destruction, which explains the small vertical exchange we have
observed. But how is turbulence to survive in a stable boundary layer?
The only source still remaining is mechanical production. We have
seen that this type of production depends on shear. Consequently a
strong vertical wind gradient must be present in the stable boundary
layer. It is only possible to maintain such avelocity gradient over

& limited depth. This explains the shallowness of the nocturnal boundary
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layer found from our Scodar observations.

The general picture of the nocturnal boundary layer, the subject of
this dissertation, now emerges: a shallow layer with small turbulence
intensity sustained by a delicate balance between mechanical pro-
duction and buoyancy destruction. The various aspects of the noctur-
nal boundary layer are the main subjects of the following chapters.

Chapter II presents a general discussion of the nocturnal
boundary layer in terms of a numerical model. Our basic assumption
in the model is horizontal homogeneity. This means that we neglect
the contribution of horizontal transport to the rate of change of wind
and temperature in the boundary layer. The only process taken into
account is vertical, turbulent exchange.

Our model study shows that the wind and temperature profiles,
measured along the mast, can only be simulated qualitatively. Good
results, however, are obtained in predicting the height of the boundary
layer.

The boundary-layer height represents a useful parameter in many
problems. It gives, for instance, the depth to which contaminants
can mix in the boundary layer: the so-called mixing height. The wind
profile depends on the boundary-layer height because usually a wind
speed maximum develops at the top of the boundary layer. The boundary-
layer height is also frequently used as a scaling parameter in non-
dimensional plots (c¢f chapter III). Therefore, we have further con-
centrated our study on the nocturnal boundary-layer height.

Our numerical results of chapter II seem to indicate that the
boundary-layer height approaches a stationary value. This issue is
pursued in chapter III. There we investigate whether the nocturnal
boundary layer can be characterized as stationary. For that purpose
a theoretical expression for the steady-state boundary-layer height
is derived and compared with our Sodar observations. The thecretical
expression is not confirmed. The conclusion must be that the stable
boundary layer is not in a steady state but is continuously developing.

In chapter III we also discuss some problems related to the
unambiguous definition of the stable boundary-layer height. It is
here defined as the depth of the shallow turbulent layer. This defini-
tion must be distinguished from the widely used notion that the
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boundary-layer height is connected to the inversion in the temperature
profile. The differences between both definitions are discussed in more
detail in chapter IV, where we consider in particular the influence

of long-wave radiation on the temperature profile.

The question concerning the non-stationary boundary layer is taken
up again in chapter V. Here we derive a time-dependent equation for
the boundary-layer height. The point of departure in the derivation
is the ratio of mechanical production to buoyancy destruction,
stressed above as the processes affecting turbulence in the nocturnal
boundary layer. The result takes the form of a linear relaxation
equation. It predicts that the boundary-layer height converges
to an equilibrium value. However, the time scale of this relaxation
process becomes large: of the order of ten hours. This means that the
boundary-layer height develops very slowly.

The main conclusions which result from these studies, can now be
summarized as follows:

- Expressions for the boundary-layer height based on the hypothesis
of stationary conditions do not agree with observations.

- Radiation influences the temperature profile directly, leading to
& higher value of the inversion height compared with the turbulent
layer thickness.

- The quasi-stationary behavior of the boundary-layer height apparent

from our observations,must be attributed to the large time scale

of the evolution process.

Finally a few editorial remarks. Chapters II-V have been indivi-
dually published or submitted as journal articles. The general line
should be apparent from this introduction. Some redundancy, however,
in the subject matter of these chapters is unavoidable. There are
also minor differences in notation from one chapter to the next.

To underline the individual identity of each chapter we have used
separate numbering of pages, equations and figures. At the end we

have included chapter VI. It contains the mast and Sodar observations,

on which our study is based.
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The nocturnal boundary layer:

a case study compared with model calculations+

Abstract

A case study of nocturnal boundary layer development is
presented. The data include observations of turbulence and
of profiles of wind and temperature. The measurements were
done along a 200 m high meteorological mast.

The observations are interpreted in terms of the results
of a one-dimensional boundary-layer model. The model is
derived from the full set of equations governing the
evolution of the nocturnal boundary layer by neglecting
advection. The validity of this approximation is discussed.

From a comparison of observations and calculated results
it follows that the influence of advection is important
especially in the upper part of the boundary layer.
Nevertheless we find that important characteristics of the
nocturnal boundary layer such as its height can be reasonably

well simulated by a one-dimensional model.

+Published in J. Appl. Meteor., 1979, 18, 1397-1405 with

A,.G,M, Driedonks as co-author.
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1. Introduction

The boundary layer during a clear night contrasts with
the convective boundary layer in the daytime. In the
latter, turbulence is produced by buoyancy leading to large
turbulent fluxes and to rapid vertical exchange. This
means that the convective boundary layer is primarily
locally determined. Advection plays a secondary role.

In the nocturnal boundary layer radiational cooling
of the surface leads to a stable temperature gradient.
Turbulence is then suppressed by negative buoyancy. In
a shallow layer near the surface turbulence of small
intensity can be maintained by mechanical production.
Because vertical exchange in this layer is now small,
advection quickly becomes important, as we will discuss
in section 2,

A full solution of the nocturnal boundary layer including
advection will lead to a 3-D mesoscale model, An adequate
description of advection in such a model requires a high
horizontal resolution resulting in a large computational
effort. However, the results of such a complicated model
will still be questionable, primarily because at the moment
there are no initial and boundary conditions available of
a compatible resolution.

To simulate the nocturnal boundary layer we have used
here a one-dimensional model in which advection is
neglected. With such a model vertical profiles are calculated
as a function of time. The computation time is negligible
compared to that required for the solution of a 3-D model.
However, the usefulness of this model, in which terms known
to be important are left out, must follow from a direct
comparison with observations. This will be one of the major
topics of this paper.

Above the boundary layer, where turbulent fluxes are

zero, the solution of a one-dimensional model reduces to
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the well-known inertial oscillation of the wind vector
(Blackadar, 1957). Models based on this oscillation
(Thorpe and Guymer, 1977) can explain the low-level wind
maximum which is frequently observed in the nocturnal
boundary layer, For the boundary layer itself models have
been proposed by e.g. Delage (197h), Blackadar (1976), and
Brost and Wyngaard (1978). Here we largely follow the
approach taken by Delage (197L4) as described in section 3.

For the night of 8/9 February 1975 a fairly complete
set of data has been measured along the 200 m high
meteorological mast at Cabauw in the Netherlands. Details
of the experiments are given in section k.

In section 5 and 6 these observations are discussed in
terms of the characteristics of the nocturnal boundary
layer. The measurements are compared with the results of
our one-dimensional boundary layer model. The deviations
between observed and calculated results can be attributed
to the neglected advection terms; in our case mainly
temperature advection. However, we will show that the
major features of the nocturnal boundary layer are

reasonably well represented by our simple model.

2. Equations of motion; the assumption of horizontal

homogeneity

If the atmosphere is assumed to be in hydrostatic
equilibrium, the continuity and momentum equations for the mean

flow in the atmospheric boundary layer read (Busch, 1973)

™ q % (1)

H
5t Ty VgtV g T (2)
-fqnx (EH'~g"~1th) + 5, Iy/es
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. 3 0 -
with u, = (u,v), Vy = (ax’ By) and n x u, = (~-v,u), where

Uy is the horizontal mean wind vector, with components u

in the x-direction and v in the y-direction, w is the vertical
velocity component, n the unit vector in the vertical
direction, f is the Coriolis parameter, p the air density

and Ty the horizontal Reynolds stress vector (viscous

stresses are neglected), The geostrophic wind at ground

level Bg and the thermal wind u,, are defined by the equations

1
5 VH po (3)

g Z
Eth = T j' nx VH 0 dz’ (%)
o

where P, is the pressure at ground level; g is the gravita-
tional acceleration and T is the absolute temperature in

the boundary layer.

The potential temperature 6 is governed by

%*EH'VHB“W%:‘__ (5)
in which H is the sensible heat flux and cp the specific
heat at constant pressure. Radiative terms have been
neglected.

In order to simplify these equations of motion we will
investigate whether the advection terms in (2) and (5) can
be neglected in nocturnal boundary layers. A typical noc-
turnal boundary layer is characterized by a height h ~ 200 m,
a cooling rate at ground level of ~1OC/hr and a geostrophic
wind of ~10 m/s. The geostrophic velocity deficit, defined
as |EH—Egl’ is taken as 3 m/s. These values are comparable
with our measurements discussed in section 6.

If all the terms in equations (2) and (5) are scaled
with these values, we find that horizontal advection can
only be neglected if IVH B' << 3 x 10-53-1 and IVH 8] << 3 x
107> °¢c m~'. In that case the thermal wind can also be
neglected. These restrictions on the horizontal gradients

are usually not met in reality. Moreover, in regions with
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strong vertical gradients (e.g. a sharp inversion) even small
vertical motions will cause a large contribution to the
vertical advection. Therefore we must conclude that the
advection terms in (2) and (5) cannot be neglected at first
hand.

This means, that strictly speaking the complete set of equations
(1)-(5) must be solved in order to simulate the nocturnal
boundary layer. In such a three-dimensional model the
horizontal and vertical grid spacing are interdependent,
when advection and vertical diffusion are treated with
equal weight (Barr and Kreitzberg, 1975). Summarizing their
argument we express the influence of advection and vertical

exchange in (2) in the following schematic way

ot Tt (6)

where V is a characteristic velocity, ta the time scale
for advection and td the time scale for diffusion. The
solution for (5) can be treated in a similar way. The

time scales are connected to characteristic length scales,
which we take proportional to the horizontal and vertical
grid spacing: Ax, Az. A straightforward estimate of the
time scale is given by

2

Ax Az~
ta ~ T?T s td Tk (7)

where K is the vertical exchange coefficient to be discussed
in the next section. As the height of the nocturnal boundary
layer is of the order of 200 m, we take Az to be 30 m.

Further characteristic values for K and ]Y! in this
case are 0.5 m2s_1 and 10 ms_1, respectively. This means
that ta and td are of the same order of magnitude when Ax
is ~20 km. When a wider spacing between horizontal grid
points is chosen, t, will increase or, following from (6),
the vertical diffusion terms will dominate. The solution at
each point will then be effectively given by a one-dimensional

model, in which advection is neglected.



I1.6

A full three-dimensional solution of (1)-(5) with a
horizontal grid of 20 km quickly becomes impracticable,
even for a moderately sized region. Additionally, initial
and boundary conditions of a compatible horizontal resolution
are not available, so that a complete solution of (1)-(5)
is not yet possible. Instead we used a one-dimensional
model despite its limitations. A direct comparison with
observations, as given in section 6, will show which

characteristics can still be adequately simulated with

such a model.
3. Description of the model

Our one-dimensional boundary layer model is similar to
the models developed by Delage (197L), Bodin (1976) and
Yu (1977). A brief description will suffice here.

Under the assumption of horizontal homogeneity (1)-(5)

reduce to

u T

~H _ 9 Iy
at“fDX(EH'Eg)+azp (8)
0 _ 3 H

9t " 9z pc_ ° (9)

The turbulent fluxes are expressed in terms of the gradients

by the following equations:

5 ouy
9z

=Ky (10)

H 96
-5 = Kyog - _ (11)
P
The exchange coefficients KM y have the form (Delage, 197L)
2

KM’H = zM,H Vece |, (12)

where iM H are the length scales for momentum and heat flux
9
respectively, e is the turbulent kinetic energy per unit
mass and ¢ is a non-dimensional constant. We need an additional

equation for the kinetic energy; it reads (Delage, 197h4)
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se S %M g H L8 . se (c'e)3?

o o 8z tT pcp + 9z KM 3z QM - (13)

In the 1limit as z + 0, (13) reduces to a balance between
mechanical production and dissipation. Consistency between
(12) and (13) then leads to the requirement that c' = c.
Following Yu (1977) and Bodin {1976) we take c = 0.2.

The system of equations (8)-(13) is closed by specifying
the length scales QM and lH' Yu (1977) has examined a number
of expressioms for the length scales. Both he and Djolov

(1974) obtain good results with the following formulation:

R q’MLH(Z/L)

M,H ~ kz

. f

a7 ()
where a is a constant taken here as U4 x 10—h (Delage, 197L).
The specification for the dimensionless velocity and tem-
perature gradients ¢M and QH is adopted from Businger et

al. (1971). In order to be consistent with their results,
the von Karman constant is taken as 0.35. The gradients in
(14) are taken as a function of the local Obukhov-length L,

which is given by

T(EQ | Ty| 3/2

L = - T . (15)
ke pé H

In order to solve (8)-(13) boundary and initial conditions
must be specified. The upper boundary conditions are given
at an arbitrary height zg far above the top of the nocturnal
boundary layer. They read

o
for z = z_ . (16)

90 _, 2e J
dz > dz

The conditions at the lowest calculation level z, are

z/z A

E k\/p‘r

8 = BO - 0.7k ln(z/zo) for z = z,. (17)

(>3]
o

Q
N
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The first condition relates the stress to the velocity in

8 way that is consistent with (10), (12) and (14). It states
that for small values of z the wind velocity must follow a
logarithmic profile and that the velocity is parallel to the
stress. The external parameter Zg in this equation is the
roughness length. The second condition states that the
temperature must follow a logarithmic law for small values
of z consistent with (11), (12) and (1L4). The temperature

80 at roughness height must be specified to describe the
surface coolfng. It may follow from measurements or it must
result from a model in which the radiation processes near
the earth's surface are treated. Here the former approach

is used.

To obtain initial profiles for all variables we use
the following procedure. Taking a neutral temperature
profile, which is usually found at the beginning of the
night, we run the model without changing external para-
meters and without temperature forcing until a nearly
steady state is reached (small inertial oscillations in
the solution remain present). This solution is then used as
the initial condition. In this way a stable method of
starting the calculations is obtained. However, the actual
conditions at the beginning of the night might be far from
stationary. This means that errors will be introduced due
to the choice of initial conditions. In section 6 we will
discuss these errors; we will show there that they might have
a considerable influence on the solution at a later stage,
especially at higher levels.

A solution to this system of equations is sought by
applying Newton's method. The resulting linear set of
equations is solved on s non-uniform grid zj(j =1, ....J) by
the box scheme. This is an implicit difference method particu-
larly suited for parabolic equations (Keller, 1971). The grid
size varies from 3 m near the surface to L00 m near the

upper boundary. The time step is taken as 360 s.
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L. Experimental data

The experimental data were obtained at the 200 m high
meteorological mast at Cabauw in the Netherlands (Driedonks
et al., 1978).

The profile measurements comprise the wind speed, wind
direction and temperature (Table 1), Measurements of tur-
bulence were carried out simultaneously at three levels:

20, 80 and 200 m. Wind fluctuations were measured by a

trivane (Wieringa, 1967) and temperature fluctuations by
fast-response thermocouples (Driedonks, et al., 1978). The
sampling frequency was 1 Hz. From these data the turbulens
momentum and heat fluxes (averaged over 30 min.) were obtained
after removal of a linear trend in the data. The height of the
turbulent boundary layer was monitored with the help of

an acoustic sounder (Sodar).

Table 1

Continuously measured wind and temperature data at the 200 m

mast at Cabaww, the Netherlands, for the period of February 1975,

element instrument height sampling recording
time '
(m) (s) device
wind speed cup anemometers 2, 10, 20, 40 120 paper tape
80, 120, 160
200
wind direction wind vane 10, 80, 200 120 paper tape
temperature ventilated 2, 10, 20, Lo 120 paper tape
thermocouples 80, 120, 160,
200
boundary-layer acoustic sounder 0-1000 facsimile

height recorder
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For the measuring period the geostrophic wind was cal-
culated from the pressure data at 19 meteorological stations
in the Netherlands by a method based on principal component
analysis of a time series of pressure data measured at these
stations (Cats, 1977).

Measurements were performed during the night of 8/9

February 1975. Table 2 gives a summary of the data obtained
during that night.

Table 2

Data set for the night-period 8/9 February 1975

(times in GMT, which is one hour earlier than local time).

Data set Time-period

30 min. averaged mean profiles 14,30-03.00

and acoustic sounder recording

30 min. averaged turbulence 18.30-03.30

statistics and correlations

geostrophic wind 14.00-03,00

The synoptic situation showed a stationary high pressure
area over central Europe leading at the experimental site to
a prevailing southeasterly wind of approximately 10 m/s.

From the synoptic pressure distribution an estimate can
be found for the vertical velocity w, at the top of the

h

boundary layer, First, we apply the operator th to both sides

of (8). Then, after using (10) and the continuity equation (1)

b
the equation for w,_ becomes

h
W, = 2 (3%) : (18)
z =0

where ¢ = BVH/BX - BuH/By is the vertical component of the
vorticity. In the derivation of (18) we assume that ¢ is

stationary, consistent with the meteorological situation.
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The (ac/az)z - 0 is estimated as ch/h where Ty is the vor-

ticity at the top of the boundary and h the boundary-~layer
height. In our case the boundary layer height is 200 m (see
section 6), which is approximately the height of the 1000 mbar
plane. The Ty is calculated with the quasi-geostrophic approxi-

mation, which reads (Haltiner, 1971)

= & ¢°
T T V. =z

h h? (19)

where z, is the height of the 1000 mbar plane and V2 the

Laplace operétor. From the weather maps we estimate

g, ~ 3 x 10~ s_1. With a characteristic value of Ky ~ 0.5 n°s
3

we then find L. 10°

our estimation procedure this value does not differ significantly

m/s. Considering the error bounds of

from zero. Therefore we will neglect the influence of the

vertical velocity.
5. Consistency of closure assumptions

Since measurements of turbulent fluxes and mean profiles
are available we can verify the consistency of the closure

assumptions in our model. By substituting the observed

values of
duy 0
Ty Hs e, 5, and Sz-into (10), (11) and (12) we can determine
the observed values for the length scales QM "
L]
These must be compared with the result of (14). A comparison

for QM at 80 m is shown in Fig. 1. The results found at the

20 m measuring level are similar (200 m is excluded, because
turbulent fluxes are practically zero there). A similar
agreement between observed and calculated values is found
for EH. From these results we conclude that the flux-gradient
relationships (10), (11), (12) and (14) are consistent with
our observations.

It is also useful to check for consistency in the value
of the constant ¢ in (12). As ¢ = TH/(pe) for z +~ 0 (Delage,
1974), we evaluate its value from our turbulence measurements
at 20 m. An average value of 0.18 is found. This agrees well

with the value 0.2 used in our model (section 3).
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Fig. 1. The comparison between the observed QM,and the Ly

following from Eq. 14 for a height of 80 m.

6. Results and discussion

In our observations the cooling of the air near the surface
started at 14,30 GMT (15.30 local time). We take this as the
beginning of the night. Sunset occured at 16.30 GMT.

The calculations were started at 14,30 GMT. The temperature
profile along the mast was neutral at that time. The initial
conditions were determined following the method described in
section 3. We obtained the surface temperature eo, which is
an external parameter in (17), from a logarithmic extrapolation
of the measured temperature at 9 and 2 m. The roughness length
z vas taken as 0.2 m (Van Ulden et al., 1976).

Fig. 2 shows the observed and calculated heights of the
nocturnal boundary layer. We define the boundary layer height
in the model calculations as the height where the turbulent
heat flux has decreased to 10% of its value at ground level.
It is not clear whether the height where heat flux vanishes is
completely equivalent to the boundary layer height found from
the acoustic sounding registration. This equivalence has been

discussed for the daytime boundary layer by Frisch and Clifford
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Fig. 2. The height of the nocturnal boundary layer as a
function of time; e for observed boundary layer height;
x for the height given by (20); for the height where
the calculated heat flux decreases to 10% of its
surface value; ———— for the height where the calculated

stress decreases to 10% of its surface value.

(1974). However, the agreement between the observed and calculated
values is reasonable.

In Fig. 2 we also give the height where the calculated
stress decreases to 10% of its value at ground level, Brost
and Wyngaard (1978) define the boundary layer height in this
way. This height also approaches a stationary value comparable
to the observed results,

Several simple parametric expressions for the stationary
boundary-layer height were reviewed by Yu (1978). The most
important is a similarity relation proposed by Zilitinkevitch

(1975) and by Businger and Arya (197hk). It reads

(20)

where both 1. and L are evaluated in the surface layer (z + 0).
The constant 0.16 has been proposed by Brost and Wyngaard (1978).
The results calculated with (20) are shown in Fig. 2. In this
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case (20) poorly predicts the nocturnal boundary-layer height.
In Fig. 3 the calculated and observed potential temperatures

at different levels are given as functions of time. The

measured and calculated temperatures agree very well at 2 and

9 m. This is not surprising, because the forcing temperature

T Y T T T T T T T Y T T T

— calculated 200m

Sr x 4
x observed 200m x X
L |-- calculated 160 m . ]
e observed 160m x x
- X x J
X X X . o x X x X x .o
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xeo®oe o e x .
5t xe® L4 . 4
—— .
L — —— — L) B
—
\\
1 1 i I 1 i i 1 1 ;.‘ | i hd 1 1

Y .

— calculated 120 m [~%g_ .

8(C) || x observed 120m St o |
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|| x observed 40m |
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ob| x observed 9m
-~ calculated 2m
e observed 2m J

T

1 i A 1 I\ i A 1 A | i

—=—- -
15 SunseT 18 2 0 3

TEK VR 09

Fig. 3. Measured and calculated potential temperature as a

function of time for six observation heights.
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eo in the model is obtained from the measured values at these
levels. Here the temperature decreases almost linearly till about
22.00 GMT and remains approximately constant after that time.
This behavior seems to be inconsistent with the stationary
boundary layer height found in Fig. 2, because according to
Brost and Wyngaard (1978) the boundary layer height can only

be truly stationary if there is a persistent constant cooling
rate.

Temperature changes due to long wave radiation have been
calculated following the method given by Elzasser and Culbertson
(1960). They are given for some height intervals in Table 3.
These results are based on the temperature and humidity profile
measured along the mast, and on the data of the closest radio-
sonde launching. They show that the temperature change due to
radiation is small inside the boundary layer.

Therefore the difference between model results and observations
are caused primarily by neglecting the effects of advection,
which were discussed in section 2. The influence of advection

increases with height, because the turbulent fluxes and therefore

Table 3

Temperature changes due to long-wave radiation at 00.00 GMT.

Ah (m) %% (°c/s)
height interval temperature change
in Ah
0-20 2.5 x 1077
20-80 1.1 x 1077
80-200 2.6 x 107°

200-500 2.6 x 107
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the vertical exchange decreases with height (Barr and Kreitzberg,
1975). This effect is clearly visible in Fig. 3.
At 200 m the measurements show an average increase of
0.3°C/hr. Since this level is above the boundary layer, the
temperature change can only be caused by advection. The hori-
zontal advection can be estimated as follows. In the afternoon
the potential temperature is uniform with height over a mixed
layer of considerable depth. Therefore horizontal gradients
in this layer can be obtained from surface data. In our case
the horizontal gradient was calculated from the surface
meteorological observations at 15.00 GMT to be 1 x 10~° °C m~
with a southeasterly direction. As the influence of surface
cooling during the night remains confined to the boundary
layer which is less than 200 m, we assume that this horizontal
gradient does persist above the nocturnal boundary layer, With
a measured wind of .10 m/s also with a southeasterly direction
this results in an advective temperature change of ~O.BOC/hr,
in agreement with the mean temperature change at 200 m,
The wind speed as a function of time is shown in Fig. L.
The initial conditions for the model do not match the measure—
ments indicating that a stationary neutral condition is not a
suitable starting condition in this case, The initial condi-
tions are very important for the solution of (8) at heights
where during the night turbulent fluxes vanish (in this case 200 m).
There the solution of the model equations is dominated by an
inertial oscillation. The phase and amplitude of this oscillation
follow directly from the difference between the initial wind
vector and the geostrophic wind (Blackadar, 1957).
We have calculated such an inertial oscillation for the
wind vector at 200 m starting from the measured value at 16,00
GMT (around sunset) and using a constant geostrophic wind of 10 m/s
with a direction of 125°, The results are a wind maximumm of 13.5
m/s at about 22,00 GMT and a wind speed equal to the geostrophic
wind at about 01.30 GMT. The data of Fig. U show that this

inertial oscillation describes the measured wind speeds at 200 m

reasonably well,
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Fig. 4. Measured and caleculated wind speed as a function of

time for three observation heights.

The model calculations at 200 m also show an oscillation.
This can be considered an inertial oscillation from the time
that the calculated fluxes at 200 m are negligible (approxima-
tely 18.00 GMT). Due to the initial conditions the agreement
of calculated results with measurements in the first part of
the night is poor.

The wind speeds at 20 and 80 m are on the average well
simulated by the model. However, the measurements show an
oscillation with a period of ~T7 hours, which is much smaller
than the period 2 w/f of an inertial oscillation. From Fig. 3
it follows that this oscillation occurs also simultaneously in
the temperature at 200 m. The calculated results do not show
these oscillations, because our model does not contain any
prccesses with a time scale of 7 hours. We have found similar
oscillations in the observations during another night period.

The wind direction a as a function of time is shown in Fig. 5.

An inertial oscillation would lead to a veering wind direction
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Fig. 5. Measured and calculated wind direction as a function of

time for three observation heights.

in the first part of the night and a wind direction equal to
the geostrophic direction when the maximum wind speed is
reached. This is approximately true for the calculated results
at 200 m. However, the measured wind direction at this height
veers with respect to the calculations at a rate of 20/hr
until 22.00 GMT and then remains approximately constant.
Therefore the veering in the measured wind direction cannot
altogether be attributed to an inertial oscillation. At 80 m
the measured direction veers also at a rate of 2°/hr with
respect to the calculated result, which is almost constant.
These differences must be attributed to the neglected advection
terms. From synoptic surface data we estimate that the horizon-
tal temperature gradient inside the nocturnal boundary layer

is of the order of 3 x 10-5 °c m_1 in a south-easterly
direction. A thermal wind can then be calculated from (k).
.8ince the observed wind is also in a south-easterly direction,

the thermal wind will be perpendicular to the observed wind

vector. The influence of the thermal wind will result in a
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change of wind direction. Using (2) this change can be approxi-

mated st a height z as f

Eth(z)|/|gH(z)|. For 80 m this leads
to a value of -20/hr for the wind directicn change in accordance
with the observed results. At 200 m we find ~ho/hr, which is
somewhat larger than the veering of the cbserved wind direction
with respect to the calculation. We therefore conclude that the
difference between the measured and calculated wind direction
can be attributed in this case principally to temperature advection.
At 10 m the measured and calculated wind directions are in
good agreement in the first part of the night. The veering
in the observed values after 22.00 GMT is probably related
to the veering at higher levels.
The measured and calculated turbulent fluxes are shown in

Fig. 6. The fluxes at 200 m are not shown, because they are
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Fig. 6. Measured and calculated turbulent fluxes as a funetion
of time for two observation heights;

calculations; e for the observations.
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negligible for most of the night. High levels of turbulence

not found in the calculated results are present in the measure-
ments. They occur simultaneously with oscillations in the wind
speed and temperature, which were discussed in connection with
Fig. L. Because of the large timescale of this burst of turbu-
lence (~3 hours), we do not believe that it is caused by
breaking gravity waves, which are known to produce intermittent
high levels of turbulence in a stable boundary layer (Sethu
Raman, 1977). These high observed values of turbulence are
responsible for the poor agreement between (20) and the
observed boundary layer height (Fig. 2).

As the time histories shown in Figs. 3, 4 and 5 give a poor
impression of the vertical profiles, we show in Fig. 7 some
characteristic profiles of the wind speed and the temperature.
They indicate that the overall features of the observed profiles

are reasonably well simulated by the model results.

T. Conclusions

Data obtained during a case study are compared with the
results of a one-dimensional boundary layer model. In this
model turbulent fluxes are parameterized with the help of
exchange coefficients, This parameterization is found to be
consistent with the measurements.

The height of the turbulent nocturnal boundary layer grows
to a stationary value of approximately 200 m. This height is
reasonably well simulated by our model.

Above the boundary layer the flow is dominated by an inertial
oscillation both in the observations and in the calculations.
Differences between the observed and calculated results at this
height could be explained in our case in terms of temperature
advection.

Inside the boundary layer turbulent fluxes have to be taken
into account. The observations are reasonably well simulated
by our model. Differences between model results and measure-

ments are caused by advection. They increase with height.
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Advection can have a considerable influence on the evolution
of the nocturnal boundary layer., Its contribution was estimated
in our observed results. However, we conclude that a one-
dimensional boundary layer model in which advection is neglected,
can reasonably well simulate the boundary-layer height and the

profiles of wind and temperature inside the nocturnal boundary

layer.
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I11. The steady-state height and resistance laws of
the nocturnal boundary layer: Theory compared

with Cabauw observations.+

Abstract

An expression is'derived for the height of the stationary,
stable boundary layer. It satisfies the conventional
limits for neutral conditions and for large values of
stability. Comparison with acoustic sounder observations
near the meteorological mast at Cabauw (the Netherlands)
shows that the steady-state height is not attained for
large stability values. The observations are also used

to investigate how the similarity functions A and B in

the resistance laws depend on the stability parameters

uo = u‘/fl and y = h/L. The function B shows a clear trend
as a function of stability, which can be described in terms
of u. The dependence of A is masked by scatter in the data
points. The general conclusion leads to the concept of a

non-steady stable boundary layer.

+To appear in the December issue, 1980, of Bound.-Layer Meteor.



ITI.2

1. Introduction

Similarity theory is a powerful tool in the study
of the atmospheric boundary layer. It describes the
structure of the boundary layer in terms of local charac-
teristic parameters only, and neglects all dependence on
the upstream history or time evolution of the flow. A
review of several applications of similarity theory in
the atmospheric boundary layer was given recently by
Arya and Sundara}ajan (1976). Here we will confine our-
selves to the stable nocturnal boundary layer.

An essential parameter in the application of simi-
larity theory is the boundary-layer height. Zilitinkevich
(1972) showed that for stationary conditions the stable
boundary-layer height, h, can be expressed in terms of the
other characteristic boundary-layer parasmeters, which are
the friction velocity u,, the Obukhov length L and the
Coriolis parameter f. The relation for h as proposed by
Zilitinkevich is only valid in very stable conditions.

In section 2 we extend his formula to all stable cases.

A well-known result of similarity theory in the
atmospheric boundary layer is the logarithmic resistance
law (section 3), It follows from matching velocity
profiles valid in different parts of the boundary layer.
The matching procedure leads to similarity functions A
and B in the resistance law, which are in general functions
of two stability parameters uy = u, /fL and u = h/L
(Zilitinkevich, 1975). A simplification results when
the boundary-layer height can be expressed in terms of
the other characteristic parameters as discussed above
for steady-state conditions. In that case p and uo are
interdependent, so that theoretically A and B can be described
in terms of only one stability parameter. Such a procedure
has been followed by many authors !Clarke and Hess, 19Th;
Melgarejo and Deardorff, 197h4; Zilitinkevich and Deardorff,
19743 Zilitinkevich, 1975 and Yamada, 1976).
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The question whether the stable boundary-layer
height can be expressed in terms of the other boundary-
layer parameters is investigated here empirically.
Therefore we introduce in section I two sets of experimen=
tal data obtained during clear nights along the meteo-
rological mast at Cabauw in the Netherlands (Driedonks
et al., 1978). In these observations the height of the
stable turbulent boundary layer was measured directly
with an acoustic sounder. This gives a more accurate
value of the boundary-layer height than the more usual
indirect estimate from e.g. the temperature profile,

A comparison of the observations with the theoretical
results of sections 2 and 3 is discussed in section 5.
In particular we investigate whether the observed boundary-
layer height attains its steady-state value and how the

similarity functions A and B can be described as functionms
of stability.

2., The height of the stationary, stable boundary lsayer

The equations of motion for a homogeneous, steady,

atmospheric boundary layer read

9 2
flv-v_ ) + ™ (x 3%) =0,
(1)
~flu-u ) + é% (K %%) =0,

where u and v are the mean velocity components in the
x and y directions, ug and vg are the components of the
geostrophic wind and f is the Coriolis parsmeter, The
turbulent stresses in (1) are modeled with an eddy
viscosity K. For a constant value of X Equation (1)
yields the well-known Ekman spiral. The boundary-layer
height of this Ekman spiral is given by

h=c\K/t , (2)

where c is a constant of proportionality.
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Its numerical value depends on the way in which the
boundary-layer height is defined, e.g. as the height
where the stress is reduced to a certain proportion of
its surface value.

In reality K is not independent of height. Numerical
simulations of the steady, stable boundary layer led

Brost and Wyngaard (1978) to propose the following ex-
pression for the vertical profile of K

K_ _ (z/by(1-z/n)'’
k uh 1+ 4,7(2z/L)  °

(3)

where the friction velocity u, and the Obukhov length L
are defined by

u, = Vr /o, ()

L=-pcpu3/ksH. _ (5)

Here, T and H are the turbulent momentum and heat flux
at the surface respectively, p is the air density,

cp is the specific heat at constant pressure and B is
the buoyancy parameter g/T. The Von Karman constant k
is taken here as 0.35,

Zilitinkevich (1972) proposed that (2) remains
applicable when K is a function of height., An effective
value for the eddy viscosity K must then be substitufed
in (2). We assume here that this effective value for K

can be obtained from (3) for a fixed value of z/h. We

then derive from (2) and (3)

0.3 u,/fL

e O KR (6)

In the derivation the constant ¢ in (2) was chosen such

that in the neutral limit (L » =) (6) reduces to

h = 0.3 u,/f (Tennekes, 1973a), At the same time we
substituted 0.4 for the value of z/h at which the effective
value of X is obtained from (3). Equation (6) then agrees
with the model results of Brost and Wyngaard for the limit of
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large stability (L + 0), which reads

h=o0.\/ L/t . (7)

This is similar to the expression found by Zilitinkevich
(1972) and Businger and Arya (197h). The latter authors,
however, find a value of 0,72 for the constant of propor-
tionality in (7). This is probably caused by the fact
that they define h as the height where the stress has
decreased to 1% of its surface value, whereas Brost and
Wyngaard use thé 5% level.

We conclude that (6) approaches the appropriate
limits for L + 0 and L » =, It therefore gives an expression
for the height of the stationary, stable boundary layer

valid for all values of L > O.
3. Resistance laws for stable conditions

The resistance laws of a homogeneous and stationary
boundary layer are derived by matching a velocity-defect
profile in the upper part of the boundary layer to a
surface layer profile in the lower part (Blackadar and

Tennekes, 1968; Hess, 1973). They read

G/u, cos a = 1/k (1n(Ro v, /G) - B), (8)

G/u, sin a = -1/k A, (9)
where G is a reference velocity for the boundary layer
and o the angle between this reference velocity and the
wind direction in the surface layer. Ro = G/f z is the
Rossby number based on the surface roughness parameter zo.

The equations of motion (1) suggest a velocity-defect
profile in the form of a geostrophic departure law. In
that case G becomes equal to the geostrophic wind (Hess,
1973, Arya, 1975).

In contrast, Melgarejo and Deardorff (197L) and also
Zilitinkevich (1975) take the wind at the top of the

boundary layer as a reference velocity. The former authors
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argue that the main reasons for this choice are:

(1) results are applicable closer to the equator;

(2) results account better for differences between the actual
wind and the geostrophic wind at the top of the boundary
layer;

(3) the wind velocity can be observed more accurately than the
geostrophic wind.

Clarke and Hess (19T4) compare values for the functions
A and B in the resistance laws obtained with both
reference veloc{ties. They find similar results except
for large stability.when, due to a low-level maximum, the
wind at the top of the boundary layer greatly exceeds the
geostrophic velocity,

Here we use the geostrophic wind for G, because the
wind at the top of the boundary layer was not always
measured during the experiments to be discussed in the
next section.

When the geostrophic wind varies with height or
equivalently when baroclinic effects are important,

Arya and Wyngaard (1975) and Yamada (1976) show that

the appropriate reference velocity becomes the vertical-

ly averaged geostrophic wind, For stable conditions

Arya (1978) estimates that the variation in A and B

due to these baroclinic effects will be 30% for e geo-

strophic wind shear of I&vglaz|~10_2 s-1. The geo-

strophic wind shear in our experiments was estimated
to be less than this value, Therefore we neglect
baroclinic effects in the following, and adopt the
geostrophic wind at the surface as the reference

velocity G.

The matching theory, on which (8) and (9) are
based, predicts that the similarity functions A and B
can only depend on the following parameters: h, v, T,
and L. From these quantities only two independent
dimensionless parameters can be formed (Zilitinkevich,
1975).
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u = h/L (10)
My = u‘/f L. (11)

Therefore in general A = A(u,no) and B = B(u,uo).
From calculations with a second-order closure
model Brost and Wyngaard (1978) obtain explicit ex-

pressions for A and B. They read

B

1.1 - In(u/u ) - 2.2 » (12)

A

-0.56 u fu . (13)

As discussed in the preceding section, u and
u, are related by (6) if the boundary layer can be
considered stationary and homogeneous. When u and
u, are interdependent, A and B can be expressed as
a function of only one stability parameter (Zilitinkevich
and Deardorff, 19Th; Zilitinkevich, 1975).
In this case the relations (12) and (13) for A
and B simplify. For large values of the stability
(u and u > ©) this leads to (Brost and Wyngaard, 1978)

1 1

B=2.0+ 1n uoé - 0.9 uoz (14)

A

;
-1.h uoé . (15)

Rao and Snodgrass (1979) have tabulated similar
expressions for A and B, which are based on model
simulations by several authors.

For neutral conditions (4 and u, > 0) (12) ana (13)

reduce to
B=2.3, A=-1.,9 . (16)

This result is in reasonable agreement with the
neutral values for A and B proposed by Tennekes (1973a),
Clarke and Hess (19T4) and Yamada(1976).



111.8

4, Experimental data

To check the theoretical resilts of the preceding

sections we need observations of the parameters G, a,

h, u and L for stable conditions. We obtained such

data from measurements during clear nights at the meteo-~
rological mast at Cabauw in the Netherlands. This mast
is situated in flat and reasonably homogeneous terrain
with an average roughness length of 0.2 m (Van Ulden et
al., 1976). A full description of the site and the
instrumentation of the mast is given by Driedonks et al.
(1978).

Two data sets are available, The first, denoted as
Cabauw, 1977, consists of observations during fifteen
clear nights in 1977, which were selected on the con-
dition of a synoptically stationary situation. The
surface layer parameters u, and L in this data set
were calculated from the results of a profile method
(Nieuwstadt, 1978). This method obtains u, and 6,=
-H/pcéu‘ from wind and temperature profilés, which had
been observed between 2 and 20 m.

The second data set, denoted as Cabauw 1975, con-
sists of measurements during four clear nights in
February 1975. During these nights u, and L were ob-
tained from direct turbulence measurements of T and H,
A case study of one of these night periods was described
by Nieuwstadt and Driedonks (1979).

Conditions around sunset are highly non-stationary.
Tt is unlikely that resistance laws are then applicable.
Therefore we started our data sets at approximately
two hours after sunset when the nocturnal boundary is
considered to be fully developed., The observations were
continued until sunrise,
~ The geostrophic wind for both data sets is calculated
from hourly pressure data at 19 meteorological stations

in the Netherlands by a method based on principal com-
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ponent analysis of a time series of pressure data
measured at these stations (Cats, 1977).

For several nights in both data sets the wind
direction difference a shows fluctuations as a °
function of time, which do not occur in the other para-
meters of the boundary layer. These fluctuations are
mainly caused by slow excursions in the surface wind
direction. At this stage we can only attribute this
to mesoscale advection processes. It will lead to s
considerable amount of scatter in the comparison of
results which depend strongly on the value of a.

This will become apparent in the next section.

For both data sets the height of the boundary layer
is determined from the registration of an acoustic
sounder (Sodar), on which the nocturnal inversion can be
clearly seen if sufficient turbulence is present. The
top of the analog registration of this instrument is
taken as the boundary-layer height. The inaccuracies
in this procedure are estimated to be within the
instrumental error of ~30 m. This value is related to
the length of the sound pulse emitted by the Sodar,

Often the height of the boundary layer is estimated
as the thickness of the ground-based inversion in the
temperature profile (e.g. Melgarejo and Deardorff, 197L)
However, the height of the turbulent layer, which is

taken here as representative of the boundary-layer height,
is usually smaller than the inversion thickness due to
the influence of advection and radiation on the tem-
perature profile (Nieuwstadt and Driedonks, 19793 Nieuw-
stadt, 1980). This is confirmed by the model simulations

of Brost and Wyngaard (1978) and by observations analyzed
by Mahrt et al. (1979).
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Our experimental data allow a comparison between
both estimates of the boundary-layer height for those
cases in which the temperature profile measured along the
mast includes the whole surface~based inversion., The
inversion thickness is then determined as the height
to which significant cooling extends (Melgarejo and
Deardorff, 19T4). The results are compared in Figure 1
with the heights obtained from the Sodar-registration,
Indeed we find that the height obtained from the tem~
perature profile is generally larger than the height
measured by the Sodar. Moreover, the correlation
between the two heights is poor. Based on the arguments
given above we therefore prefer the height measured by
the Sodar as the estimate of the nocturnal boundary-
layer height. Such a choice was also recommended by

Arys and Sundarajan (1976).
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Fig. 1. Comparison of the boundary-layer height defined from
the temperature profile (hyp) with the boundary-layer
height observed with an acoustic sounder (ha)'
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5. Discussion

We have shown in section 2 that the height of the
stationary boundary layer can be expressed in terms of
the other characteristic parameters. This leads to a
relation between pu and u, given by (6).

The expression of Zilitinkevich (7), which follows
from (6) for large values of the stability, has been
checked against measurements by Yamada (1976), Arys and
Sundarajan (1976) and Yu (1978). They found a poor
agreement of the experimental results with (7). Moreover,
(7) seemed to underestimate the actual boundary-layer
height considerably. In these studies the height of the
boundary layer was based primarily on the temperature
profile, Therefore these results must be approached
cautiously, because we have shown in section 4 that
the height obtained in this way is poorly correlated
with the more preferable estimate from the Sodar-
registration. However, our results seem to support the
conclusions of the authors mentioned above, as we shall
see shortly.

Our data are shown in Figure 2, together with
equation (6). The experimental data show a dependence
between p and Mo but they do not fit the curve given
by (6) except for small values of Mo which indicate
near-neutral conditions. A choice of other constants
in (6) would not lead to a better agreement with the
observations, because the data rather support a linear
relation between p and Mo However, a dimensionless
plot like Figure 2, which is commonly used in atmo-
spheric boundary-layer research, may show artificial
correlation effects (Hicks, 1978). Artificial correla-
tion leads to relationships between dimensionless para-
meters, which have no physical cause and only follow
from the definition of the parameters. A discussion on

the influence of artificial correlation is usually
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Fig. 2. Comparison of observations of the stability parameters
b and M in the stable boundary layer; the dots denote
the data set Cabauw 1977 and the crosses the data set
Cabaww 1975; the drawn line follows from Equation (6),

omitted in a presentation of dimensionless plots. There~
fore we will elaborate on its appearance in our results
for u and Mo» shown in Figure 2, in an appendix. There
we show that the date still support a linear relation
between p and Mo when the iafluence of artificial
correlation is largely eliminated.

Such & linear relationship would imply that for
all values of the stability the boundary-layer height
will have the same form as for neutral conditions.
This means that the height will no longer depend
directly on L, which is hard to believe. Furthermore,
an estimate of the proportionality constant in the
linear relation, apparent in Figure 2, leads to a value
of about 0.7. This is smaller than the value of 0.3

usually found for neutral conditions, so that a linear
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relation between p and uo must lead to an incorrect
neutral limit. Another aspect is that the scatter in
the data, which is small in near-neutral conditions
when the agreement with (6) is good, increases for
larger stabilities.

Therefore we are tempted to conclude that the
boundary layer does not attain a steady state during
the course of the night. Hence the boundary-layer
height is not determined by local parameters but it is
a function of its history. This means that the boundary-
layer height can only be obtained from an appropriate
rate equation,

Such a rate equation was recently derived by Yamada
(1979) by integrating the temperature equation across
the boundary layer. He finds a good agreement with
observations. However, Nieuwstadt (1980) shows that
his equation does not describe the evolution of the
turbulent boundary-layer height, For this height
Zeman (1979) proposes a rate equation based on the
energy budget of the mean flow, He gives no comparison
with observations, but his results show good agreement
with the model simulations of Brost and Wyngaard (1978).
It will be the subject of further study whether the
application of such a rate equation can explain our
observations shown in Figure 2,

As a digression we may mention that a complete
analogy can be found in the convective boundary layer.
In that case the boundary-layer height follows also from
a rate equation (Tennekes, 1973b; Carson, 1973) rather
than from local parsmeters,

We now turn to a comparison of the similarity
functions A and B with our experimental data. However,
the validity of the resistance laws and thus of the
functions A and B in a non-st&tionary boundary layer

can be questioned, We will assume here that these laws
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remain applicable if the boundary can be considered

gself-similar. This means that the turbulent structure

of the boundary layer at each time is only dependent on

local, characteristic parameters and not on the time

history of the flcw., The time dependence of the flow is

only reflected in the time evolution of the characteris-

tic parameters themselves. Except possibly near sunset,

when conditions change very rapidly, self-similarity

seems to be a reasonable assumption for the structure

of the nocturnal toundary layer (Caughey et al., 1979).

In the non-stationary case, when the boundary-layer

height follows from a rate equation, Mo and u are in-

dependent stability parameters. As discussed in section

3, this means that the similarity functions must be

expressed in their general form A (n, uo) and B (yu, uo).

To facilitate a comparison with observations, we will

assume here that the expressions (12) and (13) for B and

A remain valid. Arn important consequence of (12) is

that B will depend primarily on p, because My enters

only in a logarithmiec function.

In Figures 3 and L4 we have plotted the observed

Fig. 3.
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The observed similarity function B in the resistance laws
as a function of the stability parameter s the dots
and crosses are defined as in Figure 2; the drawn line
follows from Equations (6) and (12).
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Fig. 4. Same as Figure 3, but as a function of the stability
parameter yu.

values of B against the parameters M and u respectively.
In these figures we have also drawn (12), which is ex-
pressed as a function of either M, or n with the aid
of (6). This curve predicts the trend in the data points
better in Figure 4, where B is shown as a function of u.
Together with the condition given above that B must
depend primarily on u, this result leads us to conclude
again that (6) is not valid. This confirms our hypo-
thesis that the stable boundary layer must be considered
non-stationary,

However, we have argued that in the non-steady case
B must be considered a function of both stability para-
meters rather than a function of either M, OT . This
means that the data on B must be compared with (12), in
which the observed values of both uy and uo are sut-
stituted. We can expect, however, the same agreement

as shown in Figure 4 because of the dominant dependence

of B on yu.
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Next, we discuss the similarity function A. In

Figures 5 and 6 the observed data on A are plotted

against o and p respectively. In both figures the

“heoretical curve defined by (13) and (6) is also shown.

In this case the trend in the data is better predicted

by the theoretical curve in Figure 5, where the data

are shown as a function of uo.

In both figures a trend in the data points is

unfortunately masked by a very large scatter for the

whole range of the stability parameter. This scatter

must be attributed primarily to the slow wind direction

fluctuations mentioned in section 4. These will influ-

ence A more than B because of the sine function in the

definition of A (9) as opposed to the cosine function

in the expression for B (8).

Due to this large scatter no detailed conelusions

can be drawn from Figures 5 and 6.

Fig. 5.

20 * . 4

1 1 1 I St I i n 4

SO 60 70 80 90
Pzt

The observed similarity function A in the resistance laws
as a function of the stability parameter M the dots
and crosses are defined as in Figure 2; the drawm line
follows from Equations (8) and (13).
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Fig. 6. Same as Figure 5, but as a function of the stability
parameter .

6. Summary and conclusions

We have collected a large number of experimental
data for clear nights. These data show that for large
values of the stability the boundary-layer height does
not attain a steady—séate value as for instance expressed
by the equation of Zilitinkevich.

The similarity functions A and B in the resistance
law for a homogeneous stationary bourdary layer are
summarized for the stable case. The values of B obtained
from observations show a clear trend with stability.
This dependence can be described in terms of an expression
which primarily depends on p. A trend in A with stability
is largely obscured by scatter in the data, which is

caused by large time-scale fluctuations in the wind

direction.
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Our results lead to a non-steady boundary layer for
large values of the stability. The height of such a
boundary layer cannot be determined in terms of local,
characteristic parameters. It must follow from a rate
equation which describes the time evolution of the
boundary-layer height. Examples of a rate equation are
discussed by Yamada (1979), Zeman (1979) and Nieuwstadt
(1980). Tt will be the subject of further study, whether
the application of these rate equations can explain the

observations discussed here.
T. Appendix

Plots of dimensionless quantities are frequently
used to organize empirical data. In this respect they
are very useful, because they may lead to universal
scaling laws in terms of which data points obtained from
different experiments can be collapsed. However, such
dimensionless plots may suffer from artificial correla-
tion if the dimensionless quantities contain common
scaling variables. This may lead to apparent relation-
ships between these quantities which have not any physical
cause (Hicks, 1978).

As an example, we direct our attention to the
dimensionless plot of u = h/L against Mo = u,/Lf for
the data set Cabauw 1977 (see Figure 2). In this data set
the parameters, which can be considered independently
obtained, are u,, h and 6, (see section 4), Because both
u and My depend on u and 6 , artificial correlation
may appear in the plot of u against M.

We investigate this by constructing a second data set
of h, u and 6‘, which is derived by generating random
values within the ranges observed in the Cabauw 1977 data
set. These ranges are 0.1 < u, < 0.55 m/s, 50 <h < 400 m

and 0.0k < 8, < 0.12 °C. A plot of the dimensionless
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quantities p and Hos obtained from this random data set
with the aid of (5), (10) and (11), is shown in Figure 7.
This figure is strikingly similar to Figure 2, which is
obtained with the measured Cabauw data. In both figures
a positive correlation between ¥ and M is apparent.
In Figure 7 this must be a symptom of artificial correla-
tion, which in this case is principally caused by the
parameter u, due to its large range of variation. Tt
follows directly that the dependence of both u and Mo
on u,, will induce the relationship: u . ui. The data in
Figure 7 seem to follow such a dependence quite well.
From this we must not directly conclude that the
results shown in Figure 2 are worthless because of arti-—
ficial correlation. At this stage we have only shown thsat
a plot of u against Mo is not very suitable to reveal
physical relationships, despite the fact that the indi-
vidual parameters u and u_ seem physically meaningful,
The responsible parameter, which primarily caused
the artificial correlation in this case, was identified

as u,. Therefore it would seem advantageous to define
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Fig. 7. Comparison of the stability parameters My and u
for a random data set; the dotted line is yu = u2
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a new dlmen51onless quantity, which does not contaln U,
€.8. u /f hL. For our random data set we have plotted
this quantity as a function of uo in Figure 8, This
figure has undeniably the appearance of a random data
plot. Despite the fact that in this case 8, 1s common
to both quantities, tae large range of variation in the
u and h eliminates any artificial dependence.

When we plot this new dimensionless quantity for
our data set Cabauw 1977, the result is completely dif-
ferent as shown in Figure 9 (note the change of vertical
scale compared to Figure 8). Here, a correlation between
both dimensionless quantities becomes apparent, which
cannot be an artificial one. Tt shows that the data
rather follow a linear dependence than the theoretical

relation (6) als shown in this figure. This is in

1 I i 1 i

0 10 20 30 20 50 60 70 80 90

Me=Ypy

Fig.8. Comparison of the parameter uf/fEhL with the
stability parameter g for a random data set.
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Fig. 9. Comparison of the parameter u, / fghL with the

stability parameter LR for the data set Cabauw
1977; the drawn line follows from Equation (6)

agreement with the rgsults of Figure 2, because a linear
relationship in Figure 9 is equivalent to a linear
dependence between the original parameters 1 and u
These results confirm completely our discussion in con-
nection with Figure 2. They also illustrate that plot-

ting of dimensionless quantities should be handled with

care.
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A rate equation for the inversion height

in a nocturnal boundary layer+

Abstract

The application of a self-similar profile in the
integration of the temperature equation across the stable
boundary layer leads to a rate equation for the inversion
height. An analytic solution of the resulting equation is
derived. Its behavior is determined by two processes:
cooling by turbulent mixing and cooling by internal radia-
tion, which is parameterized in terms of the surface cooling
rate. This parameterization, which attributes the tempera-
ture change in the boundary layer close to the surface
completely to internal radiation, leads to a monotonic
growth of the inversion depth. When the radiation term is
neglected and only the turbulent heat flux is taken into

account, the solution is governed by a relaxation process,

+To appear in the December issue, 1980,0f J. Appl. Meteor.
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1. Introduction

Most studies of the nocturnal boundary-layer height
concentrate on diagnostic equations. Such equations
describe the boundary-layer height in terms of local para-
meters only (i.e, surface heat and momentum flux). For
large values of the stability an expression for the boundary-
layer height was derived by Zilitinkevich (1972) by assuming
quasi-steady conditions. Comparison with observations,
however, shows poor agreement (Yu, 1978; Nieuwstadt, 1980).

Recent studies (Brost and Wyngaard, 1978; Caughey et al.,
1979) show that the stable houndary layer in the atmosphere
is continuously evolving., This means that its structure
cannot be described by steady-state equations. Therefore
the height of the boundary layer should not be expressed in
terms of a diagnostic equation but in terms of a prognostic
equation, which describes the time evolution of the boundary
layer.

Rate equations for the stable boundary-layer height were
recently derived by Yemada (1979) and Zeman (1979). These
equations require a definition of the boundary layer height.
Zeman (1979), following Brost and Wyngaard (1978), defines
it as the height where the turbulent fluxes have decreased
to a small proportion of their surface value. On the other
hand, Yamada (1979) refers to the temperature profile and
defines the boundary-layer height as the inversion height,
i.e. the depth to which significant cooling has extended.
These two definitions are not equivalent (Brost and Wyngaard,
1978; Mahrt et al., 1979; Nieuwstadt, 1980).

Here, we shall follow Yamada and consider a rate equation
for the inversion depth. It is derived by integrating the
temperature equation. In section 2 we summarize the deriva-
tion for a more general temperature profile than used by
Yamada. In section 3 we give the exact solution of this

equation and we investigate scme of its properties.
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2. A rate equation for the inversion depth

We confine ourselves to horizontally homogeneous
conditions. The equation for the pctential temperature 6
in the boundary layer then reads

3 99

2.5 () s o, (1)

%4

where t is,time and z is the vertical coordinate. This
equation states that the temperature change in the boundary
layer is caused by two processes: turbulent mixing,
represented by the gradient of the turbulent heat flux ;E,
and the divergence of longwave radiation, represented by the
term (36/3t)r. For convenience we have included a constant
C, which is set equal to one when radiation effects are
taken into account and equal to zero when radistion is
neglected.

We assume, following Yameda, that the temperature profile

within the boundary layer is given by the similarity

expression

6 =6 - 0001 - z/h)%. (2)

Here, eh is the temperature at z = h, where h is the height
of the inversion. The temperature difference across the
boundary layer is defined as A6 = Gh - es, where es is
the surface temperature. The value of the exponent a is
still not clear. Yamada (1979) presents evidence for
a = 3, but he cautions against applying these results to
other locations. Zeman (1979) uses a = 1. Here, we
will only assume that o > 1.

Following Yamada, the internal radiation term in (1) is

parameterized as

90 des
(3¥)r = (1 - z/n) , (3)

which shows that the cooling of the boundary layer for

z = 0 is completely attributed to radiation. This means
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that the influence of turbulent mixing is neglected, which
puts or the turbulent heat flux the constraint that
9w6/9z = 0 for z = 0, when radiation is included. The
parameterization given by (3) will have a large influence
on the solution as we shall show in the next section.
Using profiles (2) and (3) we can integrate the tem-
perature equation (1) across the boundary layer. In this
integration we assume that the turbulent heat flux at the
top of the ‘boundary layer is negligible and that the tem-
perature eh is independent of time. The integration then

leads to a rate equation for h. It reads (Yamada, eq. 11)

a+]

_dﬁ = (1 B _2- C)des/dt h o+l Wes (h)
dt (6, - 0 ) - a+l . d6 /at |°®-
h s 1 - > C s

where wes is the heat flux at the surface. This equation
must be completed by an initial condition, which is taken

as h=h fort=1% .
o o
3. Results

An analytic solution of the rate equation (L) with the
initial condition h = ho for t = to is possible. It reads
F('t )

o , t dh_(t')

h=nh(t) + 75 (- ()} -ﬂt—)tf Ft') —g— dt (5)

o
with
1 -2 ¢

F(t) = (6, -6 (£)} 2 (6)

and
o+l ;6;
h (t) = (7)
e 1 - g%l C des/dt

The first term on the right-hand side of (5) represents

an equilibrium height, defined by (7). The term equilibrium
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is based on the condition that dh/dt = 0 for h = h_,
which follows directly from (L), h, can be interpreted as
the height for which the temperature change, integrated
across the boundary layer, is completely balanced by the
radiative and turbulent processes,

The second term describes the influence of the initial
conditions on the solution, This term decreases as a
function of time if the exponent in (6) is greater than
zero, For a.2 1, considered here, this can happen for
C = 0 only, which means no radiation (recall that C = 0
or C = 1), If radiation is included, i.e. if C = 1, the
exponent will be negative and this term will increase
with time, leading to a growing h. As we shall see shortly,
this behavior is a consequence of the radiation para-
meterization and follows also directly from (4), because
C=14and a > 1 in this equation always lead to dh/dt > O.
The result of a growing inversion height is confirmed by
the model simulations by André et al., (1978) and also by
observations (Yamada, 19793 Mahrt et al., 1979).

The last term on the right-hand side of (5) describes
the influence of a non-stationary he. It shows that
solution depends on the complete time history of he and
not only on values at time t. This illustrates the differ-
ence of this solu%ion with a diagnostic equation for h.

To gain more insight in the properties of the rate
equation (4) and its solution (5) it is illustrative to
examine separately the influence of the different effects
in this equation, We shall distinguish two cases:

(a) radiation, but no turbulent heat flux, and (b) turbulent
mixing, but no radiation. It should be stressed that by
radiation we mean here the direct cooling of the boundary
layer by internal, long-wave radiation. The cooling of the
surface, which is also due to long-wave radiation loss, is
always present as the driving force in establishing a

stable temperature profile in the boundary layer,
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a. No turbulent heat flux (C = 1 and w8 = 0). The aolution

5]

(4) now reduces to

-1
eh B es(t)} 25_

h=h (8)
ole, - eslto)

This shows that fof'des/dt <Oend a>1, his an in-
creasing function of t. For o = 1, h becomes stationary.
This result explains to a large extent the non-decreasing
behavior of.the complete solution (4) discussed above.

h We can understand this behavior if we observe that

Jf(ae/at)rdz is proportional to the amount of heat which
o

is removed from the boundary layer by internal radiation.
If we parameterize the radiation by a linear profile, as
given by Yamada (1979), and if we require that the tem-
perature profile must always satisfy (2), conservation of
energy as expressed by (1) then leads automatically to an
increasing inversion height for a > 1.
However, the parameterization of the radiation, which
essentially determines this property of the solution, must
be considered rather crude in this case. It is, for
instance, not clear that the radiation profile can be
chosen independently of the temperature profile, as was

'

done here,.

b. No radiation (w6 # 0 and C = 0). First we note that

these conditions seem incompatible with the previous cases
where radiation is included. There, the temperature
decrease at z = 0 is completely caused by radiation
leading to a zero divergence of the heat flux, whereas in
this case cocling is only possible when 8w8/3z # 0 for
z = 0. However, we consider only the bulk properties of
the boundary layer in terms of an integral method, so that
these local inconsistencies may be neglected.

The solution (5) has now a completely different behavior

than in the case where radiation was taken into account.
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This can best be illustrated by rewriting (L) as

dgh = 1
Eg--TD {h-he(t)} s (9)
where
-{6, -6 (t)}
_ h S
T, = des/dt . (10)

and where he(t) is given by (7) for C = 0.

Fquation*(9) can be characterized as a relaxation
equation, which describes a process in which h is forced
towards an equilibrium value he. The time scale TD involved
in this relaxation process is given by (10). Tt will be
clear that this time scale increases with time because
des/dt < 0. This means that the boundary-layer height
evolves at a decreasing rate. In our case this results in
an algebraic approach of h towards he rather than an
exponential approach, as would be the behavior of a usual
relaxation process. The algebraic approach can be easily
verified from the full solution (5).

Equation (9) allows stationary and decreasing solutions
of h, which do not occur when the radiation term is in-
cluded, as we have seen above. This behavior resembles the
evolution of the Furbulent layer depth in a stable boundary
layer, which according to observations may approach a
quasi-stationary value (Nieuwstadt and Driedonks, 1979;
Mahrt et al., 1979). Such results are also found by Zeman
(1979) and Brost and Wyngaard (1978), who considered models
for the height of the turbulent, stable boundary layer in
which the radiational effects were neglected.

The latter authors also show that the boundary-layer
height approaches a stationary state when des/dt is con-
stant. This means that h and also wes approach constant
values, Such behavior is confirmed by the rate equation
(9)..It shows that for this case h approaches the then
constant value he' The expression (7) for he correlates

well with the model results of Brost and Wyngaard (1978).



Iv.8

L4, Summary and conclusions

Following Yamada (1979) we heave derived a rate equation
for the inversion depth in a nocturnal boundary layer by
integrating the temperature equation.

A simple parameterization of the internal radiation
term in this equation leads to a solution which increases
as a function of time. This behavior agrees with model
calculatiors and observations of the nocturnal inversion
height.

The influence of internal radiation and of turbulent
mixing is investigated separately. Taking only radiation
into account we find a solution for the inversion height
which is non-decreasing with time. Tt appears that the
paremeterization of the radiation is primarily responsible
for the monotonic growth found for the solution of the
compléte equation, Omission of the radiation term, which
means that only the turbulent heat flux is taken into
account, leads to a relaxation equation. This type of
equaticn can lead to stationary and decreasing solutions.
That behavior is more in agreement with model calculations
and observations of the turbulent layer depth in a stable
Boundary layer., ,

An approach to a rate equation for the height of the
turbulent layer is the subject of a present investigation,
It gives rise to a relaxation equation that is similar to

the one discussed here.



A rate equation for the

nocturnal boundary-layer height+

Abstract

A rate equation is derived which describes the development of
the boundary-layer height under stable conditions as a function
of time.

It takes the form of a linear relaxation equationj; its solution
is forced toward an equilibrium value. The equilibrium height
is connected to the work done by the ageostrophic wind in the
boundary layer. The time scale of the relaxation process
increases monotonically from a few hours shortly after sunset
to a value of the order of ten hours later on. This means that
the boundary-layer height evolves very slowly, which may lead
to the unwarranted impression that stationary conditions have
been reached, The main features of the rate equation are con-
firmed by comparison with the results of computer simulations

and with field observations of the boundary-layer height during
clear nights.

+Submitted to J. Atmos. Sci. with H. Tennekes as co-author,



1. Introduction

The nocturnal boundary-layer height is the depth of the
shallow turbulent boundary layer, which develops under stable
conditions. Previous studies (Yu, 1978; Nieuwstadt and
Driedonks, 1979; Nieuwstadt, 1980B) have shown that it cannot
be described by a diagnostic equation, which expresses this
height in terms of local, characteristic parameters. There-
fore a prognastic equation is needed to describe the evolution
of the boundary-layer height as a function of time. The goal
of this paper is to construct such an equationm.

Rate equations for the nocturnal boundary-layer height have
been considered by Deardorff (Yu, 1978), Smeda (1979) and
Mahrt (1981). They attempt to find an equation, which simulates
the characteristic behavior of the nocturnal boundary layer.
However, in their studies ad hoc assumptions are necessary to
determine some important parameters. Here, we shall avoid such
assumptions. Irstead, we shall derive the rate equation direct-
ly from the equations governing the development of the stable
boundary layer. The resulting equation turns ocut to be similar
to that proposed by the authors mentioned above. An advantage
of our approack is that the physical processes contributing to
the development of the boundary-layer height can be more easi-
ly recognized.

Another kiné of rate equation has been developed by Yamads
(1979). He derives an equation for the evolution of the
inversion height in stable conditions. However, his results
are not appliceble to our problem because the height of the
turbulent boundary layer is not necessarily equal to the
inversion depth. We return to this issue in section 2. The
difference between the results obtained by Yamada and the
type of rate equation derived in this paper is discussed in
more detail by Nieuwstadt (1980a),

Yet another approach has been proposed by Zeman (1979).

He uses an integral method to construct s complete model of

the nocturnal boundary layer. This leads to a rather com-
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plicated rate equation for the boundary-layer height in

terms of other unknowns, which in turn are expressed by
additional time-dependent equations. Here, we aim to

develop a more simple rate equation, which allows & straight-
forward interpretation.

In section 2, we derive the rate equation by considering
sources and sinks of turbulent kinetic energy in a stable
boundary layer. The analytic solution of this equation and
its properties are discussed. The characteristic behavior is
described by a relaxation process. The equilibrium height
which occurs in the equation is discussed in section 3, where
also a simple expression for this height is proposed. The
time scale of the relaxation process and its influence on the
solution is discussed in section 4. A comparison with ob-
servations obtained during clear nights at the meteorological

mast at Cabauw in the Netherlands is given in section 5.
2. Rate equation for the stable boundary-layer height

We base the rate equation on a consideration of production
and destruction of turbulent kinetic energy inside a stable
boundary layer. For that purpose we introduce a modified flux
Richardson number defined as the ratio of the production and
destruction term averaged across the toundary layer. We con-
sider the evolution of this Richardson number as a function
of time by deriving equations for its numerator and denomi-
nator which are evaluated with the aid of self-similar
boundary-layer profiies. Substitution of these equations in
the expression for the modified Richardson number then leads
to the rate equation.

Before beginning with our derivation we first consider
the definition of the nocturnal boundary-layer height. We
assume here that it is the height, at which the turbulent
shear stress and heat flux become negligibly small (Brost and
Wyngaard, 1978; Zeman, 1979). Other studies (Yu, 1978;
Yamads, 1979) relate the boundary-layer height to the inversion
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depth. However, Mahrt et all (1979) and Nieuwstadt (1980b)
have shown that these two definitions are not equivalent. The
temperature profile is not only influenced by turbulent mixing
but also by other processes such as radiation., Therefore the
inversion height is not a reliable indicator of the turbulent
layer depth.

As the starting point of our analysis we teke the turbulent
kinetic energy budget. Since the nocturnal boundary layer is
stable, the only source term in this budget is the mechanical
or shear production t/p. 9v/9z, where 1 = (tx,ry) is the Reynolds
stress and 3v/8z the gradient of the horizontal wind v = (u,v).
The buoyancy flux g/T wB suppresses turbulence, because w8 is
generally negative at night., The ratio of these two effects,
which plays an important role in the dynamics of the stable

boundary layer, is given by the flux Richardson number.
It reads

E e
Ri_ = - & (1)
f T 3V ¢
o 8z

We base our investigation of the stable boundary-layer height
on this parameter.

Model calculations (Wyngaard, 1975) show that in a stable
boundary layer the value of Rif is of the order of 0.2, This
means that only a small fraction of the turbulent kinetic
energy is destroyed by buoyancy. The remaining part is lost
through viscous dissipation, because the other terms in the
energy budget such as the transport term and the time de-
rivative, are negligible in a stable boundary layer (Brost
and Wyngaard, 1978).

The thickness of the turbulent boundary layer must be re-
lated to the shear produ¢tion and the buoyancy destruction

averaged across the boundary layer. Therefore we introduce as
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a new parameter Rif, which is defined as

v
‘5, 4z (2)

O]

h h
F,=- [ E&Wa//S
0 o

where h is the boundary-layer height.
An expression for Rif in terms of other boundary-layer
parameters is necessary in the subsequent discussions. It is

obtained by assuming the following self-similar profiles

we =wh_ f, (z/h) (3a)
/o = u,? £, (z/n) (3b)
v o= Uh f3 (z/n), (3c)

where the friction velocity u, is defined as u, = V ITOI/p.
The indices o and h denote the value of the variable st the

surface and at the top of the boundary layer, respectively.

It is then obvious that the following conditions must be

satisfied:

1]
o

£,00) =1, [1,(0)] = 1, |£5(0)]

and

£,(1) =0, |£,(0)]

0, |£5(0)] = 1.

For the flux profiles self-similarity is confirmed by the

data of Caughey et al,(1979). Their data can be well appro-
ximated by the following expressions

£,(z/h) = (1-z/n)> (La)
£,(z/n)] = (1 = 2z/n)"*? (L)

Self-similarity as expressed by (3c) is not so clear for the
velocity profile. Yamada (1976) presents some evidence
in favor of self-similarity although the scatter in his data
is rather large. Caughey et al. (1979) argue that mean profiles

in the stable boundary layer may be far out of equilibrium
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with the local turbulent boundary-layer structure, so that
self-similarity is destroyed. Furthermore, (3c¢c) cannot be
valid in the surface layer, where a description of the
velocity profile in terms of u, and the roughness length z
is more appropriate. The surface layer can be treated sepa-
rately (Zeman, 1979), but a simple formulation is then no
longer possible. We must, therefore, consider (3c) as a
rather restrictive assumption. It is only justified, because
we consider here an integral method which treats bulk pro-
perties of the boundary leyer. This means that detailed spe-
cification of the profiles is not necessary, because they
are only applied in integrals across the boundary layer.

To facilitate an easy evaluation of integrals we tentati-

vely assume
|f3(Z/h)| = z/n, (Le)

which denotes a linear velocity profile in the boundary layer.
This is a consistent extrapolation of the log-linear profile
valid in the surface layer for stable conditions (Wyngaard,
1973).

To resume our discussion of an alternative expression for

Rif substitution of (3a), (3b) and (3c) into (2) leads to

1/2

= B
Ri,=c¢ I °p . (5)

1

where the Obukhov length L is defined as

u T
L= - —mm ., (6)

gk weo
The Von Karman constant k is taken here equal to 0.35.
The drag coefficient cp is defined as ey = (u_/Uh)e. The
integrals in (2) can be evaluated for the functions given
by (bka), (4b) and (Le). This leads to a value 1.8 for the
nondimensional constant Cye
For comparison we give the results of Brost and Wyngaard

(1978). Their expressions for the geostrophic drag law
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which applies to stationary conditions reduce for large
values of h/L to

-—— sin a 10 I (1)

cla

2,2

k

(mll=d

G
— cos o
u‘

) (8)

where a is the angle between the geostrophic wind G and the
surface wind direction. Assuming UhR:G we find from (7) and
(8) that CD1/2 h/L = 0.085, Substitution of this result into
(5) leads to a value of Rif equal to 0,15, which seems a
reasonable value in comparison with our earlier estimate for
Rif. However, we must stress that this result is only valid
for the stationary conditions and large values of h/L con-
sidered in this paragraph,

A rate equation for the boundary-layer height h is now ob-
tained by considering ﬁf; for non-stationary conditions, In
that case Rif becomes a function of time. This time depen-
dence is found by specifying separate equations for the nu-
merator and the denominator of (2). We proceed from the hori-
zontally homogeneous equations for the mean veélocity components

u, v and for the mean potential temperature 6. These read

ou _ 3

ag = TV + g, (/e (9a)
oV _ 3

Y Sl f (u-20)+ 5; (Ty/p), (9b)
39 _ 9 — '

'a—t = - _32 wod . (90)

Here the x-axis is taken along the geostrophic wind Gj f is
the Coriolis parameter and w8 is the vertical turbulent
temperature flux. The divergence of long-wave radiation

is neglected in (9c), because we assume that the height of
the turbulent boundary layer, considered here, is primarily
influenced by dynamical processes (Brost and Wyngaard, 1978;

Zeman, 1979). Such an assumption, however, cannot be made when
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the evolution of the inversion height is considered (André
et al., 1978; Yamada, 1979; Nieuwstadt, 1980a).

An expression for the denominsator of ﬁf; is obtained from
(9a) and (9b) by constructing an equation for the mean kinetic
energy E = 1/2 (u2 + v2). Integrating the resulting equation
across the boundary layer and applying the boundary conditions

u=v =0 for z =0 and T, Ty =0 for z = h, we find

. h
v
- dh d
3,42 =hP+E_ - = S Eaz, (1)
(o]

o1

h  dt

h
o
where the production term P is defined as

h
P = '/n ‘/.f ¢ v dz. (11)

o

This term represents the work done on the ageostrophic
velocity component by the pressure gradient 9p/dy, which is
related to the geostrophic wind by

13

G = - °f 3y (12)

Since P is indirectly the main source of turbulent kinetic
energy in a stable boundary layer, it is not surprising that
it is an important parameter in the development of the tur-
bulent layer depth. We return to a further discussion of P
in section 3,

If we substitute the velocity profile (3c) and (Le),

equation (8) reduces to
h
o

Evaluation of the integrals leads to c2 = 1/4. We have

assumed that Uh is stationary. A non=-stationary behavior can

9

|

- 2 dh
74z =h P +ec, U (13)

o)
Y

be 'incorporated in (10) by specifying a separate equation for
Uh (Zeman, 1979). We will, however, not pursue this here.
Next we derive an equation for the numerator of (2) by

multiplying the temperature equation (9c) with the coordi-
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nate z and integrating the resulting expression across the

boundary layer. With the aid of Leibnitz's rule we find

h

h
— d 1, .2
/ o dz = - — f z (8,-0)dz + /2 h° as, /at, (14)
(e} (o]

where Bh is the temperature at the top of the boundary layer.
This temperature will change as function of time due to
advection and long-wave radiation. We neglect these processes
here and assume that 6, is constant in time. This means that
the last term in (14) is neglected. Non-stationary behavior
of eh requires a separate rate equation (Zeman, 1979), which
we will not pursue here.

Consistent with (3) we assume that the temperature

distribution is given by the following self-similar profile
6, - 6 =(8, -0 f(z/n), (15)

where 60 is the temperature at the surface. It should be men-
tioned that the arguments concerning self-similarity discussed
earlier are also applicable here, The function fh(z/h) should
always satisfy the constraints fh(1) = 0 and fu(O) = 1. In our
calculations an explicit expression for fh(z/h) is needed.
Yamada (1979) presents some evidence for a behavior according
to a cubic power law, Here we use a linear profile following

Zeman (1979)
f),(z/h) =1 - z/n . (16)

After substitution of the profiles (15) and (16) into (14) we
find

2 deo

dat

dh
-2c (eh-eo) h % » (17)

h
fwedz=c3h 3
o)

where the integration constant cs becomes equal to 1/6. Note

that in a stable boundary layer generally deo/dt < 0, which in-

dicates cooling of the surface,
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Substitution of (13) and (17) into (2) then results in the

following rate equation for h

c. Ri
2 _fjan _1 ]
2[1_2c Ri dt'T[he‘h , (18)
3 B
where
(6. -0 )
T=- 3% 7% (19)
o
and
h =_£ (20)
e ae
c £_0°
37T 4t

The bulk Richardson number RiB is defined as

(6, - 8 )n

. h 0

RlB = %._____E__~_ (21)
Uh

We first direct our attention to the ratio Rif/Ri s Wwhich

B
with the aid of (5), (6) and (21) can be transformed to

H
< — (22)
9
Ri 1 CD

where c_ 1s defined by weo = Ccy Uh(eO - eh). c, was defined

earlierH(see text following (5)). In order thaE (18) nas a
physically realistic solution, which remains bounded for all
times, the following constraint must be satisfied:

ﬁ?;/RiB < 203/c2. With cy = 1.8, c, = 1/4, cy = 1/6, as
derived above, and with (22) this condition leads to

cH/cD < 2.1, It means that g must not be much larger than
cD, or heat must not be transported more effectively than
momentum. This condition 1is certainly met in a stable

boundary layer, where observations indicate that c c

H® ™D



(Arya, 1977)+. Substitution of this cbservational result
into (22) 1leads to a constant ratio ﬁf;/RiB equal to 0.63,
We stress that this does not imply that Rif is also con-
stant. As we have seen above, Rif = const. occurs for
stationary conditions and ldarge values of h/L.

With this resﬁlt for ﬁ?;/RiB and using the values for

c, and c35 discussed above, we find 2(1 - (c2/2c )le/RlB) - 1.

3
Equation (18) now is simplified to

1
Tt -,-I,—(h - h). (18a)

This equation can be characterized as a linear relaxation
equation, for which the solution evolves in time toward an
equilibrium value'he. The term equilibrium height is chosen
because (18a) shows that dh/dt = O fer h = h . The equilibrium
height is discussed in section 3. The rate of approach of
h toward he is governed by the time scale T, which is dis-
cussed in section bk,

An equation similar to (18a) was also proposed by
Deardorff (Yu, 1978), Smeda.(1979) and Mahrt (1981),
However, their expressions for T and he are different from
(19) and (20). We shall return to these differences in the
next sections.

With the initial condition h = h for t = t_ equations (18a),
(19) and (20) allow an analytic solution. Tt reads

F(to)
h = he(t) * TRy {n, - he(to)} +

. dh
- O f F(s)—asi ds, (23)
t

o

Tseveral authors (e.g. Melgarejo and Deardorff, 197L) use
the definition weo =cgu, (Oo - BH). In that case (22)

“becomes Ri_/Ri_ = c. k c./c. 1/2. Equivalently the results
f B 1 H ™D 1/2
c .

of Melgarejo and Deardorff indicate ¢y ~ Sp



F(t) = {6, - eo(t)}. (2L)

The first term on the righthand side of (23) shows the
limit condition of a relaxation process Wwhen h becomes equal
to he' The second term gives the influence of the initial
condition. This term decays as a function of time because
F(t) is a monotonic increasing function (remind that we
take deo/dt < o in a stable boundary layer). The last term
shows that the solution for h depends on the complete time
history of he' This illustrates the difference between this
solution and a diagnostic equation for which h(t) can only
depend on the values of parameters at time t. Also note that
this term vanishes for constant he’ to which we shall return
in the next section.

Equation (23) is singular for eo(to) = 6. because T then

becomes equal to zero., Such an initial cond?tion applies to
the boundary layer shortly before sunset, when the potential
temperature is constant with height. The boundary-layer height
then collapses from its convective value of ~1 km to its
nocturnal value which is of the order of a few hundred meters.
This transition region, which takes a few hours (Caughey et al.,
1979), is poorly understood.

Conditions are highly non-stationary leading to rapidly
changing profiles so that integral methods are probably not
applicable. Therefore, it is not surprising that our rate
equation, which is based on integral methods, shows a singular
behavior in the transition period. This means in our opinion

that (18a) only describes the development of the stable

boundary-layer height after the sunset transient has decayed.

3. The equilibrium height

In this section the equilibrium height h_ given by (20) is
discussed in more detail and compared with results found by

other authors.



We can interpret (20) as a diagnostic equation for h.
Diagnostic equations are applicable in stationary conditions.
They express the boundary-layer height in terms of local para-
meters (Zilitinkevich, 1972; Nieuwstadt, 1980b). Such an inter-
pretation for h, is consistent with the rate equation (18),
because the solution (23) shows that for stationary con-
ditions h approaches the then constant he for t - =, This
means that a diagnostic expression for the boundary-layer
height must be considered as an asymptotic limit for the
special circuﬁstances that steady-state conditions prevail.
Equation (20) shows, that stationary conditions are only
possible for a constant cooling rate , deo/dt = const. This
condition is also argued by Brost and Wyngaard (1978).

We proceed to derive a simplified expression for he, which
is constructed by specifying an approximate expression for P
in (20). Recalling the discussion following (11), we note that
P represents the work done by the ageostrophic wind component
v. This velocity component must be proportional to G sin a so
that as & first approximation P~ f G2 sin o seems suitable.
It shows that P, and therefore he’ increases when the cross-
isobaric angle a increases,

However, P must satisfy another constraint, which can be de-

rived by integrating the stationary form of (9a) across the

boundary layer. It reads

h
Jf fvadz = u'2 cos o, where we have used the fact that the
o

surface stress is parallel to the surface wind. Substitution of
this result in (11) shows that P must also be proportional to
cos a. As a convemrient interpolation formulsa, which combines
both dependences of P on a, we propose P ~ f G2 sin a cos a.

Substitution into (20) leads to our final result

f G2 sin o cos o
h =o¢
e l

O
£ |52
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where Rif and c3 have been absorbed in the constant c),» whose
magnitude will be estimated in the next section.

Expression (25) is attractive because it does not contain
turbulent fluxes. However, the angle o is an internal boundary-
layer parameter, which is usually obtained from a resistance
law (Melgarejo and Deardorff, 197h; Arya, 197T7). Unfortunately,
the estimates of a with these laws show much scattéer when com—
pared with observations (Nieuwstadt, 1980b). Nevertheless in
our opinion (25) is illustrative, because it shows clearly the
influence of wind direction change in a stable boundary layer.

A diagnostic equation for the boundary-layer height is not
confirmed by observations (Nieuwstedt and Driedonks, 1979;
Nieuwstadt, 1980b). The reasons are: stationary conditions
cannot be attained in practice because the cooling rate is
seldom constant for an extended period of time (cf. the case
study shown in section 5) and, more important, because time
scales in the stable boundary layer become very large. This
means, as we will show in the next section, that the asymptotic
value represented by (25) generally cannot be reached during
the course of a night,

Therefore, it is not possible to check (25) by comparison
with observations and the ¢nly thing we can do is to compare
it with expressions derived by other authors. We assume large
values of h/L so that (7) and (8) are valid.

Brost and Wyngaard (1978) propose

2

Uy

b Foena (26)

They show that (26) is confirmed by model calculations for the
stationary boundary layer. To show its consistency with (25)
we use deo/dt ~ ;Eg/h, which can be derived by integrating
(9¢) across the boundary layer if conditions are stationary.
Substitution of this result in (25) and the use of (8) then
lead to (26). _

A well known equation for the height of the stationary
boundary layer has been derived by Zilitinkevich (1972). Tt



s =) . (27)

Numerous model calculations:(e.g. Businger and Arya, 197L4)

confirm this expression. However, the value of c. found by

different authors wvariés appreciably. Here we sthl use
cg = 0.4 proposed by Brost and Wyngaard (1978).

In the derivation of (27) an assumption is made concerning
the turbulent® transfer coefficient in a stable boundary layer.
This contrasts with the derivation of (25) and (26) which is
based only on the equations (9a), (9b) and (9c) for the mean
values. This additional assumption must be taken into account
- 60)/h as
follows from (15), the relation for deo/dt, discussed above,

can be extended to deo/dt ~ weo/h ~ —K(Sh - 60)/h2. A reasonable

in a comparison with (25). If we use (ee/az)o ~ (8

assumption for the turbulent transfer coefficient in the stable
boundary layer is K . u L, which is consistent with a linear
wind speed profile in the surface layer. Substitution of these
results in (25), application of (7) and (8) and also the use

of the results on N and cy discussed in the preceding section
then show that (25) and (27) are equivalent.

Another expression for the equilibrium height has been

proposed by Deardorff (Yu, 1978) and Smeda (1978). This reads

no. syr, (28)

It shows that the stationary, stable boundary-layer height is
not directly dependent on stability. Instead, (28) implies
that it is proportional to the neutral boundary-layer height
(Tennekes, 1973). This result is clearly in contradiction
with Zilitinkevich's expression (27).

Mahrt (1981) assumes that the equilibrium height can be

described in terms of a critical value of the bulk Richardson



(29)

vwhere the critical Richardson number Ricr is estimated to be
equal to 0.5. This approach is in contradiction with the
results of Brost and Wyngaard (1978), who show that no unique
value is found for the bulk Richardson number in a stable
boundary layer. On the other hand our result (22) with cH/cD‘~ 1
and Rif ~ 0.2, as derived in the previous section for sta-
tionary conditions, leads to RiB ~ 0.3 close to the value pro-
posed by Mahrt. Therefore, the question whether (29) is valid
in a stable boundary layer is still unresolved.

Summarizing we conclude that the height of the steady,
turbulent, stable boundary layer is given by (25), (26) or

(27), which were shown to be equivalent for large values
of h/L.

4, The time scale

The time scale T in (18a) governs the rate at which the
solution is forced toward the equilibrium height. We shall
examine the consequences of expression (19) for this time
scale.

An important aspect of (19) is that the time scale in-
creases monotonically as a function of time, In other words
the boundary-layer height evolves at a decreasing rate, In
terms of the analytic solution (23) this means that the de-
pendence of the boundary-layer height on time is algebraic
rather than exponential as would be the dependence in & re-
laxation process #ith fixed time constant.

An estimate for T is readily obtained frem (19)., At the
beginning of the night, when eh - 60 is still small, and for
a reasonable value of deo/dt ~ - 1°C/hr T becomes equal to

a few hours. Later in the night, when eh - 60 is large, the



time scale can easily become of the order of ten hours. A
similar estimate is also given by Caughey et al. (1979). This
leads to the important conclusion that the nocturnal
boundary-layer height adjusts very slowly to a change in ex-
ternal conditions.

This large $ime scale leads to the practical consequence
that a night period is generally too short for the boundary-
layer height to reach its equilibrium value. We illustrate
this by presehting a few examples of the time evolution of
the boundary-layer height as described by (18a) for a con-
stant value of deo/dt when h -+ he for t + », A comparison is
made with the results of Brost and Wyngaard (1978), who pre-
sent model calculations of the time evolution of h for
several values of deo/dt. This can also be considered as a
comparison with the model of Zeman (1979), who claims a good
agreement with the results of Brost and Wyngaard. The data of
these authors on o, which are tabulated for the case G = 10 m/s,

are used in the expression (25) to evaluate he' In Figures 1

T v - v v T

150

d 0, /dt=-1°C /hr

time in hours 10
Fig. 1. A comparison of the solution of the rate equation (18a) with

the caleculations of Brost and Wyngaard (1978) for the case
ae/at = -1°C/nr; draum line: the solution of (18a) with h,
equal to the result of Brost and Wyngaard, which is also in-
dicated in the figure; dashed line: the results of Brost and
Wyngaard; dashed-dotted line the solution of (18a) with

ey, = 0.15 7n (25).
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4

time in hours

Fig. 2. The same as Figure 1 for deo/dt = -2°C/nr.

and 2 we show results for deo/dt = -1 and —2°C/hr, respective-
1y. For one set of curves shown in these figures we have ad-
Jjusted the constant'ch from 0,18 to 0.21 in order to make our
value of he equal to the stationary boundary-layer height given
by Brost and Wyngaard. These results show clearly that even
after a time period of ten hours the boundary layer is still
considerably higher than the equilibrium height he’ despite the
fact that the small rate of change of the solution seems to
suggest that such an equilibrium condition has been reached.
Therefore, the assumption that the boundary-layer height may
reach its equilibrium value within a few hours, which underlies
the application of diagnostic equations, is unwarranted. The
boundary layer seems quasi-stationary only because its time
scale is very large.

Adopting the view that the boundary layer is still evolving
after a time period of ten hours, we now look for a value of
c), that leads to the best overall agreement with the results
of Brost and Wyngeard. As indicated by the second set of
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curves in the Figures 1 and 2 this is obtained for c) = 0.15.
This value is suggested to calculate the equilibrium height
from (25) and will be used in the remainder of this paper.

As another consequence of the large time scale in the noc-
turnal boundary layer the influence of the initial condition
on the solution of (18a) decays only very slowly. We may
illustrate this memory effect by solutions of (18a) for dif-
ferent initial conditions which are shown for the case
deo/dt = -20C/hr in Figure 3. In the calculation we have
arbitrarily assumed that (18a) becomes valid two hours after
the time that 60 = Bh. Even after ten hours the curves in
Figure 3, which asymptotically must become equal to the in-
dicated value of he’ differ substantially.

This result means that the transient condition around sun-
set, which determines the initial condition for our rate

equation (c¢fi section 2), has an important influence on the

300+
17 . d0,/dt =-2°C/hr
200+ 4
height

in ] j
m 4
1004 .

]
i <+—hg

0 —— — .

time in hours
Fig. 3. The solution of (18a) for d8_/at = -2°C/hr and with

e, = 0.15 in (25) for several initial conditions. The

value of he 18 also indicated.
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boundary layer later in the night. Therefore, the successful
prediction of the boundary-layer height for an entire night
period depends strongly on our ability to describe its
evolution around sunset. A simple model for this is yet to
be found and must be the subject of further study.

Deardorff (Yu, 1978), Smeda (1979) and Mahrt (1981) use
another expression for the time scale T in their rate
equations. They propose T ~ h/u, where the velocity scale u
is usually taken equal to u,. The actual magnitude of these

time scales varies strongly (Mehrt, 1981),

5. Observations

To compare our model with observations we use measurements
during clear nights, when a shallow turbulent boundary layer
has developed near the surface. We hsve obtained such data
with the meteorological mast at Cabauw in the Netherlands. An
extensive description of the mast is given by Driedonks et al.
(1978). Our data set consists of observations of G, a, L, u,,
eo and h during the course of several nights in 1977. The
parameters G, a and 90 are directly measured. u, and L are
obtained indirectly with the aid of a profile method (Nieuwstadt,
1978). We recall that the boundary-layer height h is the height
to which turbulence extends, Therefore we use the observations
made with an acoustic sounder to estimate this height, An ad-
ditional discussion of this data set is presented by Nieuwstadt
(1980b),

We have stated several times that the stable boundary-layer
height cannot be described in terms of a diagnostic equation,
This point is now illustrated by a comparison with our ob-
servations, Several equivalent expressions for a diagnostic
equation of the nocturnal boundary-layer height were discussed
in section 3. Because equation (27), derived by Zilitinkevich

(1972), is widely used, we have chosen it for our comparison.
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The results are shown in Figure L. The agreement between this
equation and the Cabauw observations is undoubtedly poor. It
cannot be attributed to a wrong value of the proportionality
constant in (27). Therefore, the conclusion that diagnostic
equations are not appropriate in this case is confirmed.

To compare the observations with a prognostic equation we
solve the rate equation (18a) by substituting the observed
values of G, a and deo/dt in (19) and (25). Here, eh is taken
equal to the boundary-layer temperature at the beginning of
the night, when the temperature profile is neutral. The cal-
culation is started at approximately 2 hours after sunset to
avoid the initial development of the boundary layer (cf.
section 2). At this time usually the first clear observation
of the boundary-layer height is obtained from the acoustic

sounder. This value is applied as the initial condition in

T T T 7
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Fig. 4. A comparison of the observed values of the boundary-
layer height with the diagnostic exvression of
Zilitinkevich (27).
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Fig. 5. A comparison of the observed values of the boundary-

layer height with the solution of the rate equation
(18a).

the solution of (18a). The results are shown in Figure 5. The
agreement between otservations and calculations is much bet-
ter than that in Figure U, The main reason is persistence of
the initial conditions both in the observed and calculated
results. This confirms the influence of the large time scale
discussed in section b,

As an additional example we show a case history of noc-
turnal boundary-layer development. The parameters G, o and
eo are shown in Figure 6 as a function of time. The boundary-
layer height is given in Figure 7. The results of the prog-
nostic equation agree better with the observations than the

results of the diagnostic equation.
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104 r
G .6,
in  in

mls °C
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a
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-— 1
15 18 21 0 3 6
time {GMT)
Fig. 6. An observed stable night period. The parameters G, o,

and o as a function of time.
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Fig. 7. The time evolution of the boundary-layer height for the
night period shown in Figure 6; drawm line: the observed
value; dashed line: the solution of the rate equation

(18a); plus signs: the values obtained from Zilitinkevich's
expression (27).
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6. Conclusions

Using self-similar velocity, temperature and flux profiles
we have derived a rate equation for the nocturnal boundary-
layer height by means of an integral method. The equation has
the form of a linear relaxation equation. It shows how the
boundary layer is forced toward an equilibrium height. The
equation cannot describe the transient conditions around sun-
set.

The equil{brium height, which can be considered as a diag-
nostic expression for the boundary-layer height, is the
asymptotic solution of the rate equation for a constant cooling
rate. It is directly related to the energy produced by the
ageostrophic wind component against the pressure gradient. An
estimate of this production term leads to a simplified ex-
pression for the equilibrium height. This is shown to be
equivalent to other diagnostic expressions of the nocturnal
boundary-layer height.

The rate of change of the boundary-layer height is governed
by a time scale that increases monotonically as a function of
time. It varies from a few hours in the beginning of the night
to a value of about ten hours as sunrise approaches. This
means that the stable boundary-layer height evolves very slow-
ly and the equilibrium height is generally not attained during
the course of a night. Another consequence of the large time
scale is that the influence of the initial condition on the
solution of the rate equation decays slowly.

A comparison with observations shows that the results ob-
tained with the rate equation are superior to those which

follow from diagnostic equations,
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Observations of the nocturnal boundary layer during clear nights

measured with the meteorological mast at Cabauw in the Netherlands.

Legenda (all times are in Greenwich Mean Time)

TO.6 Temperature at a héight of 0.6 m in °C
T1.5 Tempe?ature at a height of 1.5 m in °c
T200 Temperature at a height of 200 m in °C
U10 Wind speed at a height of 10 m in m/s
U200 Wind speed at a height of 200 m in m/s
%50 Wind direction at a height of 20 m in degrees

%500 Wind direction at a height of 200 m in degrees

u, Friction velocity in m/s obtained with a profil
o method F. Nieuwstadt
T, Temperature scale in C (Bound.—Layer Meteor.,

1978, 1L, 235-246),

G Geostrophic wind speed in m/s
G Geostrophic wind direction in degrees

h Boundary-layer height in m from an acoustic sounde

given as half-
hour averages

over the time-
periods indi-

cated

given as obsrva-

tions on each
whole hour
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08

. 21
29/30 March 1977. Sunset at 18"~ GMI'. Sunrise at 5  GMT.

Time To.6 1.5 Tooo Uio V200 %0 %o Ux Tw G ag kb
15916 3.6 3.h b 6.3 7.5 31 355 sk .06 08 6
16-1630 3.2 3.1 1.3 6.1 1.8 33 349 .50 -.03 i
163017 2.2 2.3 1.2 5.2 1.7 333 356 .4 .01

30 10.3 59 -
17-17 1.5 1.6 1.0 L.2 8.3 343 2 .33 .0k
1730-18 1.0 1.2 1.1 4.1 8.2 347 10 .29 .07
18-1830 .2 511 b2 7.5 3k 1k .36 .10 o e -
1830_19 - .3 1 9 3.7 6.5 346 o2 .25 0 g o
19-19°% 1.0 - .4 8 2.9 5.1 351 31 .19 .10
193020 -1.5 - 2 .8 2.1 5.0 359 52 11 06 g )y
20-20°° 1.6 - .5 8 2.2 5.5 17 4 .12 .07 o )
2030-21  _1.6 - .6 7T 2.1 5.9 25 55 .09 .06
21-213% 11~ .7 8 1.8 6.2 33 57 - _r T -
213022 _1,8 - .9 6 1.7 6.2 L6 60 - -
202230 -2.0 -1.3 L1600 6.1 53 68 - - 76 o3 )
223023 2.2 1.3 T1.T 6.2 53 76 - -
23-2330 -1.9  -1.1 7T 2.1 7.0 63 83 .08 .06 & % )
23302 1.7 1.0 8 2.3 7.2 63 87 .12 .07
0-03° 2.1 -1.3 5 2.1 8.6 60 90 .13 .06 e 8T ko
030-1 -2.7 -1.8 2 2.2 1.9 75 11k 11 .06 4
1-130 -2.4  -1.6 3 2.4 7.3 84 129 1L .07 . T
1302 -2.8  -1.9 2 2.2 7.2 8k 129 .11 .06
2230 -3.0 -2.1 - .0 2.3 7.2 86 128 .12 .06 re T
230_3 ~2.9  =1.9 - .1 2.3 7.0 91 127 .13 .06
33 -2.5 =~=1.9 - .4 2.6 1.5 96 128 7 .07 e o
330_y -2.7 =2.1 -.5 2.6 1.6 95 123 7 T 84 108 100
14,30 -3.3 -2.3 - .6 2.0 T.6 89 116 .11 05
430-5 -3.5 =2.4 -1.0 1.9 7.3 88 116 .09 05 89 101 100
5530 -3 2% 211 1.7 7.5 90 117 .07 o
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30/31 March 1977. Sunset at 1809 GMT. Sunrise at 5 9 GMT.

VI.3

To.6 Tis Tooo Yo Usoo  %g %0 Ux  Te G a; h
b, 1 3.8 1.5 5.5 8.1 82 86 .50 -.05 2.1 96 _
3.9 3.8 1.6 5.0 7.0 84 83 Ly -.02
3.4 3.k LR ¢ 8.0 87 89 i 01 113 100 _
2.7 2.9 1.2 4.4 8.7 99 100 .38 .03
1.9 2.2 1.0 3.7 9.4k 100 101 .30 06 44 98 _
1.1 1.5 .9 3.4 10.1 95 97 .26 .07

W 1.0 7 3.1 10.5 87 9k .23 OT 17 96 -

- .2 4 L 2.8 9.8 T 90 .21 .08

S 2 2.8 9.9 Th 90 .20 .08 1.8 97 190

- .9 -.3 .0 2.8 10.6 76 92 .20 .08

- .8 - .4 -.3 3,4 11f9 75 9k 27 .07 2.1 92 185

"1.0 - -6 - -9 30)4 12.2 79 9)4 o28 -OT

-1.3 =-.9 =1.3 3.4 12,2 84 99 .26 .06 11.3 98 165

-1.5 =11 -1.h 3.4 12,5 91 105 27 .06

-1.8 -1.5 -1.6 3.4 12.6 95 110 .27 .06 9.1 11k 140

-2.2 -1.9 -1.7 3.1 12.8 97 11k .24 .06

-2.5 =2.1  -1.9 3.0 12.6 100 119 2L .06 9.9 120 150

-2.6 -2.3 -1.9 3.6 12.7 102 126 .29 .06

-3.0 -2.6 -1.8 2.9 12,4 107 133 .22 .06 8.3 127 150

-2.9 -2.6 -1.9 3.2 11.5 117 1he .25 .05

-3.0 -2.7 =-2.0 3,5 10.5 118 150 .28 .05 9.1 140 120

3.4 -3.0 -2.1 3,0 10.6 116 156 .23 .06

-3.6 =3.2 =2.2 3,0 _ 1.4 114 156 .23 .05 8.5 146 110

-3.7 -=3.3 -=2.1 3.0 11.5 119 160 - -

-3.9 =3.5 =-=2.1 3.0 11.1 120 160 .23 .06 7.9 140 100

-bh -3.9 -2.3 2.7 10.4 123 161 .19 .06

-l , e - -h . . . .
b3 -3.9 -2 2.9 10.4 119 156 21 06 7.5 139 o0

b4 3.9 -2.5 9.8 10.1 123 157 .20 .06
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26

. 6
9/10 April 1977. Sunset at 18°° GMT. Sunrise at hs GMT,

' G h
Time To.6 Tis Tooo Y10 Ysoo %o %uqq » . A

617wy u

1 2.2 6.8 9.8 26 28 62  -.01
30 11.1 58 -
17-17 3.8 3.9 2.1 6.1 9.8 27 28 .55 .02
179218 300 34 20 53 9.3 11 19 e .o 2.8 55 _
18-1830 .9 2.3 2.0 3.8 9.2 23 36 .30 .08
1839_19 L1 15 17 k1 10.8 29 38 .34 .09 2.1 €
19-1930 7 1.1 1.3 L.,3  11.1 30 37 .36 .09
193%_20 .2 6 9 b0 109 31 k.33 .09 2.0 59 _
20-203° - .5 0 6 3.5 10.2 3k 46 .28 .09
30_ -9 -.l
20 gg 9 .2 3,5 9.6 31 L8 27 .09 10.6 63 10
21-21 -1.3 -.9 _ .3 3.3 9.9 30 e} .25 .09
30 _ _
21 ~§§ 1.7 1.3 - .3 3.1 10.5 31 50 2L .08 10.8 61 105
20-22 -2.2  -1.T - .4 2.7 10.4 31 52 .18 .07
220023 2.5 2.1 - .5 o8 9.8 24 sk .19 .08 X
30 9.7 5 80
23-23 -2.8 -2.3 - .2 2.5 10.0 23 56 .16 .07
2339 -3.2 -2.5 - .1 2.4 10.1 22 57 .15 .07
30 10.6 53 80
0-0 -3.2 -2.6 - .1 2.4 9.9 24 62 .14 .07
0304 -3.5 2.8 -1 2.0 88 27 60 .10 .05 )
30 9.3 5 80
1-1 -hk,2 -3.1 - o 1.7 8.7 21 58 - -
1302 -b.3 -3.3 -2 1.9 81 17 s8 .08 .05 ),
30 9.9 5 80
2-2 -L.8 -3.7 - .3 2.0 8.0 12 62 .08 .06
230-3 ks =34 C 3 2 7.5 24 65 .10 .07
30 9.7 53 65
3-3 b5 -3.3 - .2 2.0 T.1 21 55 .09 .05
330y, -5.1 =3.9 -2 2.0 6.9 13 4 .08  .0¢ 6
30 9 52 55
- 5.1 -h2 -2 16 6.4 27 i3 - -
4305 -5.5 -h2 5 1.9 s 1 L - -
30 7.9 Ly 55
5-5 -5.h -bis - 7 2.5 5.2 353 L6 - -
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b1 G

18/19 May 1977. Sunset at 1931 GMT. Sunrise at 3 MT'.

Time TO.6 T T U U Q,

1.5 Tooo Yo Uaoo 000 U T G a h

1739218 17.9  18.3

5.4 11.2 68 70 .53 .07

30 16.5 83 -
18-18 17.4 17.8 - 5.0 11.5 68 72 T ¢ .09
183% 19  16.5 17.0 - 4.6 11.8 6L 70 LWL .10
30 - 18.2 79 -
19-19 15.1 15.7 - 3.7 11.8 57 69 .33 .12
1930-20 14,2 14,9 - 3.3 11.6 48 N .25 .12 18.6 19
20-20° 12,1 13.0 - 2.9 10.k 29 59 .19 .11
30
- . 12. - . . . .
20 23 11.8 2.3 3.8 10.9 23 56 31 12 18.3 82 230
21-21 11.8 12.2 - L1 12.1 22 51 .36 .09
30
21°7=22 11. 12.1 - L, 13. 2 . .
2 8 7 3.7 8 51 43 08 18.6 79 230
22-22 11.7 12.0 - LW 1k,5 36 57 iy .08
30
-2 10. 1. - .6 1k, . .
22 33 9 3 3 5 37 6L 31 10 18.3 79 230
23-23 10.8 11.2 - 3.9 1th.9 39 70 .33 11
30
- . 10. - . . N :
23 300 10.3 0.7 3.6 1.2 3 71 .30 .11 18.0 82 260
0-0 9.9 10.3 - 3.6 14.0 36 69 .31 .10
30
- . 10. - . L, . .
0 33 9.6 0.0 3.9 14,6 36 €7 33 10 17.3 84 250
1-1 10.2  10.6 - L1 15.1 IIte) 70 .36 .09
130_5 0.1 10.6 - 4.3 16.1 59 76 .41 .10
30 18.1 85 250
0-2 9.5 10.0 - 3.5 13.9 56 72 .32 .10
30
5 gg 8.L 9.0 2.6 12.8 U5 70 .18 09 48,1 82 250
3-3 7.3 7.8 - 3.0 12.0 32 68 .21 .10
330y 6.9 7.3 - 3.0 12.1 3Y 67 .23 .10

30 7.9 79 230
Lk 6.9 7.2 - 3.4 12.8 35 T .30 .08
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22/23 May 1977. Sunset at 1951 GMT. Sunrise at 33° GMT.

Time To.s6 T1s Tooo VYo Y200 %o %00 Ysx  Tx  © a; b
30
17°°~-18 16.1  16.2 - 6.2 10.9 20 25 .61 .02 5.2 72 -
18-180 15.3  15.6  _ 5.4 11.2 2l 28 .49 .ok
18°%-19 M3 6 - b5 10.8 23 29 b1 .06 5.0
19-1930 13.3  13.6  _ 3.9 11.4 28 33 .34 .ot
19°-20 2.3 127 - 3.4 113 20 36 .28 o8 o 11
20-20-0 1.5  11.9  _ 3.2 10.7 30 42 .27 .08
2030-21 1.1 11.5 - 3.7 10.k 25 Ly .31 .09
30 13-9 68 -
21=-21 10.6  11.C - 3.2 10.8 22 b1 .26 .09
21%22 0.2 10.6 - 3.1 10.8 23 51 .25 .o me e -
20-2230 9.6 10.0 - 2.8 10.4 24 56 .21 .09
30
22 -gg 9.2 9.6 - 3.0 10.6 28 64 .23 .09 13.8 68 230
23-23 9.1 9.4 - 3.0 10.5 33 64 .24 .09
30
23 35o 8.8 9.1 - 3.2 10.1 29 61 .27 .09 13.0 70 230
0-0 8.5 8.9 - 3.0 10.2 3k 68 .24 .08
30
0 ;g 8.2 8.6 - 3.1 10.5 36 T4 .25 .09 13.0 70 215
1=1 7.9 8.3 - 2.8 10.7 36 8L .23 .08
30
1 gg 7.6 7.9 - 2.8 10.0 32 92 .23 .07 12.9 T2 200
2-2 T.h4 T.7 - 3.1 9.5 29 ok .27 .08
30
2 gg 7.3 T.€ - 2.9 9.7 32 96 .25 .07 12.8 176 195
3_3 7-1 Y.h - 2-5 03 32 97 -21 .06
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23/24 May 1977. Sunset at 1938 GMT. Sunrise at 33h GMT.
Time To.6 T1.5 Tooo Yto Y200 %0 %00 U T G @, b
30 '
17°°-18 17.0 17.2 16.5 2. L.W 25 53 .22 .0L 13.0 83
18-1839 6.1 16.4 16.3 2.9 b2 17 53 .25 .05
1830_1g 1.4 15.9 16.6 3.1 4.0 12 61 .2h .08 o o
19-1930° 13.9  1L.5  16.7 2.7 3.9 12 72 .20 .09
193920 13.0 13.6 16,7 2.9 Wk 17 32109 o
20-20° 2.3 12.9 16.7 2.8 5.1 20 75 .21 .10
2030-21 1.6 12.3 16.7 2.6 5.7 26 75 ki .09 12.8 50
21-2130 1.7 12.1 16.6 3.3 6.9 3k Th 27 11 ' B
2130 20 1.7 12.2 16.6 3.3 8.8 L3 Th .26 .1
30 1,2 86 160
22-22 11.9  12.4 16.1 3.2 11.4 L8 72 2L .10
30
2277 .23 12.1 12.6 15.8 3.3 1L4.6 8 - -
= T 1.7 8y 180
23-23 12.0 12.5 15.5 3.6 1k.2 65 78 .32 11
2330 11.5 12.0 15.5 3.3 14.8 65 78 .28 .11
30 1h.1 89 170
0-0 11.0 11,5 15.1 3.3 15.0 60 79 .29 .12
039_1 0.7 11.2  15.4 3.6 1.5 57 8 .32 .12
30 14,2 89 170
1-1 10.5 10.9 16.0 3.5 12.9 58 88 .31 11
30
1°7-2 10.1 10.6 16.2 3.2 11. 6 8 .26 11
30 > 3 9 13.3 89 155
2-2 .6 10.1 16.1 2.9 9.9 65 95 .23 .10
30
2°7-3 .2 9.7 15.6 .0 .1 8 ] . .
" 3 9 5 03 2k 1 s 88 160
3-3 8.3 8 15. 2.6 8.0 L6 105 .18 .09
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24 /25 May 1977. Sunset at 1939 GMT. Sunrise at 333 GMT.

Time To.6 T1.s Tooo Uto Y200 %0 %00 Uk T G a@; b

173018 19.9  20.

18 3 19.1 3.3 8.1 90 9k .30 06 28 100 -

18-18 19.1  19.7 19.0 2.5 7.6 89 92 .20 .06
1830-19 18.1 18.9 19.0 2.6 8.3 82 86 .20 .08 .1 97 _
191930 6.8 17.9 18.8 2.3 8.1 176 78 .14 .08
193°%_50 5.9 17.2 18.7 2.4 9.8 72 5ok 09 oo oo
20-20° 4.0 15.1 18.5 2.0 10.2 53 75 - -
203021 13.0 14.3  18.3 1.7 10.6 57 75 - - 1 e -
212130 12.3  14.0 18.0 2.0 11.0 5k 75 - -

30
21 -gg 12.3  13.4 18.0 2.4 11.3 52 7 .10 .09 L 89 150
20-22 11.7 12.8 17.9 2.6 11.7 L2 80 .13 .10
2230_o3 11.0 12.0 17.7 2.7 12.0 32 83 .14 .10

%0 15.1 88 160

23-23 10.2 10.9 17.2 2.9 12.5 33 83 .19 .11

30

- 10.1 10. 17.6 .0 . . .

23 30o 0 7 7 3 11.5 35 8L 21 11 15.3 89 150
0-0 9.5 10.1 17.8 2.8 10.4 37 83 .20 11

30
0 5& 9.4 10.1 17.5 2.6 10.9 W1 89 .16 .10 4.0 95 140
1-1 8.8 9.6 16.5 2.3 11.0 38 91 .1k .08

30
1 ;g 9.0 9.5 15.9 2.9 10.7 L6 95 .22 100 98 140
2-2 8.9 9.5 16.3 2.6 8.9 50 104 .19 .10

30

- . . 16. 2.6 . . .

2 38 8.6 9.3 0 8.5 54 104 18 10 13.8 98 170
3-3 8.6 9.1 16.3 2.8 8.0 55 104 .22 .10
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L1

25/26 May 1977. Sunset at 19  GMT. Sunrise at 332 GMT.

Time To.6 Tris Tooo Yo Yo00 %20 %00 Uk T G o, B
173%_18 21.6 22.1 21.3 3.0 8.7 91 96 .27 .07 5.1 101
18-180 20.7 21.4 21.3 2.6 8.7 81 88 .20 .08 '
1830-19 9.4  20.4 21,4 2.7 10.0 75 83 .19 .10 15.2 102 _
19-190 18.0 19.0 212 2.7 10.4 66 79 .18 .11
193920 17.0  18.0 20.8 2.9 11.L 66 6 20 12 o g
20-20-0 16.7 17.6 20.4 3.3 12.3 6L 76 .26 L1h '
2039 51 16.5 17.1 20.0 3.6 13.7 6L 80 .30 o 0s
21-2130 6.2  16.9 19.7 3.5 1k.9 67 83 .30 .13
30
217 =22 16.2 16.9 19.6 3.6 15.8 11 90 .30 .12
% 16.3 100 200
22-22 5.8 16.4  19.1 3.3 14.8 68 90 .26 .11
30
227723 14.9 15.4 18.2 3.6 13.2 . .
= 59 78 32 13 7.3 99 230
23-23 14.8 15.2 17.9 ka1 4.9 59 83 .37 .12
30
23°°-0 14, 15.2 17.1 L, 16.0 66 . .
3 - 9 5 7 7 8L 4s 10 17.0 107 270
0-0 b9 15.3 16.2 k4.7 16.6 T2 87 .45 .09
30
0°7-1 4.8 15,2 15. .0 16. 6 . .
. 5 5.7 5 T 7 90 L8 09 17.8 103 360
1-1 4.5 14,9 15.0 L.5 15,2 75 89  .h2 .08
30
177 =2 14.1 14, 14, L, 4.6 . .
2 5 5 5 75 87 L2 08 7.2 109 360
2-2 13.6 14.0 1k.,0 kL.2 1.3 75 87 .39 .08
30
227 =3 13.2 13. 13.4  L.2 14,1 6 L ]
B > 7 87 0 08 8.1 112 300
3-3 12.8  13.1 12.8 4.2 13.5 75 85 Lo .08
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L/5 July 1977. Sunset at 2002 GMT. Sunrise at 327 GMT.

=
[
8
1
-
(o))
=)
=]
a
(o]
Q
123
e

1.5 200

pur
o

200 20 200 * * G

1730‘18 2k,

5 24.8 23.4 3.5 6.9 51 62 .34 .04
30 1., 89 -
18-18 23.6 23.9 22,9 3.5 7.9 37 52 .31 .04
1830-19 22.6 23.0 22.5 4.1 9.1 35 46 .38 .06 1.5 90
19-1930 21.7 22.1 22.3 3.6 9.2 34 L9 .31 .07 '
193020 20.8 21.2 22.1 3.2 9.1 37 56 .21 .09 . g
20-20° 20.0 20.5 21.3 3.4 10.3 38 55 .28 .09 '
2030-21 19.6 20.1 20.6 3.0 10.9 51 65 .27 .08 12.2 8l
21-2130 18.9 19.4 19.9 3.2 10.5 52 65 .28 .09 '
213022 17.9  18.5 19.2 2.7 10.8 50 65 .20 .08 o g
22~223O 17.1 17.7 18.8 2.4  11.1 50 68 .16 .08 .
203023 6.6 17.2  18.5 2.8 11.9 L8 68 .20 .09 . g
23-2330 6.1 16.7 18.2 2.5 11.8 L6 68 .18 .08 .
30
23°7-0 15.6  16.2 17.9 2.6 12.2 L
- 5 T1 .18 .08 12.0 79 500
0-0 15.6 16,1 18.7 2.6 12.h k9 75 .20 .07
30
0~7=1 15.0 15.6 18.6 2.1 12.0 1
30 ° [EEEA -06 11.3 81 200
1-1 4.4 15,0 18.2 2.4 12.2 L2 75 .17 .07
30
17722 13.8 14.3  18.2 2. 12.1
2 T 37 Th .20 .08 12.5 83 190
) 13.8 1h.2  17.9 3.0 12.0 39 T .26 .07
230_3 13.5  13.7 17.9 3.3 12.6 139 76 .29 .08
30 11.9 91 190
3-3 13.0 13.4 17.9 2.6 12.8 Lo 79 .20 .08



VI. 11

13/14 October 1977. Sunset at 16°° GMT. Sunrise st 602 GMT.

Time To.6 Ti.s Too0 VY10 Y200 %0 %00 UYx  Tx G a@; b
,30
1h="-15 4.8 1k 13.2 9 1.8 319 30k 0.03 .01 5.3 87 -
15-1530 15.2  15.2  13.4 .5 8 218 298 .03 .00
153016 W6 9 134 .7 .8 282 209 - - sp 8
161630 13.6 4.2 13.2 .8 1.4 100 357 - -
163017 2.3 13.2  13.1 1.k 1.h 53 72 - 49 g
17-17° 0.5 1.4 13.0 1.2 1.5 Wy o7y - '
173018 8.7 10.0 12.8 1.0 2.1 B 62 - - s oo
18-1830 8.4 9.6 12.9 .8 2.2 B1o75 - -
183%_19 7.5 9.1 12.8 1.2 2.6 39 T4 - - 58 o3
19-193O 7.1 8.1 12.7 1.3 3.2 46 75 - -
1930-20 6.8 8.3 12.6 1.4 3.3 55 82 - - 5.3 103
20-2030 6.7 8.7 12.8 1.7 3.1 2 102 - - '
2030 51 6.8 8.8 12.8 1.8 3.7 83 110 - -
30 5.3 110 60
21-21 8.1 9.6 12.5 1.8 L.8 99 115 .07 .05
30
21°Y.22 7.2 8.8 12.6 1.3 4. 100 124 - -
30 7 2 5.9 108 70
2222 5.9 6.9 12.6 1.3 5.0 108 132 - -
30
2230_53 5.4 6.4 12.6 1.4 L. 105 1 - -
30 9 > 33 5.9 106 70
23-23 5.0 6.9 12.7 1.7 5.0 104 134 - -
23309 53 7.8 12.7 1.6 4.7 96 130 - -
30 6.0 118 75
0-0 6.4 8.1 12.7 1.9 4.8 88 121 - -
030, 6.4 7.6 12.7 1.5 46 88 115 - -
30 7.5 115 70
1-1 6.6 7.9 12.6 1.8 5.3 9l 11k .07 .05
130_5 6.7 7.7 12.6 1.9 5.6 81 110 .07 .05
30 7.5 115 70
2.0 6.8 7.7 12.7 2.1 6.1 82 110 .10 .07
30
273 T.3 8.0 12.6 1. 6.1 8 . .
" 9 5 112 06 Lo e o
3-3 7.3 8.1 12,6 1.7 5.8 93 116 .09 .05
30
37 <4 .0 .8 12. 1.6 . .
i 7 7 7 5.5 85 117 o7 ob 6.7 112 100
Loy 6.6 7.5 12.7 1.8 5.7 86 126 .09 .05
4305 6.3 7.2 12.8 1.7 5.6 19130 .08 .ob X
0 5 11 100
5.5 6.6 7.2 12.9 1.8 5.8 89 139 .11 .05
530_¢ 6.9 7.1 12.9 1 5.3 98 137 1805 oo 0 1m0
6-630 6.9 6.9 12.9 2.5 5.4 105 129 .25 .02



VI.12

3/4 December 1977. Sunset &t 1531 CMT. Sunrise at 729 GMT.

T3
me To.s Tis Tooo VYo Yoo0 %0 %00 Ux Tk C @, b
30
1377=-14 2.8 2.9 1.1 3.3 7.4 99 108 .28 .02 :
30 2.9 109 -
1h-1k 2.k 2.6 1.1 3.1 8.1 100 110 .25 .03
1,3% 45 2.0 2.2 8 3.8 85 91 108 .31 oh oL
15-153° 1.9 2.1 5 4.3 8.6 101 108 .36 .03
153%_16 1.4 1.7 5 2.8 7.3 95 106 .23 .0k
30 ] 2.4 122 -
16-16 .8 1.1 .5 3.0 8.8 83 100 .23 .06
1630_17 .5 .8 4 3.5 9.7 8 101 .28 .06
30 12.8 130 -
17-17 .5 T 2 kb 11,9 86 101 .37 .05
30
1 - . . 8 . .
T ;g .2 L T k4.3 12.3 3 107 37 05 13.5 132 205
18-18 .0 .2 1.4 42 13,7 85 11k .36 .0k
30
18 -;g - A0 Lk 0 151 88 116 .35 .05 138 132 200
19-19 .0 .2 1.6 3.9 15.6 90 116 .33 .05
30 L
19 _gg .0 .2 2.8 k4o 14.8 93 121 .3 05 qu6 130 180
20-20 - .1 .2 3.3 k.2 14.3 9k 125 .36 .05
30 - L :
20 -2(1) A a3 b2 13.5 95 122 3T .05 6 139 150
21-21 -1 o1 3.5 4.6 1L4.8 9k 118 .39 .05
30
- - 1 . . . .
21 gg 1 3.5 4.3 15.h 95 116 37 05 15.6 137 160
22-22 .1 .3 3.3 4.4 16.8 9k 113 .38 .05
30
22 _28 .3 .5 3.2 )4.6 18.1 92 13 ‘39 '05 16_)4 131 205
23-23 .2 .5 3.1 4.6 17.6 92 112 .39 .05
30
23 38o .2 ph 3.5 L.7 17.3 92 112 .ho .05 6.9 131 210
0-0 L .6 3.5 5.3 18.1 91 111 .L6 .05
30
- . .1 . .
0 3(1) " T3 51 189 92 109 b3 .05 a0 55 o05
1-1 .6 .8 3.7 5.3 19.0 91 111 A6 .05
30 '
1 gg .5 T 3.7 5.3 19.6 9k 111 A5 .05 19.0 127 210
2-2 .5 T 3.3 5,7 20.L 93 108 .k9 .05
30_ .8 1 4
2 38 1.0 3 5.6 20.L4 92 104 L9 .05 9.4 12h 230
3-3 1.0 1.3 3.2 5,3 19.k4 88 104 L6 .05
30_ i
3 315 1.3 1.5 2.7 5.5 18.8 87 102 48,06 205 119 260
Ly 1.4 1.7 2.2 5.4 18.1 83 101 46 .06
30
Lo . . 2.1 1 o .
3(5) 1.4 1.6 5.6 18.1 8 101 7 06 19. 1 119 250
5-5 1.6 1.8 2.1 6,0 18.1 83 102 .51 .06
30
- ) 1. . .
5 3g 1.6 1.8 9 5.7 17.8 92 106 b9 .06 18.8 120 L0
6-6 1.2 1.4 2.3 5.9 18.6 8 110 .51 .05
30
67°=7 1.0 1.2 1.5 6.2 7.7 86 107 .53 .05 19.1 124 250
7_730 T 1.0 T 5.5 16.5 88 103 b7 .05



VI.13

4/5 December 1977. Sunset at 1531 GMT. Sunrise at 73g GMT.

Time To.s6 Tis Tooo Yo Yo00 %o oo Vs T G 4, b
1330_1u 2.7 2.9 1.3 b7 12,2 98 108 Lo .03 6.4 140
14-11430 2.5 2.6 1.3 5.5 13.7 93 106 .48 .03
143095 2.1 2 L3 5.0 gk 92 0k b3 ob o
15-1530 1.8 2.0 1.3 k.1 13,9 99 106 .35 .05
1530_4¢ 1.5 .7 1.3 k.5 1k.5 92 10k .39 05 oo _
16-160 1.4 1.6 4.5 5.2 16.0 9% 107 .45 .06
30
1 - 1.2 1. 1. L, L 111 o .
6 ;g 5 5 9 15.9 9 2 05 15,5 139 _
17-17 1.0 1.2 1.5 5.1 16,2 101  11h L3 .05
30
17V 6 . 1.6 L.} . 8 116 .38 .0
T ;g 9 16.8 9 3 5 .2 137 280
18-18 6 .8 1.5 L.,5 16.6 98 117 .38 .05
30_ . 1, L. 8 121 . X
18 ;g 3 5 7 1 171 98 35 06 1.1 141 280
19-19 3 .6 1.5 4.3 16,9 102 126 .36 .06
30
1 - 1 o . . . 10 12 .31 .0
9 gg 9 3.7 15.k4 > T3 > 13.9 140 280
20-20 - .2 1 1.0 k.6 15,9 105 130 .33 .06
30_ S 6L, 104 12 . .06
20 g; 5 5.7 9 39 .9 141 290
21-21 - b - .5 4,5 16,8 10T 130 .38 .06
30
1°Y_ -1 ) . 4.6 ] 108 128 . .06
2 gg 3 16.9 39 13.8 148 290
22-22 - .0 .3 1 5.0 17.2 117 128 L6 .06
30
- - .2 .0 .0 .1 . 12 130 .k .06
22 gg 5 16.7 313 3 11.6 143 320
23-23 - -1 -3 L8 15,2 120 130 .39 .05
30
23-Y_ . - b - b, . 118 133 . .06
3 300 7 5 5 ks 37 11.9 143 380
0-0 -1.0 -.7 =-.T 3.8 14,0 111 133 .31 .05
30_ -4 -1.1 - .8 102 1
0 38 3. 13,5 0 33 .28 .05 2.2 131 390
1-1 -1.6 -=1.3 - .9 3.4 12.8 100 133 .28 .05
30 :
1°v2 -1.6  -1.4 -1.,0 . 131 .2 .0
33 3.5 12.4 95 3 9 5 13.2 120 390
2-2 -1.8 ~1.6 -1.0 3.7 12.4 89 128 .30 .06
30
oY ~1. -1. - . L. N 12 . .
33 9 T 9 0 12.7 9 9 3k 05 1.2 138 390
3-3 -2.1 -1.9 =~ .8 k.1 13.1 98 131 .3k .05
30
- -2.6 -2, -1.1 . 1 . .
3 38 2.h 3.5  1k.1 99 33 30 05 10.5 150 380
Loy -2.9 -2.7 =1.2 3.5 14.3 99 133 .29 .0k
130_5 -3.0 =27 =1.b 3.8 qy.7 105 133 .32 .05
30 9.3 130 350
5-5 -2.5 =2.2 =-1.b 3.9 .5 113 3L .33 .06
30
_ -2, -2, -1, ) 116 14 . .05
5 Bg 3 2.0 3 L 13.5 0 35 9.4 121 300
6-6 2. 2,1 =11 3.9 12,4 107 141 .32 .05
30_ -2, 2.4 =1.4 ) 11 148 ., )
6 3; 7 2 3.6 12.4 T 29 05 8.9 141 260
-7 -2.9 -2.6 -0.T 3.k 12.1 112 153 .27 .05



VI.1b
8/9 December 1977. Sunset at 1529 GMT. Sunrise at 735 GMT.

Time To.e Tis Taoo Y10 Yoo %20 %00 % T © % B
1330 9y M5 LT 0.6 6.3 122 168 180 .51 .07 o g0 _
1h4-1430 10.7 11.0 10.6 5.8 12.5 165 179 .45 .10 '

130 _45 9.8 10.2 10.7 4.7 11.8 161 180 .3k .13 T4 188 -
1521530 9.5 10.0 10.7 4.0 11.3 155 186 .28 .11

1530_46 8.8 9.4 10.8 k4.3 12.0 147 18 .30 13 0.9 181 -
1621630 7.8 8.5 10.8 3.5 12.2 140 185 .23 .12

163017 7.3 8.0 16.7 3.3 12.2 134 185 .23 .11 o4 167 180
17-1750 7.2 7.8 10.8 3.6 11.5 136 191 .25 .12

1730 18 6.9 7.5 10.8 3.8 11.1 146 191 .25 .12 8.1 180 170
1821830 6.3 7.0 10.7 3.0 10.8 132 190 .20 .10

183%_19 6.5 7.0 10.5 3.5 10.9 130 186 .26 .10 8.8 178 160
19-1930 6.3 6.7 10.3 3.9 11.1 136 186 .29 .11

1930_5¢ 6.4 6.8 10.2 L2 11.3 145 191 - - 7.3 1T 160
20-200 5.8 6.3 10.1 3.7 10.7 146 195 .25 .11

2030_54 5.4 6.0 9.9 3.1 10.5 133 194 .27 .10 8.0 176 160
21-2139 5.5 5.9 9.8 3.4 10.2 134 194 .25 .10

2130 2o b9 5.5 9.6 3.0 9.9 129 197 .20 .09 7.2 170 140
20930 L8 5.4 9.5 2.9 9.k 122 196 .20 .09

2230_s5 LT 5.1 9h 3.2 9.3 125 195 .23 .09 7.3 176 140
239330 bh o 48 9.k 3.5 9.5 128 195 .26 .10

2330 b7 k9 9.k 3.7 9.8 130 198 .29 .09 8.0 185 150
0030 48 5.0 9.5 3.9 9.9 130 200 - -

030_4 b5 L8 9.8 3.6 9.7 130 203 .29 .08 7.8 178 170
1-130 Lo bk 9.3 3.2 10,6 134 207 .24 .08

130 5 b1 kh o 9.5 3.3 1001 129 207 .26 .07 6.1 172 190
2530 3.5 3.8 9.8 2.8 9.5 138 207 .24 .08

230_3 3.1 3.5 9.6 2.8 10.2 146 212 .17 .08 6.5 175 180
3330 2.8 3.5 9.8 2.4 9.0 148 218 .13 .07

330_y, 3.1 3.7 9.7 3.1 8.8 151 213 .17 .10 6.1 185 130
4,30 3.3 3.8 9.4 3.2 9.5 147 213 .19 .10

430_s 28 3.4 9.0 2.9 1.3 157 220 .16 .09 5.2 185 140
5530 2.1 3.1 84 2.0 12.1 153 223 .08 .05

530_¢ .7 2.9 7.9 2.b 12,1 155 225 .10 .07 Lo 182 160
6630 2.1 3.0 7.8 2.7 11.7 155 230 .13 .08

630_¢ 2.5 3.2 8.2 2.8 11.0 153 231 .1k .09 5.5 19k 160
7-730 2.6 3.2 8.3 2.9 10.2 154 229 .16 .09



VII.1

References

André, J.C., G. de Moor, P. Lacarrére, G. Therry and R. du Vachat,
1978: Modeling the 2h-hour evolution of the mean and turbu-
lent structures of the planetary boundary layer.

J. Atmos..Sci., 35, 1861-1883,

Arya, S.P.S., 1975: Geostrophic drag and heat transfer relations
for the atmospheric boundary layer. Quart. J. Roy. Meteor.
Soc., 101, 147-161,

Arya, S.P.S., 1977: Suggested revisions to certain boundary layer
parameterization schemes used in atmospheric circulation

models. Mon. Wea. Rev., 105, 215-227.

Arya, S.P.S., 1978: Comparative effects of stability, baroclinity
and scale-height ratio on drag laws for the atmospheric

boundary layer. J. Atmos. Sci., 35, L0-L6,

Arya, S5.P.S., and J.C. Wyngaard, 1975: Effect of baroclinicity
on wind profiles and the geostrophic drag law for the con-
vective planetary boundary layer. J. Atmos. Sci., 32
T67-778.

]

Arya, S.P.S., and A. Sundararajan, 1976: An assessment of
proposed similarity theories for the atmospheric boundary

layer. Boundary-Layer Meteorol., 10, 1L9-166,

Barr, S. and C.W. Kreitzberg, 1975: Horizontal variability and

boundary layer modeling. Boundary-Layer Meteor,, 8
163-172.

bl

Blackadar, A.K., 1957: Boundary layer wind maxima and their
significance for the growth of nocturnal inversions.

Bull. Amer. Meteor. Soc., 38, 283-290.




VII.2

Blackadar, A.K., 1976: Modeling the nocturnal boundary layer.
Preprints 3rd symposium on atmospheric turbulence, diffusion

and air quality, Rahleigh, N.C., Amer. Meteor. Soc., 46-49,

Blackadar, A.K., and H. Tennekes, 1968: Asymptotic similarity

in neutral barotropic planetary boundary layers. J. Atmos.
Sci., 25, 1015-1020,

Bodin, S.V., 1976: An unsteady one-dimensional atmospheric
boundafy layer model. Paper presented at the WMO-symposium
on the interpretation of numerical weather prediction

products, Warsaw, 11-16 October.

Brost, R.A. and J.C. Wyngaard, 1978: A model study of the stably
stratified planetary boundary layer. J. Atmos. Sci., 35,
1427-14k0,

Busch, N.E., 1973: On the mechanics of atmospheric turbulence.

Workshop on Micrometeorology, Ed. D.A. Haugen, Amer., Meteor.
Soc., 1-66.

Businger, J.A. and S.P.S. Arya, 19TL: Height of the mixed layer
in the stably stratified planetary boundary layer.
Advances in Geophysics, Vol. 18A, Academic Press, T73-92.

Businger, J.A., J.C. Wyngaard, Y. Izumi and E.F. Bradley,
1971: Flux-profile relationships in the atmospheric

surface layer. J. Atmos. Seci., 28, 181-189,

Carson, D.J., 1973: The development of a dry inversion-capped
convectively unstable boundary layer. Quart. J. Roy.
Meteor. Soc., 99, 450-L67.

Cats, G.J., 197T7: The calculation of the geostrophic wind.
Royal Netherlands Meteorological Institute, Scientific
Report, 77-2. (In Dutch).

Caughey, S.J., J.C. Wyngaard and J.C. Kaimal, 1979: Turbulence in
the evolving stable boundary layer. J. Atmos. Sci., 36, 1041-1052,




VII.3

Clarke, R.H., and G.D. Hess, 197L: Geostrophic departure and
the functions A and B of Rossby-number similarity theory.

Boundary-Layer Meteorol., 7, 267-287.

Delage, Y., 19Th: A numerical study of the nocturnal atmospheric

boundary layer. Quart. J. Roy. Meteor. Soc., 100, 351-36L,

Djolov, G.D., 19Th: Modeling of interdependent diurnal variation
of meteorological elements in the boundary layer.

Chidrologija i meteorologija, Sofia, 13, 3-19,

Driedonks, A.G.M., H. van Dop and W.H. Kohsiek, 1978:
Meteorological observations on the 213 m mast at Cabauw
in the Netherlands. Preprints Lth Symposium on Meteorological

Observations and Instrumentation, Denver, Amer., Meteor. Soc, ,

L1-L6,

Elzasser, W.M. and M.F, Culbertson, 1960: Atmospheric radiation
tables. Meteorological Monographs, Vol. L4, No, 23,

Frisch, A.S. and S.F. Clifford, 197L: A study of convection capped
by a stable layer using Doppler Radar and acoustic echo

sounders. J. Atmos. Sci., 31, 1622-1628,

Haltiner, G.J., 19T71: Numerical Weather Prediction. New York,

John Wiley and Sons, Inc., 317 pp.

Hess, G.D., 1973: On Rossby-number similarity theory for a baro-
clinic planetary boundary layer. J. Atmos. Sci., 30, 1722-1723,

Hicks, B.B., 1978: Some limitations of dimensional analysis and

power laws. Boundary-Layer Meteorol., 14, 567-569.

Keller, H.B., 1971: A new difference scheme for parabolic
problems. Numerical solution of partial differential

equations - III, New York, Academic Presse, 327-350,

Mahrt, L., R.C. Heald, D.H. Lenshow and B.B. Stankov, 1979:
An observational study of the structure of the nocturnal

boundary layer. Bound.-Layer Meteor., 17, 2L7-26kL,




VII.h4

Mahrt, L., 1981: Modelling the depth of the stable boundary
layer, Submitted to Bound.-Layer Meteor.

Melgarejo, J.W. and J.W. Deardorff, 197L: Stability functions for
the boundary-layer resistance laws based upon observed

boundary-layer heights. J. Atmos. Séi., 31, 1324-1333,

Nieuwstadt, F.T.M., 1978: The computation of the friction velocity
u,, and the temperature scale T, from temperature and wind

velocity brofiles by least square methods. Bound.-Layer
Meteor., 14, 235-2L6,

Nieuwstadt, F.T.M., 1980a: A rate equation for the inversion height
in a nocturnal boundary layer, J. Appl. Meteor., Chapter IV

of this dissertation.

Nieuwstadt, F.T.M., 1980b: The steady-state height and resistance
laws of the nocturnal houndary layer: Theory compared with

Cabauw observations. Bound.-Layer Meteor., Chapter III of

this dissertation.

Nieuwstadt, F.T.M. and A.G.M. Driedonks, 1979: The nocturnal
boundary layer: a case study compared with model calcu-

lations., J. Appl. Metéor., 18, 1397-1L05, Chapter II of

this dissertation.

Rao, K.S., and H.F. Snodgrass, 1979: Some parameterizations

of the nocturnal boundary layer. Boundary-Layer Meteorol.,
17, 15-28,

SethuRaman, S., 1977: The observed generation and bresking

of atmospheric gravity waves over ocean. Boundary-Layer
Meteor., 12, 331-349,

Smeda, M., 1979: Incorporation of planetary boundary-layer
processes into numerical forecasting models,

Bound.-Layer Meteor., 16, 115-129,




VII.5

Tennekes, H.,, 1973a: Similarity laws and scale relations in

planetary boundary layers. Workshop on Micrometeorology,

D.A. Haugen, ed., Amer. Meteor. Soc..

Tennekes, H, 1973b: A model for the dynamics of the inversion

above & convective boundary layer. J. Atmos. Sci., 30,

558-56T.

Thorpe, A.J. and T.H. Guymer, 1977: The nocturnal jet.
Quart. J. Roy. Meteor. Soc., 103, 633-653.

Ulden, A.P. van, J.G. van der Vliet and J. Wieringa, 1976:
Temperature and wind observations at heights from 2 to

200 m at Cabauw 1973. Royal Netherlands Meteorological
Institute, Scientific Report T6-T.

Wieringa, J., 1967: Evaluation and design of wind vanes.

J. Appl. Meteor., 6, 111h-1122,

Wyngaard, J.C., 1975: Modeling the planetary boundary layer

extension to the stable case. Bound.-Layer Meteor., 9,

LlL1-k60,

Yamada, T., 1976: On the similarity functions A, B and C of
planetary boundary layer. J. Atmos. Sci., 33, T81-T8T7.

Yamada, T., 1979: Prediction of the nocturnal surface invers

height. J. Appl. Meteor., 18, 526-531,

Yu, T.W., 1977: A comparative study on parameterization of

vertical turbulent exchange processes. Mon. Wea. Rev.,

105’ 57"66-

Yu, T.W., 1978: Determining height of the nocturnal boundary
layer. J, Appl. Meteor., 17, 28-33,

the

ion



VII.6

Zeman, 0., 1979: Parameterization of the dynamics of stable
boundary layers and nocturnal jets., J. Atmos. Sci., 36,
T792-80k,

Zilitinkevich, S.S., 1972: On the determination of the height
of the Ekman boundary layer, Bound,-Layer Meteor., 3,
141-145,

Zilitinkevich, S,S8., 1975: Resistance laws and prediction
equations for the depth of the planetary boundary layer.
J. Atmos. Sci., 32, Thi1-752.

Zilitinkevich, S.S., and J,W. Deardorff, 197L: Similarity
theory for the planetary boundary lasyer of time-dependent
height. J. Atmos. Sei., 31, 14Lo-1kLs2,




Samenvatting

Het onderwerp van deze dissertatie is de atmosferische grenslaag,
waaronder wordt verstaan de onderste laag van de atmosfeer. Enerzijds
tracht grenslaag onderzoek een antwoord te vinden op puur meteorolo-
gische vragen, anderzijds dient het ook een meer algemeen belang.

De meeste activiteiten van de mens vinden namelijk plaats in de
grenslaag, zodat de resultaten van grenslaag onderzoek direct toe-
pasbaar zijn op velerlei gebied: luchtvaart, verspreiding van lucht-
verontreiniging, landbouw, windhinder, windenergie, stedelijke plano-
logie en lucht-zee interactie.

We zullen ons hier beperken tot de grenslaag tijdens een heldere
nacht. Een karakteristiek kenmerk van deze nachtelijke grenslaag 1s
een zogenaamde temperatuur inversie: d.w.z. de temperatuur neemt toe
met de hoogte. Dit profiel is een gevolg van de afkoeling van het
aardoppervlak tijdens de nacht door straling.

Een dergelijke temperatuur inversie heeft dynamische consequenties:
de nachtelijke grenslaag is stabiel. Verstoringen in de stroming,
turbulentie genoemd, worden gedempt. Dit aspect bepaalt voor het
grootste gedeelte de structuur van de nachtelijke grenslaag. Een
algemene bespreking van deze verschijnselen, op basis van atmosferische
waarnemingen en hun fysische interpretatie, vormt het onderwerp van
hoofdstuk I.

In hoofdstuk IT wordt de structuur van de nachtelijke grenslaag
beschreven aan de hand van een numerieke oplossing van de bewegings-
vergelijkingen. De resultaten van dit model worden uitgebreid verge-
leken met metingen die zijn verkregen met een 200-m hoge meteorolo-
gische meetmast. Kwalitatief zijn deze waarnemingen in overeenstemming
met de modelresultaten. Met name geeft het rekenmodel een juiste
beschrijving van de grenslaaghoogte.

In de volgende hoofdstukken wordt het onderzoek geconcentreerd
op deze grenslaaghoogte. In hoofdstuk IIT wordt onderzocht of de grens-
laag als stationair beschouwd kan worden. Hiertoe wordt een theore-
tische uitdrukking voor de stationaire grenslaaghoogte afgeleid. Een
uitgebreide vergelijking met waarnemingen leert dat voor zeer stabiele
omstandigheden de gevonden expressie niet geldig is. De conclusie 1is

dat de grenslaag niet als stationair kan worden beschouwd.



In hoofdstuk IIT wordt tevens aandacht besteed aan een juiste
definitie van de nachtelijke grenslaaghoogte. Twee definities worden
in de regel gebruikt: 1) de hoogte van de inversie in het temperatuur
profiel; 2) de dikte van de turbulente grenslaag. De tweede defini-
tie verdient de voorkesur, omdat het temperatuurprofiel sterk wordt
beinvloed door niet-grenslaag processen zoals straling. Dit laatste
aspect wordt nader belicht in hoofdstuk IV.

Op basis van de conclusie van hoofdstuk III wordt in hoofdstuk V
een vergelijking afgeleid voor een niet-stationaire grenslaaghoogte
De vorm is een lineaire relaxatie vergelijking. Deze beschriift
een proces waarbij de grenslaaghoogte tot een evenwichtshoogte nadert.
De tijdschaal in dit relaxatie proces is echter zeer groot, zodat de
grenslaaghoogte zich slechts zeer langzaam ontwikkelt.

De belangrijkste conclusies kunnen als volgt worden samengevat:

- Een uitdrukking voor de grenslaaghoogte gebaseerd op een hypothese
van stationariteit wordt niet bevestigd door waarnemingen.

- Straling beinvloedt het temperatuurprofiel, zodat de inversie
hoogte groter wordt dan de dikte van de turbulente grenslaag.

- Het quasi-stationaire gedrag van de grenslaaghoogte, dat uit waar-
nemingen volgt, wordt verklaard door de grote tijdschasl die de ont-

wikkeling van de grenslaag beheerst.






