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Summary .

In this report the convergence of an iterative method for solving the
nonlinear balance equation is analyzed. It is shown that this iterative
method will be convergent if a sufficiently accurate initial approximation
is used and if the subsequent iterates satisfy the ellipticity condition.
Otherwise if the successive approximate solutions do not all satisfy the
ellipticity condition the method may be divergent. We shalldescribe what

can be done to make the method convergent in this case. Experimental

results are given.



. Introduction.

The balance equation obtained by applying the two-dimensional
divergence operator to the primitive equations of horizontal motion
and retaining only the divergence-free part of the velocity in the

resulting equation may be written as

2, ) _u2¢ = ¢
£ v2y +2(1pqu,yy wxy)+Vf.Vw v26 =0, (1.1)

where {y is the stream function, f the Coriolis parameter, ¢ the geo-
potential and V2y the vorticity. The condition that equation (1.1) be
elliptic is (see Arnason, 1958, p. 221)

2
(f + zwxx) (f + 2¢yy) - )-pry > 0. (1.2)

In combination with equation (1.1) condition (1.2) can be written in

the form

2

V29 +-§ - VL.V > O (1.3)

Condition (1.2) implies that there are two distinct solutions of (1.1)
for given boundary values of ¢, one for which the quantities f + wax
and f + ewyy are both positive and the other for which these quantities
are negative. Since it is generally observed that the absolute vorticity

f + 72y

is positive (Arnason, 1958, p. 221) we impose apart from (1.2) or (1.3)
the conditions

f+2y >0 and f+2q;yy > 0. (1.4)

Using the identity



equation (1.1) reads

3o (v2y)® - (b = wyy)z - hwx?yl + £72) +VEVY - V% =0 (1.5)
or with (1.L4)
V2y = - + 20v2 + f2+ A2 + B2 - 2VL.Vy , (1.6)
where
A=y -V, > B =2, -

In the following we shall analyze the convergence behaviour of a commenly
used iterstive method (see for instance Shuman (1957a) or Miyakoda (1956)
for solving equation (1.6). 'Arnason (1958) proposed an iterative method
to solve equation (1.5). He also showed that this method might be diver-
gent if the relative vorticity takes large positive values. Paegle and
Tomlinson (1975) introduced a modification of this method which is
convergent in case of large positive vorticity. For experiments the reader
is referred to page 534 of their article. Applying the same modification
to the method of Shuman (1957a) the modified metkod also converged where
the original method diverged. But no such vorticity criterion was appearant.
In this report we shall try to find out what might be the reason of the

convergence behaviour of the Shuman and modified Shuman method.



. The method of solution.

We consider a sequence of functions w(l) (i=0,1,2,...), determined

by

vzw(n) = +V ov2¢ 4+ £2 + A2n_1 + Bi - 2\7f.v1p(n'” (2.1)
.. _ (n=1) (n-1) a (n-1) } ]
with An—1'-wxx - wyy . Bn_1—--2‘.pXy , which satisfy the same

boundary conditions as y from equation (1.1). If the difference e(n)=
w(n)_ w(n—1) converges towards zero, the sequence of approximate solutions
from (2.1) will converge towards the solution ¢ of equation (1.1). From

(2.1) we have

v2em 1) p(y () )_p(y()),

where

r(y'?)) = Voves + 22 + A2 + 32 - 2 vr,vy®) (2.2)

Writing

72 ()= p2(y (21
vy (e ’
™) + (o))

we find, neglecting the term 2VfZVe(n)

°

A2 - AZ + B2 -~ B2
(n+1) n-1 n n-1
vZe = . (2.3)

2e + p2(p{m e )y

where



and

_ (n) (n=-1) (n)
B2-B2 =Ly "y " )y Cxy

w(n))___ V?(w(n)+w(n—1)) + VZ(E(n+1)+€(n))

v2 (Y +
With ¢ = w(n)_Fw(n—1) equation (2.3) passes into
- - (n) _(n) - (n)
- - I
, (n+1) (= Vyy) (o =8y )P0y oy o)
v = . 2.
- 2f+ 2y + v2( (1) | (o,

We remark that e(l) =0, (i=1,2, ...) on the boundary. For simplicity

we consider equation (2.4) on a square (0 < x,y < ) treating the

functions mxx’ . and y__ as constants. Further we linearize equation
Yy x 5 (n+1) » (n) . .

(2.4) by neglecting the terms V<e and Ve in the right-hand

side so that we have instead of (2.h4)

- - (n) _(n) - (n)
i (nﬂ)_(wxx_ww) (e -y ) + hwxyexy

2 f+ 2y

. . . + .
In view of the foregoing assumptions we may expand e(n) and e(n 1) in the

double Fourier series

(n) _ (n) i(kx +my)
=t _ Ak,m i
K,m =~
(2.6)
(me1), %mneﬁn+m),
k,m= - >

Substitution of (2.6) into (2.5) gives the following relation between
almt) ang AL (iym # 0)
L .
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(. -9 ) (k2-m?) +bkm y

(n+1) xx Yy Xy (n)

_ A ) (2.7)
Ak,m - _ k,m
(k2 +m2) (2f+ V29)

From (1.4) we have

f+y =€, > o, f+q;w= €, > 0 . (2.8)
In order that e(n) converges towards zero the inequality

- = 2 .2 -

(B~ yy) (2 -m?) +hiem
l < (2.9)

(k2 +m?) (2f+ v2y)

must hold for every k,m#0. Using (2.8) the amplification factor in (2.7)

may be written as

k2¢, +m2e, -k?¢€ -m2e:1+hkm$
Xy

1 2 2
(2.10)
2 +m2e +%2 2
k €, m €, k €2 +m €4
If the successive approximate solutions w(l) (i=0,1,2, ...) are required

to satisfy the ellipticity condition (1.2) it follows that

[ by | < ege, (2.11)
Writing
2
k261+m2€2 =( |k| f5—1— |m | v €,) +2lkm|v'e1€2 s

2
kzr:2+m251 (\kl@—‘m‘/;) +2\km[v’e162 ,



the amplification factor (2.10) reads

2 2 -
(x| v/e, -ln|Ve) (x| Ve =m|Ye)) thkmy

(x| /e -1m|/e_2)z+(‘kt/?g“-lm[f;)2+u\km\ /e,

so that, in view of (2.11), condition (2.9) holds. To summarize, the
functions w(i) (i=0,1,2, ...) which satisfy (2.1) will converge to-
wards the solution ¢ of (1.6) if a sufficiently accurate initial
approximation w(g) of this solution is available, provided all the

approximate functions satisfy conditions (1.2) and (1.4).

If the approximate solutions do not satisfy the ellipticity condition
(1.2) the absolute value of the quotient (2.10) may be not very much
different from one, causing an oscillation in the solution of the nume-
rical procedure (2.1), which may result in a very slow convergence (or
divergence). To suppress this oscillation we solve, in stead of (2.1),

the pair of equations

V24 S I
lp(n+1) ¢(n+1)_+ (W(n) ¢(n+1)) ;
where F(p'™)) is given by (2.2). Elimination of o) gives
w2 o2y (0) 4 (L) (cp e (. (2.12)

If we write w= a/(1+a) equation (2.12) reads

(n+1) zw(n)

(1+a) vV2y =qV (n))

- £+F (y

3

which is the form of the modified iterative method of Shuman, used by

Paegle and Tomlinson (1975, eq. (11), p. 531).



Analogous to the treatment of (2.1) we can analyze the convergence

of the iterative method (2.12). From this analysis it appears that

a1so this method may diverge if the ellipticity condition is violated
too much by successive approximate solutions. In the experiments
described in section 4 we shall try to find out whether the convergence
behaviour of the iterative method (2.1) is really dominated by the

ellipticity condition as we pointed out in this section.



. The computational method.

The transformation of equation (1.1), being written in tangent plane
coordinates, onto the south polar stereographic projection (the

projection plane passes through the circle of 60 N latitude) is given by
2 2 4 _2 +2v _22<I>= .1
m?2 £V2y + 2m (wxxwyy wxy)m £y - m2 Vv 0, (3.1)
where m (¢) is the map factor

m(¢) = (1+sin n/3) / (1+sin¢ ) ,

and ¢ is the latitude. Analogous to (3.1) equation (1.6) reads

m292y= —t+ V £2 4+ (A2 +B2) -2 m2 Vr.Vy + 2m? V20. (3.2)

If T denotes the boundary of the region where (3.2) applies, then ¥ (x,y)

is to satisfy the Dirichlet boundary condition

v (x,y) = olx,y) / f, (x,y) €T.

We now impose a uniform square grid (Xi’yj) on this region, with mesh

side d. The boundary consists of rectangular segments along horizontal

and vertical mesh lines so that an interior point is surrounded by

eight mesh points, each of which being an interior or a boundary mesh

point. Using the notation ¢ (i,j) = w(xi,yj), (i, )= f(xi,yj) and m(1,]) =
In(xi,yj) partial derivatives are replaced by the following usual finite

difference approximations at an interior point (i,J)

Vox P (-1,3) 4y (i41,5) - 29 (4,5)) / &2,
by o WU+ (LG4 - 29 (5,5)) / @,
Yy P (E1,541) + 9 (3-1,3-1) =9 (141,5-1) =9 (3-1,5+1)) / L a2,

29L.vy (£ (141,5) - £ (1-1,3)) (v (141,3) = v (i-1,5)+
(£(1,3+1) = £(1,5=1)) (¥ (1,341) - (i,3-1)))/ 2a% = v/a?
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so that

W2y (P (E1,3) +p (i-1,3) + v (1,3-1) + 9 (3,3+1) = by (i,§))/ a% =
Dy (i,§) /a2,

AZ4+B2 ¢ (P (i-1,3) +y (3+1,3) = (1,3-1) = (i,5+1)P +
Ty (A41,541) + 9 (i=1,3-1) = (i+1,3-1) =9 (i-1,3+1))2 / a* =
(a2+82) / ad“,

and equation (3.2) becomes

m2Dy/d%2= £+ V £2+n* (024p2) /d¥-m2y / a2+2m2D¢ /d? . (3.3)

Equation (3.3) is solved by the iteration proces

o™V = _razm? ¢V (@2m?)? +q2 42 -y @/ud +2 D 0a2/n?,(3.4)

where the quantities an,Bn
(n)

v . As an initial guess we take Y

and Y, are calculated using the n-th iterate

(0)

= 0/F, where T is the average

Coriolisparameter.

Analogous to condition (1.2) of section 1, the condition that equation

(3.1) be elliptic is given by
2 F 2 _ 2
(£/m +2wyy) (f/m? + 2y ) hwxy >0 (3.5)
or equivalently
2v29¢ + £2/m2 _2vVE, vy > O. (3.6)

Of course conditions (3.5) and (3.6) are equivalent if ¢ is a solution

)

approximate solutions of (3.1) obtained by an iterative method such as

(2.1).

of (3.1) and they are not equivalent for functions w(n which are
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In the following we shall consider the finite difference version of
(3.5) as the ellipticity condition of our problem and we shall show
in the next section that this condition plays an important réle with
respect to the convergence of the iterative procedure

(3.4). To be more specific it will be shown that the iterative method
(3.4) will be convergent if the subsequent approximate solutions w(n)
satisfy the finite difference version of (3.5). Otherwise very slow

convergence or even divergence may occur.

In practice however we shall be concerned with condition (3.6). The
better (3.6) is satisfied by an approximate solution w(n) of (3.4), the
better (3.5) will be satisfied. In the experiments of the next section

we use condition (3.6) in three different ways.

(a) At those points where 2 D ¢ + £232/m?2 < O the
geopotential is modified so that 2D ¢ =-£232/m?. During the iteration

proces (3.4) we substitute zero for the expression
5 2
(f d%/m?) +a2+8n2- Y, d2/m2+2D 6 a2/m?

n

when it is negative.

(b) The first iteration of (3.L4) the geopotential is changed at those
points where 2D ¢ + £2d2/m? < 0 according to (a).

During further iteration the geopotential is modified again at those

points where

2D% + £232/m? - Y, <0
so that

2De =y - £232/m2.

This will give only small changes in ¢
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{¢) We now proceed in a manner given by Shuman (1957 a):
"Mhe field of 2 = 2D @ +f4d2/m? is scanned with a test for negative
values. When a negative value of Z is encountered the values at the
surrounding nearest four points are reduced by t of the magnitude
of 7 at the central point and the value of Z at the central point is
increased to zero. Boundary values are excepted from change'. This

operation is applied 20 times (see section L). With respect to the

expression
2
(fd2/m2)” + a2 +82 - y_ d%?/m? + 2D® a?/m?
n n n
we refer to (a).

In the case where the numerical solutions start to oscillate we may

solve the pair of equations

2
0o (V) o L pa2/m2 s \/(fdz/mz) +a2+82-y d?/n? + 2D ¢ a*/n?,

(3.7)
R N A NI

Iteration is stopped when a function w(n) is obtained which makes the
maximum of the absolute values of the residuals with respect to equation
(2.3) less than a prescribed quantity. Here aresidual is defined as the
difference between the right and left member of (3.3). Each iteration
step we have to solve a Poisson equation. If this 1s done by an iterative
method (as is the case in this report) the required accuracy must be

chosen in accordance with this stop criterion (see also section k).



L.
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Experiments.

The tabulated geopotential is smoothed by the pair of one-dimensional

smoothers (Shuman, 1957 b)

o (i,3) = 0.7276k @ (i,3) + 0.22049 (®(i-1,j) + ¢ (i+1,3)) -
0.11318 (¢ (i-2,3) + @ (i+2,3))+ 0.02886 (¢(i-3,3) + ¢ (i+3,3j))
and
¢ (1,3) = 0.72764 & (i,3) + 0.22049 (& (i,j-1)+ o (i,3+1)) -

0.11318 (& (i,j-2) + a(i,j+2)+ 0.02886 (¢ (i,j-3)+ &(i,J+3)).

These smoothers are passed successively six times over the geopotential
field. In the following‘F(w(n)) stands for the square root in the right

member of (3.4). Using the stop criterion

max | o™ + ra2/m2 ~F )| <, (4.1)

i,3

. . 4y . . .
for the iterative method (3.L4), where w(n) 1s the approximate solution
of

(n)

Dy ' =-fd?/m?+ T?'('w(n_”) (b.2)

(or Dw(n) = wD\p<n_1)+ (1-w) (- £d2/m? +?(w(n'1))) when solving (2.7))

this approximate solution must be computed to within an accuracy sc that
in equality (4.1) can be satisfied. It appears to be sufficient to solve

the discrete Poisson equation (L.2) with an accuracy of

max IDI}; -Dvy <107% nax | Dlp(n_w

+ ra2/m?2-F (') |
1,] 1,3

with @ = 1. In the following experiments § = 102 and 4 = 375.103



- 14 =

so that
(n) — () o’
max | m2 Dy /a2 +£-m?2F (/) /a?%| < max m?(i,]).
1,4 (3.75)2 1,]

As noted in the previous section, it is the intention of the
experiments to show that convergence will be slower if the ellipticity
condition (3.5) is more negative at a larger number of points. The
balance equation is solved on an octagonal region with 162L interior

mesh points (see Fig. 1).

20
22

L

20
L

Fig. 1. The number of interior mesh points is indicated for horizontal

and vertical mesh lines.

The 12-hour 500-mb geopotential fields used in this report are taken from
the period 5-1-1978 through 8-1-1978. The results presented below are

representative for other experiments that we have done.
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case (b) case (a) case (c)

010500 16 (L) 17(12) 32(95)
12 17(1) 17(11) ¥ (Th4)
0600 19(L) 19(16) 25(88)
12 17(3) 18(10) 29(L6)
0700 2L(1) L2(11) L8(65)
12 15(1) 15(11) 26(L5)
0800 27(0) 28(18) 36(55)
12 17(0) 17(5) 33(L9)

Table 1. For explanation of case (a), (b), (c), sse section 3.

In Table 1 the number of iterations 1is given needed to satisfy the stop
criterion (4.1). Between brackets we give the number of points at which
the ellipticity condition was negative during the last iteration. For
instance in case (b) of 8-1-1978 at 00 GMT the ellipticity condition was
very negative at a few points during many preceding iterations, resulting
in a relatively slow convergence. It was not possible to reduce the number
of iterations in case (c) of 5-1-1978 12 GMT by applying the iterative
method (3.7).

(% means more than 50 iterations)
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