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Summary .

After the development of the well-known iterative methods for solving
systems of linear equations resulting from the finite difference
approximations to elliptic partial differential equations the last

decade some new iterative methods have been proposed. In this report

we apply the fastests of these methods to the relatively simple problem
of solving the Poisson equation with Dirichlet boundary conditions on

an octagon. Moreover we pay some attention to stop criteria for iserative
procedures. Experiments are given comparing the number of iterations for

different stop criteria and also the iteration time ratio with respect

to the point SOR method.

Royal Netherlands Meteorological
Institute,
P.0.Box 201,
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. Introduction.

The systematic development of the well-known iterative methods for
the solution of systems of linear equations resulting from the finite
difference approximations to pertial differential equations has taken
place in the fifties and early sixties. In a foregoing report
(Bijlsma, 1977) we applied some of these iterative methods to the
numerical solution of the Poisscn equation with Dirichlet boundary
conditions on an octagon. It appeared that of the methods considered
the alternating-direction implicit (ADI) method and the two-line
successive overrelaxation (2LSOR) method applied to the cyclically
reduced equations along diagonal mesh lines converged most rapidly.

In order to reduce the computing time of the 2LSOR method we introduced
"extra" boundary points so that the method could be applied to the
remaining points in a very simple way. It is true the resulting matrix
problem didn't satisfy the theory entirely, so that we couldn't expect
the minimal number of iterations (belonging to this method) for a
certain error reduction factor, but we supposed that this might be
compensated by the reduced computing time. In the present report we
shall make further inquiries. For the sake of completeness we also
consider the two-line cycliz Chebyshev semi-iterative (2LCC) method
alonz the diagonal mesh lines.

During the last decade some new iterative methods have been
proposed. We mention the method of Stone (1968) which is called the
strongly implicit (SIP) method, and applications of the conjugase
gradient method of Hestenes and Stiefel (1952) such as the method of
Reid (1972) and the incomplete Cholesky conjugate gradient (ICCG)
method of Meijerink and Van der Vorst (1977). In fact the SIP and
ICCG methods are based on an approximate factorization of the
coefficient matrix. Although the SIP method works quite well in rather
difficult cases where the well-known iterative methods hardly converge,
it is slower than, for instance, the ADI method when solving simple
elliptic equations on regular rcgions (see Stone, 1968, p. 551).

For applications of the ICCG method to complicated problems the

reader is referred to Kershaw {1978).



Results of this method when solving the Laplace equations on a
square with mixed Dirichlet and Neumann boundary conditions are found
in Meijerink and Van der Vorst (1977, p. 158). For such a problem the
method of Reid (1972) appears to be two times faster than the point
SOR method. ‘

In this report we consider the ICCG method, the ADI method, two
versions of the 2LSOR (2LCC) method and the point SOR method. These
methods will be compared with respect to the minimal number of

iterations for different stop criteria and computing time per iteration

when solving the Poisson equation

-v2y =F (x,y) (1.1)

defined on a region in the (x,y) plane bordered by a regular octagon
(see Fig. 2, section 2). On the boundary we have U = 0. We now impose
a uniform square mesh (xi,yj) with mesh side d on this region.

Using the notation u (i,j) = U(xi’bfj ), £(i,j)=F (xi,yj)
application of the usual 5-point difference approximation to (1.1) at

an interior point (i,j)

i,J+1

i-1,] 1,] 141,

1,3-1

-

gives the difference equation

- uli=1,3) =u(i+1,3) -u (i,3-1) —u(i,j+1) +bhu(i,j)=a2r(i,j). (1.2)



Labeling the n interior mesh points according to some ordering the

system of difference equations (1.2) is equivalent tc the system of
linear equatiors

Au = k, (1.3)
where the n components of the vector u are the values of the grid
function wu(i,j) at the ordered interior mesh points. The matrix A

is a symmetric nxn matrix with at most 5 non-zero elements per row

(see (1.2)). The vector k contains the inhomogeneous terms from

(1.2) and moreover the boundary grid function values (which are
zero in our case). We may write

A=D-E-F, (1.4)
where D 1s a diagonal matrix, whose diagonal elements are equal to L,

and E and F are strictly lcwer and upper triangular matrices with
non-zero elements equal to 1.



2. Survey of the methods considered.

Ir. this section we shall give a short description of the methods

which are applied to solve system (1.3).
(1) point SOR method. (Varga (1962), chapter 3 and 4.)

If the mesh points are ordered, for instance, by the natural
ordering (i.e. a point (i,j) occurs before (i',j') if j<j' or if

J=J' and i<i') then the point SOR method applied to (1.2) can be

written as

Jm+1) ;o (m#) (m+1) (m) (m)
u(i,j) ﬂ'(u(i-1,j) +uli,j=1) + u(i,j+1) + u(i+1,j) + a%r(i,3)),

(m+1) (m) (1) (m) (2.1)
u(i,ji) = u(i,j) + wlul(i,j) - u(i,j)), m>o0.

Using (1.3) and (1.4), (2.1) is equivalent to

(m+1) (m)
(D-wE) u = (wF+(1-0)D)u +uwk

or
(m+1) (m)
= -1 \ =1
u = (I-wL) (wU+ (1=w) I )u + Dl k,
where L=D'E and UH=D_1F. The value of w which minimizes the
spectral radius of the successive overrelaxation matrix H(w) =
(I-wL)™" (wU+ (1-w)I), p(H(w)) (i.e. the magnitude of the eigen
values of H(w) of largest magnitude) is given by

where p(B) is the spectral radius of the point Jacobi matrix
B=D-'(E+F) = L+U. Moreover p (H (wp)) =wy-1. Labeling the mesh
points by o, (or red-black) ordering (i.e. all points (i,j) with
i+) even occur before those with i+j odd) the average rate of
convergence (see section 3) is improved if we use w=1 for the

first complete iteration (Sheldon, 1959). For numerical results,
see Bijlsma (1977).



(2) 2LSOR (2LCC) method applied to the cycically reduced matrix

equations along diagonal mesh lines.

Using (1.4) matrix equation (1.3) is equivalent to

-1 - -
u=Do (E+F)u+D1k=Bu+D1k. (2.2)

If' the mesh points are ordered by 9, ordering the point Jacobi

matrix B has the form

B=|:T of » (2.3)

where the null diagonal submatrices of B are square and FT is the
transpose of F. By a partition of the vectors u and D_1k==g
relative to the partitioning (2.3), equation (2.2) gives the pair

of equations

u1=Fu2+g1,

- (2.4)

u2=F u1+g2,
so that

T

u1=FFu +¥Fg. +g.,
1 2 1

T . (2.5)

u2=F‘Fu2+P‘gf+g2.

Equations (2.4) are called the cyclic reduction of the matrix
equation (2.2) (see Varga, 1962, section 5..4) Tt was Hageman's
(1962) idea to apply block iterative methods to these cyclically

reduced matrix equations.
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If u, is defined on the (%) mesh points from Iig. 1 equation (2.kL)

is equivalent to

w (5,9) = 7 (u(E,d=1) + wli=1,5) + u(i+1,3) + u(d,541) + a2 (1,3)),
w(iLg=1)= ¢ (W(E,3) + u(i,3-2) + u (i=1,3-1)+ u (i+1,j-1)+ a2£(i,j-1)),
u(i—l,j)=% (w(i,i)+ u(i-2,3)+ u (i=1,3=1)+ u(i-1,j3+1)+a2r(i-1,3)), (2.4)"
u(i+1,j)=% (u(i,d) + uli+2,§) + u (i+1,541)+ u (i+1,§-1)+a%r(i+?,3)),
u(i,j+1)=% (w(i,j)+ u(i,j+2) + u (i+1,3+41)+ u(i-1,5+1)+d2c(i,j+1)),

and the first equation of (2.5) becomes

u(i,j) =71; u(i,j)+ % fu (i41,3+41) + u (i-1,5+1) + u (i-1,3-1) +u (i+1,j-1))+
) (2.5)°

5 (0 (5,342) +u (5-2,) +u (1,5-2) +u (i+2,3)) + a2F (4,4),

where

F(i,3) =-2; £(1,3) +1L6 (£ (1,3=1) +f£ (i-1,3) +£ (i+1,3) + £ (i,5+1)).



Scheme (2.5)' corresponds to a 9-point approximation (on the (x)
mesh points) at the point (i,j), which is surrounded by L4 interior
(o) mesh points. Is one of the (o) points, say (i-1,j), a boundary
point then the contribution of u(i—1,j) in (2.4)* will be cancelled
and scheme (2.5)' will be changed. Let thepoints of the diagonal (%)
mesh lines be labeled by diagonals (i.e. a point (i,j) occurs before
(i',3') if i+j<i'+j'). We suppose that the number of mesh lines is
even. Let u, . be the vector defined on the i-th block of two

1,1

successive diagonal mesh lines then u, = (u

oL,
IREIRRER uw,s) if there
are s blocks. If the number of mesh lines is odd, we can introduce a
block consisting of one mesh line. The matrix C==I--FFT from (2.5)

corresponding with this partition can be written as

- -l

Matrix C is a tridiagonal block matrix because the i-th block has

cnly coupling coefficients with blocks (i-1) and (i+1). Let g be

the number of mesh points of the i-th block then the n, xn,

diagonal submatrices Ci,i (i=1, ... , s) contain the mutual coupling

coefficients of the mesh points of this block. The matrix eguation for

u, from (2.5) becomes




-~

where f1==g1-+Fg2. Because matrix C satisfies property A" and is
consistently ordered (Varga, 1962, chapter 4) the block successive

overrelaxation method can be applied, yielding

(m+1) (m+1) (m) -
c. . u =C u -C u +f
i, M1 T R,i-1 Mr,ier T S e Y yier P T o
(2.7)
(m+1) (m) Lm+1)  (m)
u =u, . + w(u -u ),m >0

As before, the value of the relaxation factor w which minimizes the
spectral radius of the block successive overrelaxation matrix is
given by
2
m: =
‘o 1+ /1-02(B)

where p (B) is the spectral radius of the block Jacobi matrix of C
i.e. B==I-D—1C, where D is a block diagonal matrix containing the
diagoral submatrices of C. To simplify the matrix inversion from

(2.7) the mesh pointsof the i-th block of two successive diagonal

mesh lines are labeled as follows

etc.,

DK WX

E=g R, - 5
ONE ¥
o® O ¥

so that the matrix Ci,i takes the form of a symmetric, seven-diagonal
matrix, and the first equation of (2.7) can be directly solved, for
instance, by Cholesky decomposition (see p.16 ). We shall call this
method the 2LSOR (1) method. We shall discuss now & modification of

the method which needs less computational work. Therefore we consider
first of all those points, satisfying scheme (2.5)", which can be ‘
ordered by blocks consisting of two diagonal mesh lines of equal length.
Analogoﬁs to the foregoing we apply the block SOR method to these

points.
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The components of u, at the remaining {"extra") points are properly
handled. Matrix equation (2.6) can be written in this case, using

the same notation

[ % * * Y * * x| % i M % ]
*x * * * * ¥ X x x
* *® * C1 1 *® . C,U2 * * %x * u1’1 f1’1
* x C2,1 x \\\Cz’2 * 02’3 *® * u132 11,2
S Sl o= 1, (2.6)
t-1,t . .
* * X *® * Ct,t-1 Ct,t * u1,t1 f1,ﬁ
* * x *® * * * * % *
i | R N N

if there are t pairs of lines of equal length. The asterisks stand
for the matrices and vectors resulting from the application of the
point or line Gauss-Seidel method at the "extra" points.

If we number the 2mi mesh points of the i-th block as follows

* * * *
1

2 3 b ete.,
* * * *®

m.+7 m.+2 m.+3 m.+4
i i i i

so that

]
1,1 91,1 =0y o (2.7)

(2.7)"

n
~~
[}
. o~
n
~
-
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where in view of (2.5)' the m.Xm, watrices E, and E, are equal to

3/ 1/8 (178 1/16
1/8 3/4 1/8 O 1/16 1/8 1/16 O
E1 = \\\\;:::\:::? E2 = \\\\;:::\:::? p and hi=
1/8 ? 1/1
O O

1/8 3/h 1/16 1/8
Let (Parter, 1959)
I I i I I
P= , P =3 )
4 I I I
where I is the m.xm, identity matrix, then
E_+E 0]
P‘lci P = 12 =L,
0 E1—E2
so that with
n
U ;= le R (2.8)
equation (2.7)'' gives
v -1
Ix. =P 'h
i i
After inversion of the tridiagonal matrix L the vector u is

1,1
found fram (2.8). We shall call this method the 2LSOR (2) methcd.

We can number the blocks of mesh points such that the block Jacobi
matrix of C from (2.6) has a block form analogous to (2.3) (01
ordering). In this case (2.7) is applied first of all to the even
blocks and then to the odd. If the iteration parameter w, during

each of these successive iterations, i1s changed according to

2 1
w, =1, w,=s——— w, = —m— i
2-p2 (B) i+ -y pZ (B)/b

v
n
-
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where p (B) is again the spectral radius of the block Jacobi matrix
of C, then we are applying the two-line cyclic Chebyshev semi-
iterative (2LCC (1)} method. In a slightly different way we can
apply the foregoing to the 2LSOR (2) method. Although this variant
of the 2LSOR (1) (or 2LCC (1)) method doesn't follow the theory

exactly it appears to be very fast in practical cases.

(3) ADI method.

We express the matrix A from (1.3) as the matrix sum
A = H+V,

2 2
where H and V resulw from difference approximations of - f%z and - g%y.
Suppose we have a grid with s horizontal mesh lines. If we label the
mesh points by natural ordering and if we call the vector u(i,j) defined
. T .
on these ordered mesh points uh-(uh,1, e uh,s) , then the matrix H
corresponding with this vector has the form

H, [ o1 N
0] [ 0
H= . Hj = , ‘21 n. = mn,
O O\, ”
H -1 2 |n.xn
- s L 4737

where 11'j is the number of mesh points of the j~th horizontal mesh
line. Analogous considerations hold with respect to the matrix V
if we number the mesh points along vertical mesh lines.

We rewrite equation (1.3) in the form

(H+wI)u

(WI-V) u +k,

or

(V+wI)u=(0I-V) u +k.
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The Peaceman-Rachford (1955) alternesting-direction implicit (ADI}

/

iterative method is defined by

(H+u) (m+%)

m+1I)u

]
€

—
o
Vo)

(m+1) _
m+1I)u - (wm+1

(V+w
where the acceleration parameters w are to be chosen so as to make

the convergence of the method rapid. Combination of the pair of

equavions of (2.9) gives

/
{m+
u'® R T u +1 ,m> 0,

where

Tw=(V+wI)_1 (wI-H) (H+oI) (wI-V),

1w=(V+wI)'1 { (wI-H) (H+wl) ! +I}k.

The matrix Tm is called the Peaceman-Rachford matrix. In this report
we apply the ADI method in the form given by Wachspress and Habetler
(1960) (obtained by rewriting iteration process (2.9) in a suitable

way)
WOy (V-w, 1) u(O),
| G (I-20 . (H+o 0™y W) (a)
AR T R T (v)

w(m+1)= V(m+1)+
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with 4 and 8 Wachspress (1962) iteration parameters. After the

) . .
calculation of w(o), v(1) and u(1 the cycle (¢, a, b) is applied

as long as further iteration is required.

(4) ICCG method.

We start again from the system of linear equations (1.3)

where the matrix A is symmetric and positive definite. First we shall

give an outline of the conjugate

gradient method of Hestenes and
Stiefel (1952). Let u(o)

be an initial guess then we can try to
approximate the solution u of (1.3) by putting

where the a, are to be chosen so as to minimize

™o uly,,

where || x ||? = (x, Ax), i.e. the inproduct of x and Ax. We can write

(2.10) equivalently as

or

u(m)—11= Pm (a) U}Olu),

where Pm(A) is a polynomial in the matrix A of degree m.
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Compare also the method of Richardson (Varga, 1962, p. 141).

7
Parameters oy which minimize || u‘m)~u { IA can be founéd very simply
by orthogonalization of the set of vectors

i, (0) .
At (0 - w) i=1, ...,n

in the || llA norm. For an application of the Gram-Schmidt
orthogonalization procedure, see Beckman (1960, p. 63). If the
orthogonal set is written as

i .
w¥= 1z c. . AaYd@WZ) i=1, ... ,m

then (u’x, Au; )=0 for i#j and (uix,Aui* }> 0 since the matrix A

. 1. ..
is positive definite and (2.10) becomes

u =u=u =u+ I ai*ui. (2.11)
1=1
Parameters on;E which minimize H(ui*) = || u(m)—u l |A follow from
aH (aix)
x 0
da
so that
(2)
« (W®, A ()
- _ 1 1 =1 (2 11)'
a; " , 1 s see oI, .
(w” ,Au)
i
. m ® % . . . (o) .
l.e. -_21 ui ui 1s the projection of u -"u in the space spanned by
l=
u;‘\, e s um;'E . A recursive application of the foregoing is given by

the algorithm of Hestenes and Stiefel: Let r =k—Au(O)and Py=T

0 0’
then

ai= Cri,ri) /(pi,A@i),
(i+1)_ (1)

= + a.p.

u u a:p.,

T =ri-aiApi, (2.12)
b, = (ri+1’ ri+1)/ (ri,ri),

pi+1=ri+1+bipi’ 1=0,1, ...
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The vectors p; are the w.® from {2.11). From (2.11) and (2.11)' it

i
n
is clear that u(O)- u ==y a;ui* sc that u(n)=u. If the matrix A has r
district eigen values~ then the AY (u( )-u), j=0,1... lie in a
/ .
r-dimensional subspace, so that u\r)=u. It appears to be

advantageous to apply the conjugate gradient method to the solution
of systems of linear equations of which the ccefficient matrix has
many nearly-degenerate eigen values. This is of course the case if
A does not differ very much from the identity matrix. Meijerink and
Van der Vorst (1977) dicd accomplish this by giving an incomplete
Cholesky decomposition of A, so that Ay LDLT and by applying the
conjugate gradient method with matrix (LDLT)“1A. If a complete

Cholesky decomposition is given by

aA=107,

where L= (1. J.) is a lower triangular matrix and D=(d. .) a
bl

1,54
diagonal matrix with

J-1
. .Ta. .- . . 1 =) ]+
ll,J alaJ ki‘] ll’k 1J9k dk,k, * J,(J 1), o

then one of the choices for an approximated decomposition is to

take li ,j=0 if a; . =0 leading to the ICCG (0) method. For further

E] ,J

details, see Meijerink and Van der Vorst (1977) and Kershaw (1978).

Iteration schema (2.12) is modified as follows: Let r0=k—Au(O)and
T,-1

Py= (LDL™) r,, then

_ T\-1
ai-(ri, (LDL ) rl) / (pl: Apl)a

u(lﬂ): u(l)+ a.p.,
171

r. =r. - a.Ap.
1+1 i i7P3

b= (g (L) e, )/ (e, (2ot

i+1 ri) ’



- 17 -

Ty .
= T v =
P, (zpL™) r;,q tPiPss i=0,1,

The ICCG (0) method, treated in section L will be referred to as
the ICCG method.
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. Stop criteria for iterative methods.

In the foregoing section we discussed some iterative methods
{although the conjugate gradient method is often regarded as a

direct one) for the solution of a system of linear equations

Au=k. (3.1)
- . . (m)__ (m) . .
The error after m iterations, € =u -u can be written in a
general way as
e(m)=}( 5(0) . (3.2)
- i
where for instance Km= I+2% o A” for the CG method,
i=1

}:m={(1.mL)_1 (wUW+(1-w)I)}m for the point SOR method with

analogous expressions for the block methods and §m= [ I Tw"
=1 3
0, (V+0I) («I-H) (H+wI) ' (@I-V) for the ADI method. In
the following we shall consider some stop criteria that could be
handled to terminate the iteration proces. We shall first define
the vector (and corresponding matrix) norms that we are using in

the experiments. We regard vectors and matrices with real elements.

Definition 3.1.

Let x be a vector with components Xis oo s xn. Then
n 2 3
[l x ]| =(z X; )" is the 1, (or Fuclidean) norm of x,
2 i=
|l x l|w== max |xi| is the 1_ norm of x.

1gi<n



Definition 3.2.

Let A==(ai .) be a nxn matrix with eigen values Ai’ 1<i<n.
9

Then
I ax 1],
I A||2== max ——— is the 1, (or spectral) norm of the
1l
matrix A,
||A|l°D= max I ja. .| is the 1_norm of A and for the sake

1<i<n j=1 1,

of completeness,

p(A) = max \ k.l is the spectral radius of A.
1<i<n .
In the following || || stands both for || [|2 and || |]_.

Definition 3.3.

Let A be a convergent nx nmatrix, i.e. p(A)<1. If, for some positive

integer m, || A" ||<1, then
2

1/m 1n J| A" ||
R(A") = 1n {(|] A™]]) }2 ——— %
2 m

is the average rate of convergence for m iterations of the matrix A

and

R (A) ==1np(a)

-]

is the asymptotic rate of convergence for the matrix A.

Using vector and matrix norms in equation (3.2) it follows that

e <t e 1119,
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so that we are led to the problem of minimizing || K ll.m>0,

(this doesn't hold for tre ICCG method) in order to obtain e largest
possible error reduction factor. Let us suppose that we have solved
this minimization problem, so that the iteration parameters that
minimize || Kmil for the different iterative methods are known.
Then experiments are made in the following two cases. In the first
case we suppose that k=0 in (3.1) so that equation (3.1) has the
solution u=0. Starting from an initial approximation u(o) we

determine the minimum number of iterations, so that

TT——T5Y——— <1079, q positive integer. (3.3)
|

In the second case these experiments are repeated using a vector k
resulting from a forcing function taken from the practice of

numerical weather prediction.

Now we consider the minimum number of iterations so that

(m

|| Au )—}(II <10°%, q positive integer, (3.4)

(0)

starting with u' "'=0. We proceed with two theorems.

Theorem 3.1. (Varga, 1962, p. 10, 11, 15).

Let A be a nxnmatrix. Then
T,y 2
& 11, = (e(aTa))?,
T .
where A" is the transpose of A, and moreover

o(a) < || a ],
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Theorem 3.2. (Varga, 1962, p. €5).

Let A be an arbitrary nxn matrix such that p(A) > 0. Then,

m m m-(p=1)
a7 ] v(7) {p(a)} (p >,m»+oo, (3.5)
p-1
where p is the largest order of all diagonal submatrices Jy of
the Jordan ncrmal form of A (Varga, p. 13) with p(Jy) =p(A), and

v 1s a positive constant.

For simplicity we confine ourselves to the point SOR method in
the following. The matrix H(w) from section 2 satisfies (3.5) of

theorem 3.2 with p=2 so that by choosing

2

w=w = —————— (3.6)
1+ (1-2)2

2 .
where A=p"(B), lI{H(w)}m || 1s minimized for large values of m.
In this case A can be found as follows. Solution of (3.1) by means

of the Gauss-Seidel method (i.e. w=1 in (2.1))gives

N AR I (1-1)" ' k.
Defining
(m) (m-1)
o = [[uml Gm=1y)
then
m+1
T, moe (3.7)
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and the best value of w follows from (3.6). Another way of
determining wy experimentally is the use of criterion (3.3). As
an example we take the problem of the next section where the
Poisson equation is solved on a regular octagon, as sketched in
Figure 2. Using (3.6) and (3.7) we find in that case wb=1.8628
after LB9 iterations. In the following Table we give the number

of iterations needed to satisfy criterion (3.3) with q=3 for

different values of w, using the || ||mnorm.

w iterations
1.80 141

81 132

82 123

83 , 113

8L 104

85 93

86 82

87 = 76 %

88 83

89 83

90 87
Table 1.

Another stop criterion that one might use, is to terminate the

iteration process, if

||11(m+1l.u(m)|| <1072, q positive integer. (3.8)

It is easy so see that this criterion doesn't treat different

SOR methods equivalently. Therefore we write

Lm0 () (@) _(n)

() P )™ % (m(w) - 1) (H(w) P
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so that
a0 G < -1 ) P €9, (3.9)

Further we have

H(w) = I=(I-wl)” (U+ (1-0)I-(I-wl))=
- (I-—uuLT1 (I-B),

so that

B -I]] <o||T=B]|-|| (T-u1™"|] . (3.10)

Since L is a strictly lower triangular nxnmatrix, we have that

- - -1
(I-wL) '= T+uL+...+0" 1Ln

is a lower triangular matrix with
11 (- oLy ||=N(w)= || I+ wl+. ...+ L0, (3.11)

so that, since L is nonnegative, N(w) is an increasing functior.

of w.

Combination of (3.9), (3.10) and (3.11) gives

L u®) ) g o). ]| )P T ] 1] O )

| (3.12)

If criterion (3.8) is used to compare different SOR methods with
optimal relaxation parameters, for instance point and block methods,
it is clear from (3.12) that the more rapid methods will be favoured.
It may be still worse if criterion (3.8) is used to determine the

"pest" value of w.
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In this caseone doesn't find this value of w by minimizing

| [{H(w)}™ ||, for m + = leading to w=uw

b but the "best" wvalue

of w 1s found from minimization of

wN(w) - | [ {H(w) ™ ||

after m iterations, causing a decrease in w with respect to Wy
as long as the decrease of wN(w) will be larger than the increase
of ||[{H(w)}™||. We shall illustrate this using the same example
as in Table 1. In Table 2 we give the number of iterations needed
to satisfy criterion (3.8) with g=3 for different values of w,

using the || [|_ norm.

w iterations

1.80 90
81 86
82 4 82
83 78
8l Th
85 % TO %
86 T2
87 T4
88 79
89 ‘ 87
90 89

Table 2.

If the point SOR method is applied with equations and unknowns
ordered so that the matrix B has the form (2.3) it is possible
to obtain (Sheldon, 1959)

G V] = STy +V gy + 1) fo(E(u) 0™
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. Results.

In this section we shall describe the experiments which were
carried out on the regular octagon as sketched in T'ig. 2, where
the number of interior mesh points is indicated for
horizontal and vertical mesh lines. The total number of interior

mesh points amounts to 1624,

20
- Ly

Fig. 2.

The basis of comparison used, described in the foregoing sections
is briefly mentioned. We consider twc cases. In the first case we

suppose that k=0 in (3.1) so that u=0. Starting with u)i(o)= 1,
(0) (0

i=1,..., 1624, where u is the i-th component of u

. we
1 2
shall determine the minimum number of iterations
so that
(m)
™ -
W < 10 , a=1,...,10. (L.
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For the block iterative methods applied to the cyclically reduced
matrix equation, the m-th iterate is extended over the whole
grid, if necessary, by means of cne of the equations (2.k4).

The computed optimal relaxation parameters (or corresponding
spectral radius of the Jacobi matrix) for the SOR (and CC) methods

are given below.

point SOR w, = 1.8628
2LSOR (1) ub=1.6586
2Lce (1) p(B) =0.9786
2LSOR (2) w = 1.6592
2LcC (2) p(B) =0.9787

We remind that the 2LSOR (2) and 2LCC (2) methods do not satisfy
the theory exactly. These computed values were verified
experimentally by aprlying (4.1) for different values of w. Some
results are given in lig. 3 through 5. It is clear that the real
optimal parameters are slightly larger than the computed values,
as was to be expected. Results of comparative tests of the

iterative methods using criterion (L.1) are given in Table 3, k.

1

107 1072 107 107 107% 1078 1077 1078 1070 10710
point SOR 43 59 76 88 108 128 138 152 176 193
2LSOR (1) o, ord. 11 16 21 2k 33 Lo 46 Lo 5L 63
2LSOR(2)(H ord. 2 17T 22 26 33 39 45 Ly 53 60
2LCC (1) 1"m 15 23 27 33 38 LW 51 57T 61
2LCC (2) o115 21 2k 32 38 L4 48 53 59
ICCG 12 1k 19 25 29 32 36 39 L1 Lk
ADI (k4 par) 6 7T 10 14 16 18 22 26 27 30
ADI (8 par) 6 10 11 h 18 20 24 26 30 3k

2LSOR (1) nat. ord. 14 18 25 28 35 43 LB 53 57 6L
2LSOR (2) nat.ord. 15 19 25 29 33 L2 LT 53 57 61

TMﬂe3,||‘|w
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107" 1072 107> 107" 10™° 10°° 1077 107% 107° 1071°
point SOR 32 52 66 78 100 115 132 1Lk7 165 183
2LSOR (1) o, ord. 9 15 19 23 31 38 L3 LT 51 60
2LSOR (2) g, ord. 10 16 20 24 27 37 43 48 52 55
2LCC (1) 7T 12 19 25 31 35 L1 48 54 59
2LCC (2) 9 1 18 22 29 36 Lk2 46 51 5
1CCG 10 12 18 23 27 30 34 38 Lo k2
ADI (k4 par) L 6 10 12 14 18 20 23 26 30
ADI (8 par) L 8 10 12 16 18 22 26 28 32
2LSOR (1) nat.ord. 11 17 22 27 33 39 L5 L9 55 63
2LSOR (2) nat.ord. 11 18 23 26 31 39 L4 50 55 58

Table L, || 1,

Next the 2LSOR (2) method (01 ordering)(with the 2LCC (2) method
the most rapid SOR (CC) method) is compared with tae point SOR
method, the ADI method and the ICCG metkod. The total number of
iterations was normalized by the relative amount of arithmetic
per iteration required by each method. The arithmetic requirement

for the different methods were weighted as follows (obtained by

comparing actual machine time)

point SOR 1

2LSOR (1), 2Lcc (1) 1.80
2LSOR (2), 2LCC (2) - 1.05
ADI 2.67
1CCG 2.28

The numbers of observed iterations were multiplied by these values

and called normalized iterations. Results are given in Fig. 6 and 7.

In the second case the vector k is taken from practice. We now

start with u;()L 0, i=1, ..., 1624 and determine the number of
iterations so that

IIAJmLk||=||AJm)H <107% q=1,...,8. (L.2)
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As before optimal relaxation parameters of the SOR and CC methods
are verified experimentally. Results are found in Fig. 8 through
5. Due to the typical effect cf the matrix A, criterion (L.2)
is extremely suited to determine the optimal relaxation parameter
experimentally. Comparative test, analogous to Table 3 and L,

using criterion (L4.2) are found in Table 5 and 6.

1 2

=3 =4 =5 -6 =7 -8
10 10 10 10 10 10

107" 10
point SOR 76 91 10k 119 138 152 170 18L
2LSOR (1) g ord. 22 2T 33 39 L4 L9 55 60
2LSOR (2)<ﬁ ord. 22 28 33 39 L5 50 56 62
21ce (1) 23 28 34 39 L5 50 55 67
2LCC (2) 23 29 34 ko 46 51 57 62
ICCG 22 26 31 38 L1 W6 50 53
ADI (L par) 9 13 15 17T 21 24 27 29
ADI (8 par) 9 13 15 17 21 23 2T 29

2LSOR (1) nat.ord. 23 30 35 L0 L6 51 57 63
2LSOR (2) nat.ord. 23 29 34 L1 b7 52 58 6L

Table 5, || ||

107" 107 107> 107 1075 107® 1077 1078
point SOR 86 100 115 133 148 16L 180 198
2LSOR (1) o, ord. 27 33 38 Lk L9 55 60 66
2LSOR (2) o, ord. 27 32 38 kv kg 55 61 66
2Lcc (1) 28 33 39 Lk 50 55 61 66
2LCC (2) 28 33 39 45 50 56 61 67
ICCG 26 31 38 L1 W 50 53 57
ADI (L par) 12 15 17 21 2k 26 29 33
ADI (8 par) 13 15 1T 20 23 26 29 33

2LSOR (1) nat.ord. 28 34 39 L5 50 56 62 67
2LSOR (2) nat.ord. 28 34 Lo 45 51 5T 63 68

Tmﬂe6,|||u
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Finally in Fig. 16 and 17 the 2LSOR (2) method is compared with
the ADI method, the ICCG method and the point SOR method with
respect to the number of normalized iterations. For the sake

of completeness we also give the number of iterations for the

point SOR method so that

(m)
il

b q=1’293’h95 b}
|| u Ilz

where u satisfies (3.1), for different values of w, see Fig. 18.

These results can be compared with those of Fig. 3.
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