KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT De Bilt

Wetenschappelijk Rapport W.R. 66-1 (R III-298-1966)

Dr. H.J. de Boer

Attenuation of solar radiation due to air pollution in Rotterdam and its surroundings.

> De Bilt, 1966 Con. Ned. Meteor. Inst. |

All Rights Reserved.

Nadruk zonder toestemming van het K.N.M.I. is verboden.

Wetenschappelijk Rapport
W.R. 66-1 (RIII-298-1966)
U.D.C.: 551.521.1:
551.510.42

Dr. H.J. de Boer

Attenuation of solar radiation due to air pollution in Rotterdam and its surroundings

Co	ntents .	pg.
1.	Introduction	1
2.	Global radiation as a function of wind direction and wind speed for six stations in and around Rotterdam	
3.	Estimation of errors in the measurements	10
4.	General influence of Rotterdam and The Hague as sources of air pollution on global radiation	21
5.	Computation of the attenuation of solar radiation due	
	to air pollution only	24
	Summary	
7。	References	36

.-.-.-.

Fig. 1.

1. INTRODUCTION

One of the expedients for investigating the industrial air pollution in the region of the Nieuwe Waterweg near Rotterdam was the continuous measurement of global radiation at seven stations in and around Rotterdam. Global radiation is the solar radiation from sun and sky with wavelengths from 0.3 μ up to about 3 μ on a horizontal surface. This kind of radiation was measured with the aid of pyranometers of the Moll-Gorczynski type and recorded by a millivolt-meter with a printing device.

The seven stations, denoted by full black circles in fig.1 were situated

- at Naaldwijk (N) on the observation field of the "Experimental Station for the Culture of Vegetables and Fruit in Warehouses";
- 2. at Maasland (M) on a private agricultural farm;
- 3. at the Aerodrome Zestienhoven (Z) on the roof of the Meteorological Office;
- 4. on the fringe of Rotterdam near the locks of the Kralingse Verlaat (K);
- 5. in the city of Rotterdam on the roof of the Heliport (H);
- 6. at Poortugaal (P) near a Climatological Station of the K.N.M.I.;
- 7. at Pernis (S) on the roof of one of the buildings of the Royal Dutch Shell oil refinery.

From fig. 1 on which also city-limits are indicated, it may be seen that three stations are situated in a more or less rural area (N,M and P) and the remaining four stations in an industrial and urban area.

Though the horizons of the seven measuring sets are not completely free the part of the global radiation intercepted by obstacles, such as trees, buildings, chimneys, is negligible. Moreover, recordings of only those hours were evaluated in which the direct sun radiation could not be intercepted in any way. These hours, expressed in Local Apparent Time (L.A.T.), are

Jan 12 - 14 Apr 09 - 17 Feb 11 - 15 May 09 - 17 Mar 10 - 16 Jun 09 - 17	Jul 09 - 17 Aug 09 - 17 Sep 10 - 16	Oct 11 - 15 Nov 12 - 14 Dec 12 - 14
---	---	---

There was one station, namely P, where the intercepted sky radiation could amount to roughly 1% of the unintercepted sky radiation during the summers when the trees had their leaves. On the average the interrupted sky radiation amounted to much less than 1% of the unintercepted global radiation, since the direct solar radiation was never interrupted whenever the sun was shining during the mentioned hours throughout the months.

There was another station, namely K, where the sky radiation was intercepted to the same extent. From April 1960 that station showed not great, but nevertheless definite departures (10 - 20%)

from the expected amount of global radiation. In spite of the fact that both receiver and recorder were often checked, the origin of those departures could not be found. After the conclusion of the observations, it turned out that as a result of a small defect in the mechanism the deflection of the millivoltmeter from zero was strongly dependent on the orientation of the instrument. Therefore all measurements at Kralingse Verlaat were rejected.

The observation period started on November 1, 1959 and ended on November 1, 1961. Thus, two years of measurements at six stations had to be evaluated. The diagrams of the six stations were received at the K.N.M.I. where all necessary preparations for the evaluation were carried out every ten days. The evaluation proper of the amount of radiational energy per quarter of an hour into cal/cm².15 min. was performed by the "Afdeling Bewerking Waarnemingsuitkomsten T.N.O." at The Hague.

In order to be able to handle so great a number of observational data punching cards were used. In one card were punched the year, the month, the day, the quarter of an hour, the six stations each with its global radiation in cal per cm² 15 min together with wind direction dd, windspeed ff, total amount of clouds N, amount of low (and middle clouds) N_h and visibility V estimated by the Meteorological Office at Zestienhoven in the relevant quarter of an hour. The quarters were numbered per 24 hours from 01 up to and including 96 from midnight up to midnight local time.

Berlage [1] has studied the influence of the air pollution on the global radiation received at the six stations from the measurements between November 1, 1959, up to August 1, 1960, but only for situations when N at Zestienhoven was equal to 0 or to 1. In the summary of his interim report he states that for several reasons only tentative indications on the existence of artificial attenuation could be given and that only a further investigation of all observational material will allow to give more exact answers to various questions.

2. GLOBAL RADIATION AS A FUNCTION OF WIND DIRECTION AND WIND SPEED FOR SIX STATIONS IN AND AROUND ROTTERDAM

If a year is divided into 4 climatological seasons, then from the two years of observation one may expect in the winter season (Dec., Jan. and Feb.) during the interval 1-11-1959 up to 1-11-1961 1889 values of global radiation; in the spring season 5392 values; in the summer season 5888 values and in the fall season 2912 values for any of the six stations. Every station shows gaps in the series of measurements and in order to avoid a comparison of heterogeneous material, we took into consideration only the values of global radiation of those quarters of an hour which are present for all six stations. This condition reduces the number of observations in the winter season to 800, in the spring season to 3510, in the summer season to 2128 and in the fall season to 1968.

For each of the four seasons the number of observations is mechanically split up into 37 classes according to wind direction,

namely 00 (calm), 01, 02, 03,, 35 and 36, and into 7 classes according to wind speed, namely 02 is 1-3 knots, 03 is 4-6 knots, 04 is 7-10 knots, 05 is 11-16 knots, 06 is 17-21 knots, 07 is 22-27 knots, 08 is 28-33 knots and higher.

After having studied the material thus arranged, it turned out that there existed no appreciable relationship between the amount of global radiation and wind speed. Therefore the speed classes for every direction were recombined, so that finally the number of observations, each extending over a quarter of an hour, only have been split into 37 classes according to wind direction.

The result of this classification may be found in table I, where under the heading of the season the six stations show how much global radiation has been received on the average for every of the 36 wind directions and for calms; this amount of energy is expressed in cal/cm².15 min. up to one decimal and has been placed in the left-hand part of the column headed by the particular wind direction. In the right-hand part of each column the amount of radiational energy for each of the six stations expressed in a percentage of the mean for the six stations has been inserted.

As an example, for the winter season and direction 06 Heliport shows an amount of energy of 5.8 cal/cm².15 min. averaged over 38 observations. The average energy of the six stations amounts to 5.9 cal/cm².15 min. Therefore Heliport has only 98% of the average energy. Naaldwijk appears to have an amount of energy equal to 6.2 and Maasland 6.4 averaged over 38 observations, the percentages are therefore 105 and 108 respectively. In the left-hand part of the penultimate column, headed by "TOTAL", the weighted mean of the energy, averaged over all 37 classes and for each of the six stations is inserted; in the right-hand part the percentages of the average of the six stations are found. As an example, for Heliport in the winter season the mean global radiation is 3.7 cal/cm².15 min., which is 92% of the mean for all six stations amounting to 4.0 cal/cm².15 min.

In the left-hand part of the last column the ratio of the amount of energy in column 00 and the amount of energy in column total for each of the six stations has been entered. In the right-hand part of this column those ratios are expressed in percentages of the mean of the six ratios.

If we want to compare the values of the global radiation for the six stations and to study resulting differences between the various stations or between various wind directions for each separate stations, then we have to know the error in any of the many values in order to judge whether a difference between two values is significant or not.

Suppose that we have satisfied ourselves concerning the significance of occurring differences in global radiation then the question arises what the cause is of those differences. For example, a difference may be due solely to a difference in cloudiness, or to a difference in air pollution or to both causes. Moreover an industrial area may give rise to a local circulation due to the heat production in that area. This fact has been pointed out by Schmidt and Boer [3].

Average amount of global radiation in cal/cm. 15 min of six stations for each wind direction dd in each of the four seasons and the same averages expressed in percentages of the mean of those of the six stations. TABLE I. Winter

8	k 3.7 106 2.4 77 2.4 77 3.1 100 5.6 81	Mean nr.observa- tions	11	Naaldwijk 5.8 106 Maasland 5.9 108 Pernis 5.4 94 Poortugaal 5.7 103 Zestienhoven 5.7 103 Heliport 5.0 83	observa- 24	22	Naaldwijk 4.5 110 Maasland 4.4 107 Pernis 4.0 98 Poortugaal 4.1 100 Zestienhoven 4.0 98 Heliport 5.8 93	Mean 4.1 nr. observa- 27
01	2.4 141 2.1 124 1.3 76 2.1 124 1.4 82 0.9 53	1.7	12	4.4 105 7.8 90 4.1 198 4.3 102 7.9 93	4.2	23	7.9 108 7.9 108 7.5 97 7.5 97 89	3.6 25
02	2.4 109 2.7 123 2.0 91 1.8 82 2.4 109 1.8 82	2•2 8	13	4.8 107 4.6 102 4.2 93 4.7 104 4.8 107 4.1 91	4.5	54	4.6 110 4.6 110 3.7 88 4.5 107 4.3 102 3.7 88	4.2 14
03	1.8 86 2.7 129 2.1 100 1.6 76 2.3 110	2.1 9	14	5.7 106 5.1 102 4.6 92 5.1 102 5.2 104 4.9 98	5.0 25	25	5.5 106 4.7 106 5.0 90 5.8 112 5.1 98	5.2 20
1 0	5.7 102 6.0 107 5.1 91 5.4 96 6.2 111 5.0 89	5.6	15	4.0 105 3.6 95 3.6 97 4.0 105 4.0 105 3.7 97	3.8	92	6.4 112 6.1 107 4.5 79 5.5 96 6.6 116 5.1 89	5.7
05	4.7 89 5.7 108 4.9 92 5.1 96 5.8 109 5.5 104	5•3 22	16	4.3 113 4.2 111 3.5 92 3.7 97 3.7 97	3.8 51	22	5.5 110 5.9 118 5.3 106 5.2 104 4.3 86	5.0
90	6.2 105 6.4 108 5.4 92 5.5 93 6.0 102 5.8 98	5.9 38	17	3.2 114 3.0 107 2.7 96 2.6 93 2.6 93	2.8	28	5.2 108 5.0 104 4.1 85 4.3 90 5.2 108 5.0 104	4.8 14
20	4.3 110 3.8 97 3.7 95 3.6 92 4.7 121 3.6 92	3.9	18	3.4 110 3.8 103 3.0 97 3.2 103 3.1 100	3.1	29	4.2 108 4.1 105 5.2 82 4.0 103 4.2 108 5.8 97	3.9
80	4.2 117 4.1 114 5.1 86 5.6 100 5.8 106 5.1 86	3.6	19	4.9 100 5.2 106 4.5 92 5.0 102 5.7 108 4.5 92	4.9 5.4	8	3.2 97 3.8 115 3.1 94 3.0 91 3.7 112	3.3
60	2.9 100 2.9 100 2.7 93 2.8 97 2.6 124 2.8 97	2,9	20	3.1 97 3.8 119 3.0 94 3.3 103 3.1 97	3.2	31	4.1 114 5.1 142 3.1 86 3.5 97 3.2 89	3.6
10	5.4 98 6.0 109 5.5 100 5.8 105 5.7 104 4.8 87	5.5	21	2.9 112 2.5 115 2.5 96 2.7 88 2.1 88	2.6	32	11111	. 0
	01 02 03 04 05 06 07 08 09 1	106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 5.4 9 106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 5.4 9 119 2.1 124 2.7 123 2.1 100 5.1 91 4.9 92 5.4 92 3.7 95 3.1 86 2.7 93 5.5 10 100 2.1 124 1.8 82 1.6 76 5.4 96 5.1 96 5.5 93 3.6 92 3.6 100 2.8 97 5.8 10 119 1.4 82 2.4 109 2.2 110 6.2 111 5.8 109 6.0 102 4.7 121 3.8 106 3.6 124 5.7 10 119 1.4 82 2.4 109 2.2 110 5.5 104 5.8 98 3.6 92 3.1 86 2.8 97 4.8 8	3.3 106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 5.4 9 3.7 119 2.1 124 2.7 123 2.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 5.4 9 2.4 77 1.3 76 2.0 91 2.1 129 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 10 2.4 77 1.3 76 2.0 91 2.1 100 5.1 96 5.9 92 3.7 95 3.1 86 2.7 95 5.5 10 3.1 100 2.1 124 1.8 82 1.6 76 5.4 96 5.1 96 5.5 93 3.6 92 3.6 100 2.8 97 5.8 10 3.7 119 1.4 82 2.4 109 2.3 110 6.2 111 5.8 109 6.0 102 4.7 121 3.8 106 3.6 124 5.7 10 2.5 81 0.9 53 1.8 82 2.1 100 5.0 89 5.5 104 5.8 98 3.6 92 3.1 86 2.8 97 4.8 8 3.1 1.7 2.2	3.7 106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 5.4 5 3.7 119 2.1 124 2.7 123 2.7 129 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 2.4 77 1.3 76 2.0 123 2.7 129 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 2.4 77 1.3 76 2.0 100 5.1 91 4.9 95 5.4 99 5.4 99 5.7 95 3.1 8 2.7 100 6.0 102 4.7 121 2.8 106 5.8 100 6.0 102 4.7 121 3.8 106 3.6 124 5.7 10 5.8 10 5.5 104 5.8 98 3.6 100 3.6 124 5.7 10 5.8 10 5.5 104 5.8 98 3.6 106 3.6 124 5.7 10 5.8 9 5.5 104 5.8 98 3.6 106 3.6 124 5.7 10 5.8 9 5.1 86 5.8 9 5.1 86 5.8 9 5.1 86 5.8 9 5.1 86 5.8 9 5.1 86 5.8 9 <td>3.3 106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 6.0 102 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 6.0 102 2.4 171 1.3 76 2.0 91 2.1 100 5.1 91 4.9 92 5.4 92 5.7 95 5.1 86 2.7 95 5.5 100 5.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 5.0 10</td> <td> 00</td> <td>00 01 02 04 05 06 00 07 08 00 07 08 00 00 00 00 00 00 00 00 00 00 00 00</td> <td> 25.3 106 2.4 14 2.4 109 1.8 85 5.7 102 4.7 89 6.2 109 5.4 99 5.5 109 5.7 109 5.1 124 2.7 129 6.0 107 5.7 108 6.4 108 3.8 97 4.7 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 5.8 108 5.8 97 5.8 108 </td>	3.3 106 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 6.0 102 2.4 141 2.4 109 1.8 86 5.7 102 4.7 89 6.2 105 4.3 110 4.2 117 2.9 100 6.0 102 2.4 171 1.3 76 2.0 91 2.1 100 5.1 91 4.9 92 5.4 92 5.7 95 5.1 86 2.7 95 5.5 100 5.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 109 6.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 4.7 121 5.8 100 5.0 102 5.0 10	00	00 01 02 04 05 06 00 07 08 00 07 08 00 00 00 00 00 00 00 00 00 00 00 00	25.3 106 2.4 14 2.4 109 1.8 85 5.7 102 4.7 89 6.2 109 5.4 99 5.5 109 5.7 109 5.1 124 2.7 129 6.0 107 5.7 108 6.4 108 3.8 97 4.7 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 4.1 114 2.9 100 6.0 107 5.7 108 6.4 108 3.8 97 5.8 108 5.8 97 5.8 108

		80 4 0 KK	
	00/total	98 110 100 113 88	0.78
	00/1	0.77 0.86 0.65 0.78 0.88	0.
(g)	TOTAL	108 108 100 105 201	4.0
TABLE I (cont'd	TO	はなる よる ろう で の ろ	₹ 8
ABLE 1	36	2 110 1 107 9 100 0 103 9 100 + 83	2.9 19
리		~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	35	1.6 89 1.9 106 1.8 100 1.9 106 1.9 106 1.8 100	1.8
	34	4 89 5 96 5 96 9 107 8 104 8 104	2.7
		4000000 4000000	
	33	107 117 77 100 97 113	3.0
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W .,
Winter	dd	Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	Mean nr. observa- tions

Spring							i				
qq	00	01	02	60	<del>†</del> 0	05	90	20	80	60	10
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	4.9 109 5.4 120 2.8 62 4.7 104 4.2 93 5.3 118	12.9 124 11.7 112 8.8 85 9.6 92 9.6 92 9.6 92	11.7 127 9.4 102 7.9 86 8.5 92 8.8 96 9.0 98	10.8 114 9.7 102 9.0 95 9.4 99 9.3 98	8.9 117 7.5 99 6.7 88 7.7 101 7.3 96 7.4 97	9.2 114 8.5 105 7.7 95 7.6 94 7.6 94 7.9 98	71. 115 6.7 108 5.7 92 5.9 95 5.8 94	6.8 115 6.4 108 5.5 93 5.8 98 5.4 92 5.5 93	8.1 112 7.7 107 6.7 93 7.2 100 6.7 93 6.9 96	10.4 107 10.1 104 9.0 93 9.5 99 9.6 99	8.7 107 8.4 104 7.6 94 8.1 100 7.9 98 8.0 99
Mean nr. observa- tions	4°5 48	10.4 57	9.2 76	9•5 103	7.6 132	8.1 115	6.2 134	5.9 109	7.2 124	9.7 116	8.1 136
dd	11	12	13	14	15	16	17	18	19	20	21
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	9.3 108 8.7 101 8.2 95 8.6 100 8.3 97 8.6 100	8.6 104 8.2 99 7.9 95 8.2 99 8.0 96 8.7 105	6.9 103 6.6 99 6.4 96 7.2 107 6.5 97 6.4 96	8.0 107 7.8 104 7.0 93 7.5 100 7.3 97	7.6 115 6.4 97 5.6 85 6.2 94 7.3 111 6.7 102	7.6 112 7.0 103 6.0 88 7.0 103 6.9 101 6.6 97	9.1 105 8.9 102 8.0 92 8.7 100 8.9 102 8.7 100	7.7 7.3 6.5 6.5 94 6.6 99 6.1 91	9.0 110 8.7 106 7.5 91 8.2 100 8.0 98 7.8 95	8.0 111 7.6 106 6.7 93 7.4 103 6.8 94 6.9 96	8.1 117 7.6 110 6.2 90 6.3 91 6.5 94
Mean nr. observa- tions	8.6	8.3	6.7	7.5	6.6	6.8	34	<b>6.7</b>	8.2 97	7.2	6.9

đđ	52	23	42.	25	82	27	58	53	8	31	32
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	9.6 114 9.0 107 7.9 94 8.5 101 7.9 94 7.8 93	9.5 127 8.1 108 6.4 85 7.1 95 7.1 95 6.6 88	10.0 119 9.0 107 7.6 90 8.3 99 8.3 99 7.3 87	9.2 118 8.5 109 7.2 92 7.7 99 6.8 87	9.6 116 9.1 110 7.3 88 8.5 102 7.8 94 7.5 90	8.7 112 8.4 108 7.0 90 7.8 100 7.8 100 7.0 90	8.6 115 8.0 107 6.9 92 7.1 95 7.2 96 6.9 92	9.0 120 8.1 108 7.0 93 7.1 95 7.5 100 6.7 89	9.2 110 8.7 104 7.7 92 8.2 98 8.3 99 8.1 96	9.5 109 9.2 106 8.2 94 8.4 97 8.6 99	11.3 116 10.6 109 9.2 95 8.2 85 9.1 94 9.5 98
Mean nr. observa- tions	8.4 99	7.5 86	8.4 126	7.8 114	8.3 118	7.8 151	7.5 150	7.5 109	8.4 107	8.7	9.7 58
dd	33	ħε .	35	36	TOTAL		00/total				
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	9.9 9.2 8.7 8.5 8.5 8.7 8.7 8.1 93	11.2 113 10.5 106 9.2 93 9.4 95 9.5 96 9.7 98	10.7 116 10.1 110 8.4 91 8.5 92 8.7 95	12.0 122 11.1 113 8.8 90 9.0 92 9.3 95 8.4 86	9.7.7.7.9.9.7.7.9.9.4.0.1.1.0.9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1	115 106 0.63 91 0.59 96 0.59 94 0.59	95 113 68 106 97				
Mean nr. observa- tions	8.7 93	9.9	9.2 145	9.8	8.1		0.56				
Summer											
dd	8	01	02	03	40	05	90	0.7	90	60	10
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	6.0 107 5.3 95 4.5 80 5.6 100 6.0 107 6.5 116	14.0 124 13.6 120 10.1 89 8.0 71 11.5 102 10.8 96	7.4 116 7.1 111 6.4 100 5.8 91 6.2 97 5.7 89	8.9 107 9.3 112 7.7 93 7.3 88 8.7 105 8.0 96	7.4 95 8.0 103 7.5 96 7.1 91 8.2 105 8.8 113	11.2 101 11.1 100 11.2 101 9.9 89 10.9 98 12.4 112	9.0 112 7.5 94 8.0 100 7.8 98 7.7 96 7.8 98	7.7 95 8.1 100 6.6 81 8.3 102 8.1 100 9.8 121	7.0 104 6.7 100 5.9 88 6.9 103 6.3 94 7.2 107	10.0 10.7 9.4 97 9.6 99 10.0 103 9.6 99 9.5 98	10.3 98 10.1 96 10.0 95 11.0 105 10.8 103 11.1 106
Mean nr. observa- tions	5.6	11.3	6.4	8.3	7.8	11.1	8.0	8.1	6.7	9.7	10.5 30

TABLE I (cont'd)

Spring

		-	-	-   -	TABLE I (cont'd	nt'd)	ľ	Ç			
	11	12	13	14	15	16	17	18	19	89	21
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	.8 108 .1 94 .1 103 .9 101 .1 94 .5 97	12.5 107 11.5 98 11.7 100 12.3 105 10.4 89 11.8 101	11.9 103 11.8 102 11.9 103 11.9 97	10.2 103 10.0 101 9.8 99 10.0 101 9.4 95 9.9 100	11.2 94 11.8 99 11.9 100 12.0 101 11.8 99 12.4 104	7.6 96 7.8 99 7.6 96 8.3 105 7.9 100 8.4 106	8.2 122 7.1 106 5.9 88 6.4 96 6.3 94 6.1 91	6.2 107 6.4 110 5.5 95 5.7 98 5.4 93 5.7 98	6.4 103 6.8 110 6.1 98 6.5 105 5.9 95 6.2 100	8.6 102 8.5 102 8.5 99 8.1 96 8.2 98	7.5 107 7.5 104 7.0 100 6.5 93 7.2 103
	11.8 26	11.7 24	11.6	9.9	11.9 24	7.9	6.7 18	5.8 73	6.2 83	8°7 78	7.0
	22	23	54	25	26	27	28	29	8	31	32
887777	8.0 104 8.3 108 7.2 94 7.7 100 7.5 97	9.5 125 8.3 109 6.8 89 6.9 91 6.8 89 7.4 97	11.7 111 11.0 105 10.3 98 10.1 96 9.8 93 10.0 95	12.0 111 11.8 109 10.0 93 10.6 98 10.5 97 9.8 91	10.6 106 10.7 107 9.2 92 10.1 101 9.8 98 9.5 95	10.1 1111 9.9 109 8.5 93 8.7 96 8.6 95	9.6 109 9.7 106 8.2 97 8.9 101 8.7 94 8.2 97	10.5 108 10.5 108 9.3 96 9.5 98 9.4 97 8.8 91	11.9 111 11.8 110 10.0 93 9.7 91 10.5 98 10.0 93	11.6 112 11.4 110 10.1 97 9.7 93 10.2 98 9.5 91	12.7 117 11.4 105 10.9 100 10.4 95 10.6 97 9.2 84
	7.7 34	7.6 74	10.5 120	10.8 114	10.0 180	9.1 196	8.8 168	9.7	10.7	10.4	10.9
	33	34	35	3%	TOTAL		00/total				
11001	2 123 7 110 7 102 7 84 7 90 7 90	11.3 130 9.2 106 8.4 97 7.5 86 7.4 85 8.1 93	12.2 117 12.6 121 11.3 109 8.4 81 8.9 86 9.2 88	10.4 132 9.3 118 6.2 78 6.8 86 7.6 96 7.1 90	01 0.0000000000000000000000000000000000	111 0.59 108 0.54 96 0.51 97 0.67 97 0.67 96 0.74	9 96 1 88 1 83 3 103 7 110 4 121				
	11.5	8.7 60	10.4 32	7.9	9.2 2128		0.61				

100 100 100 100 100 100 100 100 100 100	ω ο	н	111 106 103 103 103	7 9	a	989 999 999 999	ر 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5,	S	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	6.	73	77.00.77	7.3
10,40081	5.7	80	88888 88888 88888	5.1 .26	31	108 94 92 103	6 32
ທ່ານຕ່ານຕໍານ			ហុលុងលុងុង	u		7.0000 1.0.01.000	9
1	6.8	19		4.0 103	8	5 115 8 112 9 94 5 87 5 100 7 90	5.2 40
0000			44 からかん	`		0 N 4 4 N 4	
₩-0 0 4 0	9.5 39	18	8 6 9 8 9 1 9 1 9 1 9 9 9 9 9 9 9 9 9 9 9 9	4.5 94	59		5.4 86
330000			* * * * * * *			លុំ ហុំ ដុំ ហុំ ហុំ ហុំ	
000000	8.1	17	1088V9	5.0	28		4.1 74
200° + +			0000000 0004404			らみるよろろ	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.0	16	77 7	5.8	27		6.0 56
တွဲ့ ထွဲ့ ထွဲ့ တွဲ့ ထွဲ			က်က်က်လဲစဲ			00000000	•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0	15		7.4	56		6.0 64
8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			2,5,6,7,7			0000000	
	8.3	14		5.0	25	H-H-	6.2
<u>ο</u> , ο,			ပိပ် ကိပ် ကိပ်			, , , , , , , , , , , , , ,	•
	8.2	13	1	50	54		5.3 62
							u.,
	25	12		38	23	1	6.0 82
							9
	e 72	11		3.5	22	[	6.3
v v + v + +	~		8 8 8 8 8 8	3		000000	9
k al oven	rva-		k 11 2ven	:va-		c il iven	.va-
dwij. land lis tuga: jenh	obsei	dđ	dwij] land tis tuga: ienho	obsel s	dd	dwijlland is tugas ienho	n observa 18
Naal Maas Perr Poor Zest Heli	Mear nr. tion		Naal Maas Perm Poor Zest Heli	Mean nr. tion		Naal Maas Pern Poor Zest Heli	Mean nr. o tions
	3 112 8.2 102 9.6 107 8.9 110 10.5 111 7.1 104 5.2 91 5.9 9 107 8.3 104 9.5 106 9.0 111 10.1 106 7.4 109 5.6 98 5.9 9 0 7.5 97 8.4 93 7.2 89 9.0 95 6.5 96 5.7 100 5.8 9 8 7.5 94 8.6 96 7.8 96 9.2 97 6.7 99 5.5 96 5.7 1.0 104 8.5 106 9.4 104 7.9 98 9.4 99 6.6 97 5.9 104 5.9 1.0 96 8.0 100 8.5 94 7.5 93 9.0 95 6.6 97 5.9 104 5.7	5.8 118         7.7 113         9.7 118         9.3 112         8.2 102         9.6 107         8.9 110         10.5 111         7.1 104         5.2 91         5.9 15           5.9 120         7.0 103         9.0 110         8.9 107         8.3 104         9.5 106         9.0 111         10.1 106         7.4 109         5.6 98         5.9 96         5.9 96         5.7 100         5.8           4.1 84         6.3 96         7.5 97         8.4 99         7.8 96         9.0 95         6.5 96         5.7 100         5.8           5.2 106         6.1 90         7.5 91         8.6 104         8.5 106         9.4 104         7.9 98         9.4 99         6.6 97         5.9 104         5.7           4.4 90         7.1 104         7.5 91         8.0 100         8.5 94         7.5 92         9.0 95         6.6 97         5.9 104         5.7           4.9 6         6.8 100         7.4 90         8.0 100         8.5 94         7.5 92         9.0 95         6.6 97         5.9 104         5.7           4.9 6         6.8         8.2         8.0         9.0         8.1         9.5         6.8         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0	wijk 5.8 118 7.7 113 9.7 118 9.3 112 8.2 102 9.6 107 8.9 110 10.5 111 7.1 104 5.2 91 5.9 and 5.9 120 7.0 103 9.0 110 8.9 107 8.3 104 9.5 106 9.0 111 10.1 106 7.4 109 5.6 98 5.9 10.8 and 4.1 84 6.3 93 7.9 96 7.5 90 7.5 97 8.4 93 7.2 89 9.0 95 6.5 96 5.7 100 5.8 anhoven 4.2 86 6.8 100 7.4 90 8.0 96 8.0 100 8.5 94 7.5 93 9.0 95 6.6 97 5.9 104 5.9 ort  4.9 6.8 8.2 8.3 8.0 96 8.0 100 8.5 94 7.5 93 9.0 95 6.6 97 5.9 104 5.7 ort  4.9 6.8 8.2 8.3 8.0 96 8.0 100 8.5 94 7.5 93 9.0 95 6.6 97 5.9 104 5.7 ort  4.9 6.8 10 7.4 90 8.0 96 8.0 100 8.5 94 7.5 93 9.0 95 6.6 97 5.9 104 5.7 ort  4.9 6.8 8.2 8.3 8.0 9.0 9.0 8.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	with 5.8 118 7.7 113 9.7 118 9.3 112 8.2 102 9.6 107 8.9 110 10.5 111 7.1 104 5.2 91 5.9 and 5.9 120 7.0 103 9.0 110 8.9 107 8.3 104 9.5 106 9.0 111 10.1 106 7.4 109 5.6 98 5.9 and 4.4 90 7.1 104 7.5 91 8.5 104 9.5 106 9.0 111 10.1 106 7.4 109 5.6 98 5.9 9 7.5 90 7.5 97 8.5 90 7.5 97 8.5 90 9.0 95 6.5 97 6.7 99 5.5 9104 5.9 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	Idw1jk         5.8 il8         7.7 il3         9.7 il8         9.7 il2         8.2 il2         9.6 io7         8.9 il0 il0.5 il1         7.1 il04         5.2 gl         5.2 gl         5.9 iland         5.9 ilon         5.0 ilon         <	ldwijk 5.8   118   7.7   113   9.7   118   9.5   112   8.2   102   9.6   107   10.5   111   7.1   104   5.2   91   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.9   5.5   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.2   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8   5.8	the contract of the contract o

				TABLE	TABLE I (cont'd)			
	33	34	35	92	TOTAL	00/total	year	year total
Naaldwijk Maasland Pernis Poortugaal Zestienhoven Heliport	8.9 117 8.1 107 6.8 89 6.7 88 7.6 100 7.6 100	7.8 111 7.7 110 6.8 97 6.4 91 6.6 94 6.5 93	7.1 106 7.9 118 5.7 85 6.4 96 6.5 97 6.4 96	8.7 118 7.8 105 6.5 88 7.5 101 7.5 101 6.6 89	6.8 110 6.5 105 5.8 94 6.0 97 6.1 98 5.9 95	0.85 107 0.91 114 0.71 89 0.87 109 0.72 92 0.71 91	88.7.7.7. 200.2.7.1.	111.7 106 93 94 94
Mean nr. observa- tions	7.6 39	7.0	6.7	7.4	6.2 1968	0.80	7.55	10

As a consequence of such local circulation systems and the production of air pollution differences in cloudiness may occur.

We may therefore say that the values of the global radiation as shown in table I depend, apart from the sun's elevation, on cloudiness, on air pollution and on cloudiness due to the presence of an industrial area. It is our intention to analyse various sets of values of global radiation in such a way that the attenuation of solar radiation caused by each of the three quantities, may be determined.

#### 3. ESTIMATION OF ERRORS IN THE MEASUREMENTS

If we want to study the cause of the differences in global radiation between various stations under the same conditions, then we have to know whether those differences as displayed in table I are significant or in simple words, whether those differences may be considered as real.

In the first place estimations of the possible errors in the determination of the values in cal/cm².15 min. in table I have to be made. When the recording of the millivoltmeter is read or better said when the mean deflection during 15 minutes of registration from zero is estimated in mm, this is done to the nearest millimeter. This means that an error of  $\pm$  0.5 mm is introduced. Examples of estimates of the standard deviation of the average 15-minutes values of global radiation at the six stations for each climatological season and for the wind directions 19, 03, 12, 29, 36, calm and all directions together have been given in table II. The direction 19 has been taken since it is representative for cases when air pollution from Shell Pernis passes over Vlaardingen. Taking the gustiness of the wind into account the direction 19 has been computed as the weighted mean of (18) + (19) + (20), the weights being the numbers of observation. The case that the air pollution from The Hague passes over Naaldwijk is represented by the direction 03 or rather the weighted mean of (02) + (03) + (04). The direction 36 has been chosen because The Hague is situated north of Maasland. The direction 12 has been selected as the direction when the wind from Rotterdam passes over Maasland and Naaldwijk. The direction 29 has been chosen as a direction from where no artificial air pollution flows over Naaldwijk and Maasland. For the first wind direction these estimations are given in greater detail. Thus, in column (1) the average 15-minutes value has been inserted. In column (2) we find the percentual error of the value in (1) due to the reading.

Due to the temperature dependence of the thermopile, to the more than linear decrease in absorption of the black paint on the thermopile when the cosine of the sun's altitude is increasing and to similar irregularities the values in (1) show an error which is generally assumed to amount to 5%. This percentage has been indicated in column (3). The effect of (2) and (3) has been collected in (4) as an amount of calories/cm².15 min.

There is still another source of error. The average values in (1) have originated from many different values as a result of varying cloud amounts and cloud genera. The statistical relationship between

TABLE II. Determination of the error in the average amount of global radiation for some selected wind directions in the four seasons and for the six stations.

Season I - winter (Dec., Jan., Feb.)

		wind 19;n=112	wind	03;n=28	wind	12;n=98
Naaldwijk	3.8	±3.6% 5% ±0.35 ±1.47 ±0.14	3.7	<u>+</u> 0.26	4.4	+0.15
Maasland	4.1	<u>+</u> 3.3% 5% <u>+</u> 0.36 <u>+</u> 1.48 <u>+</u> 0.14	4.2	+0.27	4.4	+0.15
Pernis	3.3	<u>+</u> 3.6% 5% <u>+</u> 0.31 <u>+</u> 1.43 <u>+</u> 0.14	3.4	+0.26	3.9	+0.15
Poortugaal	3.7	±3.0% 5% ±0.32 ±1.44 ±0.14	3.4	+0.25	4.2	+0.15
Zestien- hoven	3.9	±3.3% 5% ±0.36 ±1.48 ±0.14	4.1	<u>+</u> 0.26	4.3	+0.15
Heliport	3.6	<u>+</u> 3.8% 5% <u>+</u> 0.33 <u>+</u> 1.45 <u>+</u> 0.14	3.4	<u>+</u> 0.26	3.7	+0.15
	(1)	(2) (3) (4) (5) (6)	(1)	(6)	(1)	(6)

Season II - spring (Mar., Apr., May)

		wind 19;n=269	wind	03;n=312	wind	12;n=189
Naaldwijk	8.1	<u>+</u> 1.7% 5% <u>+</u> 0.54 <u>+</u> 2.54 <u>+</u> 0.16	10.2	+0.15	8.4	+0.19
Maasland	7.9	<u>+</u> 1.8% 5% <u>+</u> 0.53 <u>+</u> 2.53 <u>+</u> 0.16	8.7	<u>+</u> 0.15	8.0	+0.18
Pernis	6.7	<u>+</u> 2.0% 5% <u>+</u> 0.47 <u>+</u> 2.47 <u>+</u> 0.16	7.7	<u>+</u> 0.14	7.6	+0.18
Poortugaal Zestien-	7.4	<u>+</u> 1.7% 5% <u>+</u> 0.50 <u>+</u> 2.50 <u>+</u> 0.16	8.3	<u>+</u> 0.14	8.1	<u>+</u> 0.18
hoven	7.1	<u>+</u> 1.9% 5% <u>+</u> 0.49 <u>+</u> 2.49 <u>+</u> 0.16	8.4	<u>+</u> 0.14	7.7	<u>+</u> 0.18
Heliport	6.9	<u>+</u> 2.2% 5% <u>+</u> 0.49 <u>+</u> 2.49 <u>+</u> 0.16	8.4	<u>+</u> 0.15	8.0	+0.19

Season III - summer (Jun., Jul., Aug.)

		wind 19;n=222	wind	03;n=94	wind	12;n=82
Naaldwijk	7.0	<u>+2.0% 5% +0.49 +2.67 +0.18</u>	8.2	<u>+</u> 0.28	12.1	+0.32
Maasland	7.2	<u>+</u> 1.9% 5% <u>+</u> 0.50 <u>+</u> 2.68 <u>+</u> 0.18	8.5	<u>+</u> 0.28	11.0	+0.32
Pernis	6.5	<u>+</u> 2.1% 5% <u>+</u> 0.46 <u>+</u> 2.64 <u>+</u> 0.18	7.4	+0.27	11.5	+0.32
Poortugaal Zestien-	6.7	<u>+</u> 1.9% 5% <u>+</u> 0.46 <u>+</u> 2.64 <u>+</u> 0.18	6.9	<u>+</u> 0.27	11.8	+0.32
hoven	6.3	<u>+</u> 2.1% 5% <u>+</u> 0.45 <u>+</u> 2.63 <u>+</u> 0.18	8.1	<u>+</u> 0.27	10.8	+0.31
Heliport	6.6	±2.2% 5% ±0.48 ±2.66 ±0.18	8.0	<u>+</u> 0.28	11.3	±0.32

TABLE II. Determination of the error in the average amount of global radiation for some selected wind directions in the four seasons and for the six stations.

Season	IV -	- autumn	(Sep.	.Oct.	.Nov.	)

		wind 19;n=323	wind	03;n=88	wind	12;n=151
Naaldwijk	5.1	<u>+</u> 2.8% 5% <u>+</u> 0.40 <u>+</u> 1.94 <u>+</u> 0.11	8.9	<u>+</u> 0.23	8.4	<u>+</u> 0.17
Maasland	4.9	<u>+</u> 2.9% 5% <u>+</u> 0.39 <u>+</u> 1.93 <u>+</u> 0.11	8.7	<u>+</u> 0.22	8.4	<u>+</u> 0.17
Pernis	4.3	<u>+</u> 3.0% 5% <u>+</u> 0.34 <u>+</u> 1.88 <u>+</u> 0.10	7.6	<u>+</u> 0.22	7.9	<u>+</u> 0.17
Poortugaal	4.4	<u>+</u> 2.8% 5% <u>+</u> 0.34 <u>+</u> 1.88 <u>+</u> 0.10	7.5	<u>+</u> 0.22	7.9	<u>+</u> 0.17
Zestien- hoven	4.5	<u>+</u> 3.0% 5% <u>+</u> 0.36 <u>+</u> 1.90 <u>+</u> 0.11	8.2	<u>+</u> 0.22	8.1	<u>+</u> 0.17
Heliport	4.2	<u>+</u> 3.4% 5% <u>+</u> 0.35 <u>+</u> 1.89 <u>+</u> 0.11	7.9	<u>+</u> 0.22	8.0	<u>+</u> 0.17
	(1)	(2) (3) (4) (5) (6)	(1)	(6)	(1)	(6)

⁽¹⁾ Average 15-minutes value of the global radiation in cal/cm² for windspeeds from 1 - 5 knots;

⁽²⁾ percentual error due to reading the diagram of one observation of 15 minutes to the nearest full mm.;

⁽³⁾ error due to instrument sensitivity for temperature during an interval of 15 minutes in %;

⁽⁴⁾ (2) + (3) in cal/cm².15 minutes;

^{(5) (4) +} estimated error in (1) per 15 minutes observation owing to the distribution of values of which the value in (1) is its average;

⁽⁶⁾ estimated standard variation of (1) or the error inserted in  $(5)/\sqrt{n}$ .

TABLE II. Season I - winter (Dec., Jan., Feb.)

	wind	29;n=45	wind	36;n=28	calm;	n=23	wind	01-36;n=800	
Naaldwijk	4.5	<u>+</u> 0.18	2.7	<u>+</u> 0.19	3.3	<u>+</u> 0.30	4.3	8.4% +1.41 +0.0	050
Maasland	4.5	<u>+</u> 0.18	2.8	<u>+</u> 0.19	3.7	<u>+</u> 0.30	4.3	8.3% <u>+</u> 1.46 <u>+</u> 0.0	_
Pernis	<b>3.</b> 5	<u>+</u> 0.17	2.5	<u>+</u> 0.19	2.4	<u>+</u> 0.29	3.7	8.5% <u>+</u> 1.41 <u>+</u> 0.0	050
Poortugaal	4.0	<u>+</u> 0.18	2.7	<u>+</u> 0.19	3.1	<u>+</u> 0.29	4.0	8.0% <u>+</u> 1.42 <u>+</u> 0.0	051
Zestien- hoven	4.3	<u>+</u> 0.18	2.8	<u>+</u> 0.19	3.7	<u>+</u> 0.30	4.3	8.3% <u>+</u> 1.46 <u>+</u> 0.0	052
Heliport	3.9	<u>+</u> 0.18	2.4	<u>+</u> 0.19	2.5	<u>+</u> 0.29	3.7	8.8% <u>+</u> 1.45 <u>+</u> 0.0	052
	(1)	(6)	(1)	(6)	(1)	(6)	(1)	(2)+(3) (5) (6	)

## Season II - spring (Mar., Apr., May)

	wind	29;n=366	wind	36;n=363	calm;	n=48	wind	01-36;n=3510
Naaldwijk	8.9	<u>+</u> 0.15	11.7	<u>+</u> 0.14	4.9	<u>+</u> 0.34	9.3	6.6% +2.61 +0.044
Maasland	8.5	<u>+</u> 0.15	10.8	<u>+</u> 0.14	5.4	<u>+</u> 0.35	8.6	6.6% <u>+</u> 2.57 <u>+</u> 0.043
Pernis	7.5	<u>+</u> 0.15	8.6	<u>+</u> 0.13	2.8	<u>+</u> 0.33	7.4	6.8% <u>+</u> 2.50 <u>+</u> 0.042
Poortugaal	7.8	<u>+</u> 0.15	9.0	<u>+</u> 0.14	4.7	<u>+</u> 0.34	7.9	6.6% <u>+</u> 2.52 <u>+</u> 0.042
Zestien- hoven	8.0	<u>+</u> 0.15	9.1	<u>+</u> 0.14	4.2	<u>+</u> 0.34	7.8	6.7% <u>+</u> 2.52 <u>+</u> 0.042
Heliport	7.7	<u>+</u> 0.15	8.6	<u>+</u> 0.14	5.3	<u>+</u> 0.35	7.6	7.0% <u>+</u> 2.53 <u>+</u> 0.043

## Season III - summer (Jun., Jul., Aug.)

	wind	29;n=421	wind	36;n=72	calm;	n=24	wind	01-36;n=2128
Naaldwijk	10.1	<u>+</u> 0.14	11.8	<u>+</u> 0.34	6.0	<u>+</u> 0.53	10.2	6.35% +2.85 +0.062
Maasland	10.3	<u>+</u> 0.14	11.5	<u>+</u> 0.34	5.3	±0.53	9.9	6.4% +2.84 +0.062
Pernis	9.0	<u>+</u> 0.13	9.1	<u>+</u> 0.33	4.5	<u>+</u> 0.52	8.8	6.6% <u>+</u> 2.76 <u>+</u> 0.060
Poortugaal	9•3	<u>+</u> 0.14	7.7	<u>+</u> 0.32	5.6	<u>+</u> 0.53	8.9	6.5% <u>+</u> 2.76 <u>+</u> 0.060
Zestien-   hoven	9.2	<u>+</u> 0.14	8.8	<u>+</u> 0.32	6.0	<u>+</u> 0.53	8.9	6.5% <u>+</u> 2.76 <u>+</u> 0.060
Heliport	8.9	<u>+</u> 0.14	8.7	<u>+</u> 0.33	6.5	<u>+</u> 0.54	8.8	6.7% <u>+</u> 2.77 <u>+</u> 0.060

### Season IV - autumn (Sep., Oct., Nov.)

	wind	29;n=100	wind	36;n=74	calm;	n=56	wind	01-36;n=1968
Naaldwijk	5.8	<u>+</u> 0.19	8.2	<u>+</u> 0.25	5.8	<u>+</u> 0.26	6.8	7.1% +2.02 +0.046
Maasland	5.4	. <u>+</u> 0.19	7.8	<u>+</u> 0.25	5.9	<u>+</u> 0.26	6.5	7.2% <u>+</u> 2.01 <u>+</u> 0.045
Pernis	4.3	<u>+</u> 0.18	6.4	<u>+</u> 0.24	4.1	<u>+</u> 0.25	5.8	7.4% <u>+</u> 1.97 <u>+</u> 0.044
Poortugaal	4.8	<u>+</u> 0.18	7.0	<u>+</u> 0.24	5.2	<u>+</u> 0.26	6.0	7.1% <u>+</u> 1.97 <u>+</u> 0.044
Zestien- hoven	4.9	<u>+</u> 0.19	7.4	<u>+</u> 0.25	4.4	<u>+</u> 0.25	6.1	7.3% <u>+</u> 1.99 <u>+</u> 0.045
Heliport	4.6	<u>+</u> 0.18	6.7	<u>+</u> 0.24	4.2	<u>+</u> 0.25	5.9	7.5% <u>+</u> 1.98 <u>+</u> 0.045
	(1)	<u>(</u> 6)	(1)	(6)	(1)	(6)	(1)	(2)+(3) (5) (6)

global radiation and relative duration of sunshine is often written as Angstrom's formula:

$$G = G_0 \{ \alpha + (1-\alpha) s/s_0 \},$$
 (1)

where G is the estimated or measured amount of global radiation;
G is the estimated amount of global radiation if s/s =1;
a is a constant;

s is the duration of sunshine in tenths of hours;
so is the longest possible duration of sunshine in tenths of hours.

If the quantity s/s is not known, then a different quantity, which is closely related, may be used, namely the cloudiness N. As s/s + 0.1 N has to be equal to 1 the expression (1) may also be written:

$$G = G_0 \{ \alpha + (1-\alpha) (1-0.1 N) \}$$
 (2)

Very often N is replaced by  $N_h$  = amount of low (and middle) clouds in tenth parts of the sky, as very often the sun remains shining through high clouds. Therefore expression (2) may be changed into:

$$G = G_0 \{ \alpha + (1-\alpha) (1-0.1 N_h) \}$$
 (2a)

We shall make use of this formula for estimating the standard deviation of G since the computation of this quantity for so many values in Table I is by far too laborious.

The largest value of G is equal to G, if  $N_h = 0$ , and the smallest one is found equal to a G, if  $N_h = 10$ . Both values of G are statistical averages and though the following assumption is theoretically not true for various reasons, we put the difference between the largest and the smallest value of G equal to four times the standard deviation  $s_1$  of G or

$$(1 - \alpha) G_0 = 4 S_1$$
 (3)

This assumption implies, that the values of G are normally distributed, so that 95% of all G-values are situated between G and G. However, the distribution of the N_h-values is likely to be U-shaped so that the G-values follow more or less the same distribution. The greater part of the G-values lie scattered around two values corresponding with the most frequent values of N_h. In the first place and mainly around aG and in the second place around G, so that less than 95% of all measured G-values are situated between aG and G. That fact makes the value of s₁, determined from all measured G-values, to be greater than the s₁-value estimated following (3). As the average value of N_h is nearer to 10 than to 0 and the greatest frequency of G-values is clustered around N_h=10 there is also a tendency that the observational value of s₁ is smaller than the estimated s₁-value. A combination of both reasonings gives us a feeling that an estimation of s₁ following expression (3) is not too bad.

Moreover it cuts out an enormous amount of computational work, which should have been performed had all the standard deviations be computed from the measured G-values.

If the average value of N for Zestienhoven in the case of all observations with wind direction 01-36 is inserted for each of the four seasons in formula (2a) together with the corresponding G-values of Zestienhoven and the corresponding a-values for De Bilt [see 2], namely 0.30, 0.34, 0.32 and 0.33 respectively, one obtains an estimated average value of G for each season. After insertion of a and G in formula (3) one gets an estimated standard deviation s, of the G-values mentioned in column (1), as if there was only one observation. Those values of s, for the four seasons are respectively 1.12, 2.00, 2.18 and 1.54.

The values of the errors in column (4) are combined with the  $s_1$ -value for the corresponding season. The result of that combination is inserted in column (5).

Finally the values in column (5) have been divided by the square root of n; the results have been indicated in column (6). The values in column (6) are the estimated errors of the corresponding G-values in column (1).

For the wind directions 03, 12, 29, 36 and calm only the columns (1) and (6) have been inserted, whereas for the total of all directions 01-36 the columns (1), (2)+(3), (5) and (6) have been gathered in the table.

It is now the intention to judge the significance of the differences between the global radiation of the six stations for each of the 7 wind directions in every season. In principle the deviations of the average values in the various columns (1) show a skew frequency distribution between zero and the infinite, but we know from experience that those deviations show a more or less Gaussian distribution in the summer months and in general that, if the average value is greater than 4 times the standard deviation of one observation (c.f. column (5) of table II), the deviations show a distribution, which does not significantly depart from a Gaussian one, provided the sample is sufficiently large. Though it is only true for a part, we nevertheless assumed that distributions of the values of the global radiation around their averages are Gaussian ones and that the departures from the averages of all stations are mutually independent, then two average values in the same class m₁ and m₂ may be said to differ significantly, if the two intervals m₁ + 2s and m₂ + 2s do not overlap.

Application of this rule to table II yields table III. Thus for the winter season and wind direction 19 it appears that Maasland is significantly greater than Pernis, since  $4.3-2\times0.14\geqslant3.6+2\times0.14$ , and that Zestienhoven (4.2) is also significantly greater than Pernis (3.6), for  $4.2-2\times0.14\geqslant3.6+2\times0.14$ .

Of every odd-even combination (1-2, 3-4, 5-6, 7-8 and 9-10), read in vertical direction, the odd number indicates that the global radiation at that station is significantly greater than that at the station or stations with the even number. So we may see from table III for spring and wind direction O3, that Naaldwijk (1) is greater than any

Survey of significant differences in global radiation between the six stations for selected directions. TABLE III.

wind direction         19         02         12         29         26         admin         calm         01-           Naaldwijk         1         1         1         1         1         1           Maasland         1         2         4         6         4         5         4           Pernits         2         4         6         4         6         4         6         4           Poortugaal         3         5         4         6         4         6         4           Heliport         3         6         4         6         4         6         4	Winter season								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	wind direction 1	51	62	12	ଧ	×	calm	01-36	\OI
1 2 3 2 4 2 1 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Naaldwijk			-	<b>~</b>			~	
n 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Maasland 1			3	М			n	
n 3 5 5 5 2 2 2 2 4 6 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 4 5 2 5 2		-≠			4			4	8 9
ven 3 5 5 3 2 2 4 2	Poortugaal							<b>4</b>	2 2
2 4 6 2 4 2	Zestienhoven	m		5	Ŋ		8		رح
	Heliport			4				4	5

wind direction         12         12         29         26         26         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         2	Spring season																					
t 1 1 1 1 7 1 1 7 1 1 1 1 1 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	wind direction	ן קו	91			62			12		55		প্ল			cal	<u>s</u> l			01	01-36	
2 4 6 8 10 2 2 4 6 8 10 3 2 4 6 8 1	Naaldwijk	Н		-				٦		Н.		Н					7		-			
2 4 6 8 10 2 2 4 2 4 6 8 10 3 3 4 5 4 5 8 1 5 4 5 8 1 5 4 5 8 1 5 4 5 8 1 5 4 5 8 1 5 4 5 8 1 5 4 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8 1 5 8	Maasland		<b>1</b> /2	ત	3						3	a			_				C)			
11 2 9 2 4 5 5 5 7 2 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Pernis	a	7	Ŋ	4		~	a		a	4	N		***********					a	7		∞
ven         2         4         2         5         2         4         2         3	Poortugaal	a		ભ			0			a	4	CJ.				41	10		CJ		5	
2 4 2 7 2 4 2 4	Zestienhoven	a	4	a		2				Q		α		······································				9	a			7
	Heliport	N	<b>4</b>	a			2	144		a	<b>†</b>	a	4		•	М			a	4	9	ω

Summer season						
wind direction 19	25	12	ଷ	প্র	calm	01-36
Naaldwijk	н	<del>1</del>				Н
Maasland 1	8		m	21		2 2
Pernis	4 2			2 4 5		
Poortugaal	2 4 6 8		5 4			t 2
Zestienhoven 2	Ŋ	CJ		4 5		4 2
Heliport	7		4 5	4		IJ.

TABLE III. Survey of significant differences in global radiation between the six stations for selected directions.

	c	-	
	٠	Ξ	١
	(	_	Ì
	Č	Í.	1
	Č		
			١
	9	Ľ	Ì
	Č	ſ	
	•	١	
	-		1
•			
	_		ı
•			
	c	r	
4	•	٠	ø

l			ω	7		
91				•	Ŋ	S
01-3		3		4		
01	7			ď		
<del> </del>						
calm			9	Ŋ		
01	3		4		≉	4
		٦	a		a	N
8		3	4			4
	-			ત		٦ دع
~:						
8		3	4			4
	-		a	Ø	Ŋ	a
12						
•						
					•	
101						
öl						
		3	4	4		
	_		a	a		
o)		3	4	4		4
ΗI			a	a	a	a
o						
oti	u			ヿ	ven	
lire	vi jl	ınd	10	ıgaa	nhc	ort
wind direction 19	Naaldwijk	Maasland	Permis	Poortugaal	Zestienhoven	Heliport
Ϋ́	Nag	Maa	Pei	Po	Zes	He.

of the other 5 stations (2) and that successively Maasland (3), Zestienhoven (5), Heliport (7) and Poortugaal (9) are greater than Pernis (4), (6), (8) and (10).

From the result in the wind direction classes 19, 03, 12, 29 and 36, which are crucial directions, for the four seasons it may be concluded, that the numbers of observations are indeed too small generally for a classification according to 36 wind directions and to calms. The only inference, which may be drawn, is that Naaldwijk shows generally somewhat more global radiation than Maasland, though both stations belong to one class (i.e. they have no significant difference in global radiation) against Pernis with its smallest amounts and Heliport with amounts only slightly greater than those at Pernis (S and H also form one class), while Poortugaal and Zestienhoven form a class between the two above mentioned classes.

Those conclusions may be drawn even with greater reliability from the class 01-36 for the four seasons in the last column of table III:

- 1. In most cases Naaldwijk is significantly greater than the other five stations;
- 2. In general Maasland is significantly greater than the remaining four stations;
- 3. Pernis is significantly smaller than Naaldwijk, Maasland, Zestienhoven and Poortugaal except in summer, when it is smaller than Naaldwijk and Maasland only;
- 4. The event that Heliport is significantly smaller than other stations is only slightly less frequent than that for Pernis. Therefore Pernis and Heliport belong to the same class;
- 5. In the same way it may be decided that Zestienhoven and Poortugaal belong to the same class, though Zestienhoven is a little bit higher than Poortugaal.

If the number of odd and of even cases behind the stations in the directions 01-36 for the whole year is determined, the results may be seen in table IV under the heading (01-36; odd and even).

TABLE IV. Classification of stations according to significant differences in the amounts of global radiation

	01-	36	cal	.m
	odd	even	odd	even
Naaldwijk	4	==>	2	
Maasland	4	3	3	_
Pernis	_	14	_	10
Poortugaal	3 9		2	_
Zestienhoven	3	6	2	2
Heliport		13	1	4

Those results in table IV corroborate of course the same five conclusions mentioned above and they also show that the six stations fall into three categories, namely Naaldwijk-Maasland, Zestienhoven-Poortugaal and Heliport-Pernis.

The numbers of observations for each season headed by calm in table II are small and it is therefore difficult to judge the significance of the differences between the various mean amounts of global radiation under the condition of calm. Nevertheless the odd and even cases have been added and the result is inserted in the right-hand part of table IV. From this it may be inferred that Maasland shows the highest amounts of global radiation and that Pernis still shows the lowest ones. In the left-hand part Naaldwijk shows the greatest amounts and Maasland the greatest amounts but one, while in the right-hand part Maasland is the first and Naaldwijk occupies the second and the third place together with Poortugaal.

It is easily understood that the production of air pollution near a station results in a much greater attenuation of global radiation when there is a calm than when the wind is blowing moderately. Therefore one is inclined to infer from this reasoning that Pernis produces a lot of air pollution and that Naaldwijk, though it is situated in the countryside, produces air pollution. That latter fact is undoubtedly due to central heating of warehouses around Naaldwijk in a part of the autumn, in winter and in spring.

In order to demonstrate our thus far obtained results more clearly, we copy the columns 01-36 and calm for table I for the four seasons in table V so that the average 15-minutes amounts of global radiation are expressed in percentages of those of Maasland under the assumption that Maasland represents the pure countryside.

TABLE V. Presentation of the percentages of the attenuation of global radiation for the three classes of stations

	wi	ater	gs	ring	ອເ	mmer	au	tumn	у	ear
	calm	01-36	calm	01-36	calm	01-36	calm	01-36	calm	01-36
Naaldwijk	89	100.0	91	108.1	113	103.0	98	104.6	96	103.9
Maasland	100	100.0	100	100.0	100	100.0	100	100.0	100	100.0
Pernis	65	86.0	52	86.0	85	88.9	70	89.2	<b>6</b> 8	87.5
Poortugaal	84	93.0	87	91.9	106	89.9	88	92.3	91	91.8
Zestienhoven	100	97.7	78	90.7	113	89.9	75	93.8	91	93.0
Heliport	68	86.0	98	88.4	123	88.9	71	90.8	90	88.5

Table V is a very instructive table. If the last column headed by "year" is studied, then its right-hand part indicates that averaged over the year Poortugaal and Zestienhoven situated at the fringe of the industrial area show an attenuation of global radiation of 7-12% with respect to the pure countryside and that Pernis and Heliport, respectively situated in the centre of an industrialized area and in the middle of the city of Rotterdam show a decrease of 12-16%.

That attenuation may be caused by differences in cloudiness resulting from differences in the nature of the earth's surface (water, bare soil, soil covered with various sorts of vegetation, soil covered with houses and buildings) and therefore due to various local circulations, by air pollution and by cloudiness stimulated and originated by air pollution. It can not be decided from table V for which part of the attenuation each of the mentioned causes is responsible.

If the left-hand and the right-hand part of the last column are compared with each other and if per definition Maasland does not produce air pollution then it is clear that Naaldwijk and its surroundings produce air pollution as "calm" indicates 96.1% and "01-36" denotes 103.9%; a difference of about 8%. In the same way it may be said that Pernis produces quite a lot of air pollution as "calm" indicates 67.8% and "01-36" denotes 87.5%; a difference of 20%. It may be pointed out that the mentioned differences in global radiation may be attributed not only to the local production of air pollution, but also to other causes. Apparently Poortugaal, Heliport and Zestienhoven do not show any production of air pollution averaged over the year. They can easily be believed for Poortugaal and Zestienhoven, but not for Heliport, a station which is situated in the city. This fact may possibly be explained by the stronger turbulence at Heliport, due to the heating of houses and buildings during the one part of the year and to insolation during the other part of the year. Then it is clear that at Heliport air pollution is dispersed more or less at the same rate during the whole year; even in the cases that Z notes a calm.

If we consider the percentages on the right-hand part of the column of the summer season, then it appears that the percentages for Pernis, Poortugaal, Zestienhoven and Heliport are nearly the same. That fact may occur in summer, when turbulence due to heating of the earth's surface contributes to the mixing capacity of the blowing wind.

As the numbers of observation for calm are very small, especially in summer and in winter, the percentages in the left-hand parts of the columns under the four seasons are less reliable, so that no inference is to be drawn from those figures. There is only one feature to be mentioned. The average magnitude of the percentages under calm in summer is much greater than those in other seasons. That is probably also caused by the previously mentioned turbulence as the air gets clearer owing to the dispersion of the pollution.

That Pernis and Heliport produce air pollution and that the mentioned turbulence plays an important role in the dispersion may be concluded from the different behaviour of the percentages for the stations S and H and those for P and Z in the column 01-36 in winter and in summer. The non-producing stations, namely P and Z show in winter, season I, greater percentages than in summer: respectively 93.0 and 97.7 to respectively 89.9 and 89.9, while the producing stations S and H show the opposite effect: respectively 86.0 and 86.0 to respectively 88.9 and 88.9. In summer the turbulence smoothes the differences of the percentages of the producing and the non-producing stations. This smoothing caused by the mentioned turbulence takes also place in spring and in autumn, though to a lesser degree than in summer.

## 4. GENERAL INFLUENCE OF ROTTERDAM AND THE HAGUE AS SOURCES OF AIR POLLUTION ON GLOBAL RADIATION

In the previous section it turned out that the number of observations in the various classes of wind directions is generally too small to allow conclusive results. Nevertheless we want to know the influence of the urban conglomerations Rotterdam and The Hague. Under the heading Rotterdam are collected the cities of Rotterdam, Schiedam and Vlaardingen and the village Pernis with its industrial area, under The Hague are collected the city of The Hague and the villages Rijswijk and Voorburg. Moreover we shall try and include the influence of the city of Delft, though its industrial area is only small. In table VI we shall indicate under which wind directions Rotterdam, The Hague and Delft may be seen from the six stations N, M, Z, P, H and S.

TABLE VI. Wind directions from which Rotterdam, The Hague and Delft may be seen from the six stations

	N	M	Z	P	Н	S
Rotterdam The Hague Delft	11–14	10–14	14-23	32 <b>-</b> 05	01-36	35-09
	02–05	36–01	32-33	-	31-33	34-01
	08	04–05	32-33	-	-	-

As it is clear that the sectors under which the three sources may be seen from the 6 observing stations differ, we shall not study now the amounts of energy presented in table I but the percentages indicated in the right-hand part of the columns headed by the 37 directions. In this way the influence of the amount of cloudiness, which differs very much with the wind direction is more or less eliminated. The average percentage for the sector 11-14 is obtained by computing the weighted mean of the percentages for the directions 11, 12, 13 and 14, the weights being the numbers of observations of the four directions.

In that way the influence of Rotterdam on the six stations has been computed for the four seasons and the results are given in table VII. Each column headed by the name of the station is divided in two parts. In the left-hand part the percentages (%) are inserted and in the right-hand part the number of observations (n) on which the percentages are based. The various numbers of observations in table VII make it easy to suppose that the corresponding percentages are reliable. The percentages for the year have been obtained by simply averaging the percentages of the four seasons. Before proceeding to the explanation of the figures in the table a general remark should be made. The stations N, M, Z and P have sectors in the direction of Rotterdam, which embrace the whole industrial area; H is completely surrounded by the city of Rotterdam, whereas S has a sector which embraces the cities of Rotterdam, Schiedam and Vlaardingen without the industrial area of Pernis.

If the annual percentages of the six stations are mutually compared the the conclusion may be drawn that the amounts of global

TABLE VII. Influence of Rotterdam on the global radiation at the six stations in the four seasons

Rotterdam	N		M		2		F	•	B			5
on	%	n	%	n	%	n	%	n	%	n	%	n
winter	106	123	104	131	100	353	97	90	92	800	93	168
spring	106	221	102	357	97	665	94	1073	94	3510	91	1272
summer	105	104	97	134	94	454	88	356	96	21 28	94	251
autumn	104	184	103	274	100	804	92	286	95	1968	94	385
year	105	632	102	896	98	2276	93	1805	94	8406	93	2076

TABLE VIII. Influence of The Hague on the global radiation at five stations in the four seasons

The Hague	N		М		Z		В	[	S	
on	%	n	%	n	%	n	%	n	%	n
winter	95	50	108	20	97	3	85	10	98	37
spring	117	426	113	218	95	151	96	192	91	496
summer	104	120	119	40	94	104	89	196	95	132
autumn	108	114	104	51	100	71	101	103	91	101
year	106	710	111	329	96	329	93	501	94	766

TABLE IX. Influence of Delft on the global radiation at three stations in the four seasons

Delft on	N		М		Z	
	%	n	%	n	%	n
winter	117	22	108	33	97	3
spring	112	124	102	247	95	151
summer	104	16	102	60	94	104
autumn	104	57	105	68	100	71
year	109	219	104	408	96	329

radiation decrease from N in the direction of Rotterdam, and that H, P and S show about the same percentages. That latter fact is not surprising for H and S as these stations, owing to their situation, experience the influence of the pollution of the city complex and not or nearly not the influence of the Pernis complex. On the other hand P is situated farther away from Rotterdam but the source S is very near, so that P experiences the influence of both sources Rotterdam and Pernis. In that way one may understand that through the year P, H and S show about the same percentages.

Another remarkable, but understandable fact has to be mentioned. In the summer season the percentages of the source stations H and S are higher than in the other seasons. Owing to the convection the air pollution in the sources reaches to a much greater height than in other seasons. Air pollution in and above a town may have three causes: 1. industry, 2. domestic fuel and 3. raising of town dust. In winter 1 and 2 cooperate, but in summer 1 and 3 are the causes of air pollution. As a consequence of convection in summer turbulence in the air is greater than in other seasons so that in that season the air pollution not only reaches a higher vertical extension but also a greater spatial dispersion. It is the latter factor which causes a maximum of percentages in summer for both source stations H and S. For the non-source stations P, Z, M and N the situation is just the opposite: in summer the percentages are smallest (P = 88; Z = 94; M = 97 and N = 105). For all seasons it is true that the percentages are increasing from Z to N, which is easily understood as all stations experience the influence of air pollution generated by the industrial area of Rotterdam decreasing with the distance from Rotterdam. Superimposed on that effect the influence of dust, locally raised by convection, has to be considered. As convection is greatest in summer the percentages are smallest in that season for all non-source stations. Automatically in winter the percentages are a maximum as convection does not occur. The winter maximum is less outspoken as could be expected; this is due to a local increase of air pollution generated by burning of domestic fuel. It is specially true for N where there are so many centrally heated warehouses and a slight indication may be found in the percentages for N, where in winter and in spring the percentages are equally high.

In table VIII and in table IX are respectively represented the influence of The Hague on N, M and Z and of Delft on N, M and Z for the four seasons and for the year. These tables are set up in the same way as table VII. There is one drawback however. The number of observations is in many cases too small to draw reliable conclusions. Therefore we shall mainly consider the figures for the year.

Table VIII shows that in general the percentage for N is smaller than for M which is easily understood as N is nearer to The Hague than M. For Z one should have expected a percentage much greater than that for M as Z is farther from The Hague than M. However, Delft is situated just halfway between The Hague and Z. Therefore the percentage for Z is even smaller than that for N. It is a pity that the number of observations for N in the winter season amounts to only 50. Nevertheless the percentage of 95 for this season gives perhaps an indication of the influence of the generation of air pollution by the central heatings of a great number of warehouses between N and The Hague.

Table IX shows a percentage for N greater than that for M, which

is easily understood, as the distance Delft - M is smaller than the distance Delft - N.

## 5. COMPUTATION OF THE ATTENUATION OF SOLAR RADIATION DUE TO AIR POLLUTION ONLY

At the end of chapter 2 it has been stated that except on the sun's altitude the amount of global radiation depends on three factors:

1. natural cloudiness; 2. air pollution; 3. cloudiness stimulated and generated by an industrial area. Owing to local differences in all three causes the global radiation at the stations H and S suffers a loss of 12 - 16% relative to the countryside stations N and M, while the stations Z and P suffer a loss of only 7 - 12% compared with N and M; the latter facts have been reported in chapter 3.

The influence of cloudiness on the amount of global radiation is easily calculated. For this purpose use is made of formula 2a, angström's formula, where the value of  $\alpha$  for the four seasons have been taken from [2]; winter  $\alpha=0.30$ , spring:  $\alpha=0.34$ , summer:  $\alpha=0.32$ , autumn:  $\alpha=0.33$ . The values of Nh may be taken from table XII where for various wind directions the amounts of cloudiness Nh, averaged for the four seasons over the hours during which global radiation has been evaluated, and expressed as decimal fractions of the sky covered, have been inserted for both aerodromes Ypenburg and Zestienhoven (see fig. 1). Table VI shows the meaning of the various wind sectors mentioned in table XII. The total amounts of cloudiness under the same conditions again expressed as fractions of the sky, have been also inserted. n is the number of observations. From table XII the values for the wind direction 01-36 (i.e. all directions together) have been used only; the data have been inserted in formula 2a.

The results of the computations may be found in table X. In its first column the four seasons and the year are indicated. In the subsequent columns the data of the six stations N, M, Z, H, P and S have been entered, while in the last column the meaning of the various lines have been indicated.  $G_{\rm h}^{\rm h}$  is the averaged amount of global radiation for an average height of the sun h and for an average amount of low and middle clouds  $N_{\rm h}$ .  $G_{\rm h}^{\rm h}$  is the same quantity for  $N_{\rm h}=0$ , estimated by means of formula 2a. The ratio  $G_{\rm h}^{\rm H}$  /  $G_{\rm h}^{\rm h}$  is of course the same for all six stations, but its value he differs from season to season. For the winter its value is 0.615, for the spring it amounts to 0.670, for the summer it is 0.667 and for the fall it is 0.671. That the ratio  $G_{\rm h}^{\rm h}$  /  $G_{\rm h}^{\rm h}$  is the same for all six stations in one and the same season is  $N_{\rm h}$  /  $O_{\rm h}^{\rm c}$  is the same for all six stations in one and the same season is  $N_{\rm h}$  /  $O_{\rm h}^{\rm c}$  is the fact that for all stations the value  $N_{\rm h}$  for Z has been used.

If all values G are expressed in percentages of the G value for Zestienhoven and if 100 percent are subtracted from these percentages then the resulting figures may be found in every third line of the four seasons. Those resultant percentages denote how much greater or smaller the global radiation at various stations is than at Z. The four percentages for the four seasons of every station have been averaged and those average percentages have been inserted after the word "year" in column 1 of table X. From those percentages may be concluded the same facts as already reported in chapter 3, namely that the losses in global radiation at the fringe of the industrial and urban area with

TABLE XI. Computation of amounts of global radiation Computation of amounts of global radiation with a cloudless sky by using cloudiness figures measured at Z. TABLE X.

with a cloudless sky by using cloudiness figures estimated for each separate station.

	ਕਿੰਸ਼	45°	pe.	la ² z	d°°	pe.	dag	اط ² 0	<i>98</i>	اطهخ	d d	86	<i>₽</i> €
Poortu- gaal	3.97	99*9	0.4-	7.86	11.50	-1.1	8.8	12,60	-5.3	5.98	8.84	-3.1	4.5-
Zestien- hoven	4.27	6.94	0	7.79	11.63	0	8.87	13.30	0	6.13	9.13	0	0
Maas- land	4.31	7.26	9.4+	8,61	13.11	+12.7	9.8	15.25	+14.7	6.53	10.23	+12.2	+11.0
Naald- wijk	4.27	7.10	+2.3	9.26	13.30	+14.4	10.16	14.93	+12.3	92.9	10.27	+12.6	+10.4
season		winter			spring			summer			fall		year
	ld'z	rg°	<i>98</i>	اطهر	दु०	₽R.	ďž	ದ್ಯಂ	86	먁	rq.º	pk	<b>8</b> 8
Pernis	3.66	5.95	-14.3	7.41	11.06	6.4-	8.80	13.20	8.0-	5.83	89.8	6.4-	-6.2
Poortu- gaal	3.97	94.9	6.9-	7.86	11.73	6.0+	8.90	13.33	40.3	5.98	8.9	-2.5	-2.0
Heli- port	3.72	6.05	-12.8	29.7	11.39	-2.1	8.81	13.21	-0.7	5.88	8.75	-4.2	-5.0
Zestien- hoven	LZ° †1	6.94	0	7.79	11.63	0	8.87	13.30	0	6.13	9.13	0	0
Maas- land	4.31	7.01	+1.0	8,61	12.85	+10.5	9.86	14.79	+11.2	6.53	9.72	+6.5	+7.3
Naald- wijk	4.27	6.94	0	9.26	13.82	+18.8	10,16	15.24	+14.5	92.9	10.06	+10.3	+10.9
season		winter			spring			summer			fall		year

TABLE XII. Average cloudiness figures at Ypenburg and at Zestienhoven computed from half hourly estimates made within the daily periods during which global radiation has been recorded.

Aerodrome Ypenburg Aerodrome Zestienhoven wind season N  $N_{h}$ n season N  $N_{h}$ n direction 0.88 winter 0.68 278 0.82 winter 0.60 315 0.75 spring 0.51 209 spring 0.72 0.46 289 14-23 0.81 0.60 summer 304 summer 0.80 0.54 399 autumn -0.80 0.59 402 autumn 432 0.75 0.51 winter 0.65 0.41 67 0.65 0.45 winter 57 spring 0.71 0.45 67 0.61 0.44 spring 99 11-14 summer 0.58 0.29 43 39 summer 0.38 0.18 0.44 winter 0.62 72 autumn 0.56 67 0.31 0.80 winter 0.69 46 0.74 0.64 winter 36 0.71 spring 0.55 163 0.64 154 apring 0.51 02-05 summer 0.62 0.49 52 summer 0.46 0.39 46 autumn 0.62 0.55 49 autumn 0.52 42 0.38 winter 0.61 0.42 76 0.64 0.48 winter 68 spring 0.66 0.41 100 0.40 0.56 apring 151 10-14 summer 0.51 0.25 54 summer 0.39 0.18 52 autumn 0.66 0.48 98 autumn 0.58 101 0.35 winter 0.70 0.60 35 0.72 winter 0.75 10 spring 0.71 0.62 191 spring 0.64 0.54 94 36-01 0.58 summer 0.50 48 0.64 summer 0.50 37 autumn 0.70 0.56 30 autumn 0.62 0.44 21 winter 0.95 0.72 5 1.00 1.00 1 winter 0.78 0.64 59 spring spring 0.71 0.62 63 32-33 summer 0.79 0.70 100 summer 0.71 0.62 96 autumn 0.74 0.60 28 autumn 23 0.72 0.54 0.72 0.66 winter 55 484 0.68 0.56 spring 32-05 0.68 0.58 summer 294 autumn 0.59 0.42 106 winter 0.79 0.62 657 0.72 winter 0.55 652 1532 spring 0.72 0.55 spring 0.68 0.50 1533 01-36 summer 0.74 0.55 1657 summer 0.68 0.49 1655 autumn

0.75

0.58

910

autumn

0.70

0.49

879

TABLE XIII. Estimated Nn-cloudiness figures for N. M and P, computed from N- and Nn-figures at Ypenburg and Zestienhoven and N-figures estimated at N and P.

Ypen	burg	Zestie	nhoven	Naal	dwijk	Maa	sland	Poort	ugaal
N	N _h	N	Nh	N	N _h	N	N _h	'n	Nh
0.79	0.62	0.72	0.55	0.73	0.57		0.58	0.74	
0.72	0.55	0.68	0.50	0.60	0.46	-	0.52	0.63	0.46
0.74	0.55	0.68	0.49	0.62	0.47	_	0.52	0.62	0.45
0.75	0.58	0.70	0.49	0.68	0.51	_	0.54	0.68	0.48
	N 0.79 0.72 0.74	0.79 0.62 0.72 0.55 0.74 0.55	N N _h N 0.79 0.62 0.72 0.72 0.55 0.68 0.74 0.55 0.68	N N _h N N _h 0.79 0.62 0.72 0.55  0.72 0.55 0.68 0.50	N         N         N         N         N           0.79         0.62         0.72         0.55         0.73           0.72         0.55         0.68         0.50         0.60           0.74         0.55         0.68         0.49         0.62	N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N	N N _h N N _h N N _h N N _h N 0.79 0.62 0.72 0.55 0.73 0.57 - 0.72 0.55 0.68 0.50 0.60 0.46 - 0.74 0.55 0.68 0.49 0.62 0.47 -	N N _h 0.79 0.62 0.72 0.55 0.73 0.57 - 0.58  0.72 0.55 0.68 0.50 0.60 0.46 - 0.52  0.74 0.55 0.68 0.49 0.62 0.47 - 0.52	N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N

wind direction 01 - 36

$$N_h(Na) = N_h(Yp) \times N(Na)/N(Yp)$$

$$N_h(Po) = N_h(Ze) \times N(Po)/N(Ze)$$

$$N_h(Ma) = \{N_h(Yp) + N_h(Ze)\} /2.$$

respect to the countryside amount to 7 - 13% and that the losses at the centre of the industrial and urban area with respect to the countryside amount to 12 - 17%. The losses in global radiation may also be determined for the four seasons and those figures deviate more or less from the annual figures.

We have to look now for differences in cloudiness between the various stations as a partial cause of the losses. For the aerodromes Ypenburg and Zestienhoven the necessary cloudiness data may be taken from table XIII and the data for the direction 01-36 have been copied in table XIII. Naaldwijk and Poortugaal are climatological stations so that we are able to produce the corresponding N-values for those stations; the values have been inserted in table XIII too. As Ypenburg is situated rather close to N the N-values for N have been taken the corresponding N-values of Ypenburg times a factor; this factor being the ratio N(Na)/N(Yp). The same procedure has been followed for the calculation of the N-values for Poortugaal, but then Ypenburg is replaced by Zestienhoven. Finally the N-values for M have been computed as the arithmetic means of the corresponding N-values of Yp and Z. The results of these considerations and calculations have been collected in table XIII.

After inserting the  $N_h$ -values of Z, N, M and P for the four seasons in formula 2a we have computed for these four stations the corresponding  $G^h$ -values from the  $G^h$ -values. The computed  $G^h$ -values have been put in every second line M of the four seasons in table M. The ratios in percentages of the differences between the  $G^h$ -values of the four stations and the  $G^h$ -value of M and the  $G^h$ -value of M and M in the four seasons in table M. Finally the averages of the percentages of the four seasons are considered as the percentages for the year and they have been entered in the table after the word "year".

From table XI may be concluded that now the losses in global radiation between the countryside and the fringe of the industrial and urban area amount to 10 - 14%. That means compared with the "year" figures of table X (7 - 13%) a displacement of about 2% to the greater percentages. If we should have measured in a different two years-period or at different places in the same period we should also have found different percentages. Averaged over the area under consideration except in a belt of 2-4 kilometer along the North Sea coast and averaged over a long period of time one gets only one N-value for each season and therefore one determines  $G^h$ -values and percentages, which show the same ratios as the ratios of  $G^h$  -values, mutually compared. From that we may conclude that the "h percentages (%) for each station of table X are samples of the mean percentages of the population of percentages for each zone of the area.

In that case one only uses one N_h-value for the whole area for each season. Therefore the percentages depend on the  $\overline{G_h}$ -values only and not on the N_h-values; that is simply due to the N_h use of Angström's formula (2a). From those facts we may draw the important conclusion that the differences in global radiation between the countryside and the fringe of the industrial and urban area and between the countryside and the centre of that area, respectively amounting to 8 - 12% and 13 - 17% for all wind directions, are only due to differences in air pollution, while, owing to cloudiness only, the loss of global radiation averaged over the whole year and the the whole area amounts to 34.4%, as  $\overline{G_h}$  /  $\overline{G_h}$  = 0.656.

For the following reasoning we shall only consider G-values or assume amounts of global radiation for a cloudless sky. Let us that a radiation station A is situated at the centre of a region which is a source of man made air pollution. At that station the global radiation will always suffer the same loss from whatever direction the wind is blowing. At a station B outside the source region the depreciation of the global radiation, if the wind at B is not blowing in a direction from the source region, will be less, than if the wind is blowing in a direction from the source. That means that the amount of global radiation at B averaged over all directions will be greater than the amount averaged over the angle under which the source region may be seen from B. The just mentioned considerations explain the difference in conclusions from the last line of table VII and those of the last line of table X. The difference in depreciation of the global radiation from the countryside (N and M) to the fringe of the source region amounts to 7 - % and from the countryside to the centre of the source (H and S) to 9 - 11% if the wind is blowing from the source region to the mentioned stations. Those conclusions for a cloudless sky could be drawn from the last line of table VII and that this could be done is simply a consequence of the way in which those percentages in the last line of table VII have been computed.

In table XIV we have collected the mean amount of global radiation with a cloudless sky in cal/cm2 x quarter of an hour for the six stations for each of the four seasons with respect to three types of wind direction, namely 1. all directions; 2. the direction from Rotterdam and Pernis to each of the six stations and 3. the direction from The Hague to each of the stations. In table XIV each season contains three lines. The first line has been taken over from every second line in table X and is valid for all directions. We also assume that the station Pernis (S), as it is situated in the centre of an industrial area, shows the same amount of global radiation for every wind direction. Therefore the three figures in each season under the heading S are equally high. For the calculation of the amounts of global radiation for the direction from Rotterdam and that from The Hague we make use of the percentages in table VII and VIII. In season I 5.95 is put equal to 93% (see table VII) and so the percentages of the remaining stations have been computed. The results of this computation have been inserted in every second line of table XIV. For the influence of The Hague presented in table VIII 5.95 cal/cm² x 15 min is now put equal to 98% in season I; after that the 85% of H, the 97% of Z, etc. have been converted into calories and the resulting figures have been entered in line three of season I of table XIV. In the same way the figures in line three of the remaining seasons have been inserted. Finally the arithmetical means of the four average seasonal amounts of global radiation of each of the six stations have been called the annual means for each station and for each of the three kinds of wind direction. Next to every  $G_n^h$ -value in cal cm⁻² is inserted the number of observations n on which the Ch-value is based. The n-values have been taken from tables VII and VIII.

It is easily understood that the ratios of the figures in the second and third line after the heading "year" in table XIV do not agree with the annual figures in table VII and VIII, as the latter ones are mean values of percentages and the former ones are mean values of real quantities, which show the annual variation of global radiation.

Calculated values of global radiation with cloudless sky at the six stations for three kinds of directions in the four seasons. TABLE XIV.

season	Naaldwijk	wijk	Maas	Maasland	Zestie	Zestienhoven	Heli	Heliport	Poortugaal	ugaal	Permis	nis	wind direction
	d ^o o	а	प् _ठ	n	4 ⁰ 0	ជ	d ^o o	ជ	<mark>ц</mark> 9	u	gp Gp	ជ	
winter	6.94 6.78 5.77	800 123 50	7.01 6.66 6.56	800 131 20	6.94 6.40 5.89	800 353 3	6.05 5.89 5.16	800 800 10	6.46 6.21 	08 g :	5.95 5.95 5.95	800 168 37	all directions from R'dam-Pernis from The Hague
spring	13.82 12.87 14.22	3510 221 426	12.85 12.40 13.73	3510 357 218	11.63 11.79 11.55	3510 665 151	11.39 11.43 11.67	3510 3510 192	11.73 11.43 	3510 1073 	11.06 11.06 11.06	3510 1272 496	all directions from R'dam-Pernis from The Hague
summer	15.24 14.75 14.45	2118 104 120	14.79 13.62 16.53	2118 134 40	13.30 13.20 13.06	2118 454 104	13.21 13.48 12.37	2118 2118 196	13.33	2118 356 	13.20 13.20 13.20	2118 251 132	all directions from R'dam-Pernis from The Hague
fa]]	10.06 9.60 10.30	1968 184 114	9.72 9.51 9.92	1968 274 51	9.13 9.23 9.54	1968 804 71	8.75 8.77 9.63	1968 1968 103	8.8	1968 286 	8.68 8.68 8.68	1968 385 101	all directions from R'dam-Pernis from The Hague
year mean of four seasons	11.52 11.00 11.18	8406 632 710	11.09	8406 896 329	10.25 10.16 10.01	8406 2276 329	9.85 9.89 9.71	8406 8406 501	10.10	8406	9.72	8406 2076 766	all directions from R'dam-Pernis from The Hague

As a general remark may be said that conclusions drawn from the first two lines of each season and of the year are reliable, as the figures in those are based on a great number of observations. As for the influence of The Hague represented in every third line it may be said that the conclusions are less trustworthy as there are various figures in those lines based on too few observations.

In all four seasons the amounts of global radiation of the non-source stations (N, M, Z and P) are invariably greater for all directions than when the wind blows from Rotterdam and Pernis. It may also be mentioned that the figures for N are greater than those for M and Z and that those for M in their turn are greater than those of Z. There is only one exception to this rule, namely the value of N for all directions in season I is slightly smaller than its corresponding value of M.

The ratios of the various values have been discussed from table VIII and table VIII.

As the figures for the influence of The Hague are less reliable we shall limit ourselves to a few general remarks concerning the third line of the annual figures. It seems as if at N the amount of global radiation is equally great whether the wind comes from Rotterdam or from The Hague. At M the amount of global radiation is greater than at N; moreover, how it is understood, is an other question, it is greater than in the first and second line. On the other side it is easily understood that the amount of global radiation at Z is more or less of the same magnitude, as that in the second line; for the line which connects The Hague, Delft and Z is a straight line. It is also clear that for all three kinds of direction the amounts of global radiation at H are of the same order.

In general it may be said that table XIV is very instructive. We want to end this analysis by giving two examples (table XV and table XVI), which show very clearly that one has to be exceedingly careful not to take too small samples from a population.

In table 3 of reference [1] have been collected values of the global radiation in tenths of calories per 15 minutes averaged over a certain number of observations with an average altitude of the sun, when the amount of cloudiness N = 0 at Z, for the six stations N, M, Z, H, P and S at several days of various months. In table 4 of the same reference [1] have been collected values of the global radiation under the same conditions, but when the amount of cloudiness N = 1 at Z. In both cases we have gathered for each of the stations N, M, Z, H and S the amount of global radiation observed during the winter season, spring, summer and fall. After that the amounts have been averaged with the number of observations as weights. Those averaged amounts for N = 1 have been inserted in table XV after the symbol  $G^h$  in every first line of the four seasons. We shall continue now with the winter season of this table. The values  $G^h$  may be easily converted into values  $G^h$  for a clear sky following the formula for season I:

$$\overline{G_1^h} = \overline{G_0^h} (0.30 + 0.70 \times 0.9).$$
(4)

In the second line those G-values have been entered. In line 3, line 4 and line 5 have been inserted respectively the averaged altitude  $\bar{h}$  of the sun, the total number of observations n and m = the number of earth's

Reduction of Berlage's average values of global radiation for N=1 at five stations with different mean altitudes of the sun to values of the global radiation with cloudless sky with the same mean altitude of the sun for all five stations as found for the  $\frac{GM}{N}$  -values in table X. TABLE XV.

	മ	13.79	14.80	50,53	191	18.67	13.54	-0.3		4.98	5.34	170	15	23.35	60.6	-1.3		10.11	-10.3			
	н	14.93	16.02	50,29	193	19.83	14.71	+8.3		2.47	5.86	170	15	24.00	9.70	+5.3		11.20	9.0-			
	2	13.90	14.91	50,85	189	18.71	13.58	0		5.07	5.43	170	15	23.47	9.21	0		11.27	0			
	M	13,15	14,11	9t°8t	84	18.67	13.55	ر. 0.0		5.37	5.76	170	15	23.89	9.59	+4.1		10.96	-2.8			
+	Z	14.50	15.56	50,59	193	19.39	14.27	+5.1		5.21	5.58	170	15	23.66	9.39	+5.0		10.67	-5.3			
	quan- tity	망	몫º	)'ਖ,	ជ	ည် လ	647,09	 > <i>P</i> E		면	왕	ıq	ជ	Sol	G25511	<i>98</i>		& ^C	, pc			
	season				summer	aran deka	************			***		· · · · · · · · · · · · · · · · · · ·	autum	Maria da pingan				·	year			
	တ	5.88	6.32	18,68	29	3.08	1.64	4.68	14.61	0.230	23.59	4.56	6.16	-17.4		10.51	11.25	38°34	216	19.56	11.65	-21.5
	н	%.9	7.48	19,36	53	2.97	1.87	5.61	16.92	0.189	24.57	5.18	7.00	-6.2		11.54	12.36	36,89	224	21.37	13.37	6.6-
	2	6.91	7.43	18°36	8	3.14	1.93	5.50	17.45	0.169	25.07	5.52	2.46	0		11,10	11.88	37°76	240	22.83	14.84	0
	Σ	6.92	7.44	19,36	<i>S</i> 2	2.97	1.86	5.58	16.83	0.191	24.53	5.17	6.98	<del>-</del> 6.4		11.58	12,40	76,92	214	21.72	13.73	-7.5
	N	90°9	6.52	19°36	53	2.97	1.63	4.89	14.75	0.236	23.46	4,49	6.05	-18.9		11.44	12.25	<i>37</i> °59	201	20.95	12.98	-12.5
	quan- tity	1 ₁ ₂	'ಭ	) Id	ជ	8	ದ್ಧಂ	n d	L.O	ಕ	S. S.	318,41	G18,41	Ж.	Ì	댕	ದ್ಯ	្រជ	ц	S S S	44.600	<i>₽</i> €
	season				winter								1						spring			

Reduction of Berlage's average values of global radiation for N=0 at five stations with different mean altitudes of the sun to values of the global radiation for N=O with the same mean altitude of the sun for all five stations as found for the  $\frac{Gh}{N}$ -values in table X. TABLE XVI.

	တ	ı	13.96	50,06	₹ *	18.02	12.90	-0.2		ı	ı	ı	ı	ı	1	ı		ı	ı			
	Ħ	ı	14.68	50,06	34	18.73	13.61	+5.3		1	6.22	20°,38	80	22.60	8.43	+5.1		9.95	+3.6			
	2	ŧ	13.99	50,06	₹ *	18.05	12.92	0		1	5.86	20°,38	80	22.13	8.02	0		9.60	0			
	M	ŧ	13.60	41900	a	20.92	15.83	+22.5		ı	6.30	20°38	80	22.71	8.44	+5.2		10.55	6.6+			
	Z	ı	14.94	50,06	煮	18.98	13.84	+7.1		ı	6.29	20,28	∞	22.69	8.51	+5.4		9.64	+3.5			
	quan- tity	$\frac{G_{h}}{G_{1}}$	g g	្រជ	៨	> 0  2	G ⁴ 7,09	pe.	1	g _{1,} p	lego	ıд	ជ	<b>&gt;</b> 20	g25,11	<i>p</i> e		lo ^c	98			
ļ.	season		7			summer	-						autumn						year			
	ω	1	6.11	19935	23	2.97	1.56	4.55	13.73	0.260	22.90	4.34	5.24	-50.0		ı	10.71	02.04	122	17.98	10.23	<b>4.9-</b>
	Я	1						5.18 4.55		0.216 0.260		4.94 4.34						02.04   77.04				
	S H Z	1		19,35	23	2.97	1.77	<del></del>	15.64	0.216	23.93	46.4	6.21	-5.2		1	12.10					
	Н	1	6.09 6.95	19,35	7 23	3.48 2.97	1.70 1.77	5.18	15.40 15.64	0.216	24.59 23.93	46.4	6.21	-5.2		1	11.45 12.10	40°77	122 117	19.45	10.93 11.56	+5.8
	н z	1	6.09 6.95	16.57 16.57 19.35	7 7 23	3.48 2.97	1.60 1.70 1.77	4.10 4.39 5.18	14.38 15.40 15.64	0.189 0.216	24.11 24.59 23.93	4.89 5.20 4.94	6.16 6.55 6.21	0 -5.2		1	12.13 11.45 12.10	77°04 07°04	122 117	19.68   18.76   19.45	5   11.77   10.93   11.56	0 +5.8
	H Z W	1	7.20 5.70 6.09 6.95	20,006 16,57 16,57 19,35	7 7 23	2.89 3.48 2.97	1.76 1.60 1.70 1.77	4.10 4.39 5.18	15.86 14.38 15.40 15.64	0.217 0.208 0.189 0.216	23.90 24.11 24.59 23.93	4.89 5.20 4.94	6.00 6.16 6.55 6.21	-8.4 -6.0 0 -5.2		1	11.96   12.13   11.45   12.10	40.70 40.18 40.70 40.77	122 114 122 117	19.31   19.68   18.76   19.45	5   11.77   10.93   11.56	+4.6 +7.7 0 +5.8

atmospheres passed through by the sun's rays, the sun's altitude being h; m is computed by Bemporad's formula. As those h-values not only differ mutually but also from the common h-value in season I of table X, we want to reduce those h-values to  $h = 18^{\circ}$ .41 in winter. The same shall be done for the remaining three seasons. In that way one is able to compare the various homogeneous  $\frac{1}{100}$  values.

The global radiation  $G^h$  may be separated into two parts: the diffuse radiation  $D^h$  and the direct solar radiation  $S^h$ . That separation may be executed if use is made of fig. 1 in [4]. That figure presents the value of the ratio  $D^h$ / $G^h$  as a function of the sun's height h. In that way  $D^h$  and  $S^h$ 0 have been entered in the subsequent lines. From  $S^h$  the amount of solar radiation perpendicular to the sun's rays  $(S^1)$  is easily computed:  $S^h = S^1 \sin h$ . If now  $S^1$  is known, then the rest is easy to calculate. Let us assume that the amount of direct solar radiation outside the atmosphere  $S^0$  equals 15 x 1.98 = 29.7 cal/cm² quarter of an hour then the attenuation coefficient a of the atmosphere at that particular station and in that season is easily computed with the aid of the formula:

$$\overline{S_0^1} = \overline{S_0^0} = -\alpha m . \tag{5}$$

A quantity independent of the sun's altitude and therefore most appropriate for use through the seasons is the direct solar radiation at the earth's surface, if the sun is in the zenith  $(\overline{S_{\circ}^{\nabla}})$ 

$$\overline{S_0^{\nabla}} = \overline{S_0^0} e^{-\alpha}$$
 (5a)

That quantity may be computed by means of formula (5a).

From  $S_0^{\circ}$  we finally compute  $S_0^{\circ}$  in a retrograde order. With the aid of fig. 1 [5] again the quantity  $\overline{G}_0^{\circ}$  may be composed. The ratios of the differences in the  $\overline{G}_0^{\circ}$  values with respect to that of Z and the  $\overline{G}_0^{\circ}$ -value of Z itself have been inserted in percentages in the last line of the winter season.

The execution of the reduction of the Gh-values took a rather long way. Nevertheless the reduction has been carried out for the remaining seasons, but the principal quantities have been entered in table XV. If we mutually compare the corresponding percentages of the 5 stations in the four seasons, then it turns out that they are not conformable, i.e. the differences in percentages of the stations change haphazardly from season to season.

If finally the  $\overline{G}^{18041}$ -values for the seasons are averaged, then those averages  $\overline{G}$  have been inserted in the "year" row. In that way we get the absurd result that averaged over the year Z and H show the greatest values of global radiation for a cloudless sky.

In table XVI the results of the reduction of the  $\overline{G}$ -values from table 3 [1] have been entered in the same way as in table XV.

If we compare the corresponding percentages in both tables then we may conclude that in spring and in summer there is no agreement and that in winter and autumn there is some conformity. But if the annual percentages of both tables are compared, then there is no agreement at all.

Finally if the percentages of tables XV and XVI are compared with those of table X then it turns out that there is no conformity between the percentages of the three tables. As the number of observations, on which the result of table X have been based, is very great and moreover is very much greater than the numbers of observations occurring in tables XV and XVI, the differences in behaviour of the percentages in tables XV and XVI with respect to the behaviour of the percentages in table X may be attributed to the effect of small samples.

#### 6. SUMMARY

From November 1, 1959, up to November 1, 1961, measurements of global radiation have been made at six stations: Naaldwijk (N), Maasland (M), Zestienhoven (Z), Heliport (H), Poortugaal (P) and Pernis (S). For the situation of these stations may be referred to fig. 1. The measurements were carried out in order to make investigations into the consequences of the air pollution generated by the urban and industrial area in and around Rotterdam.

Several conclusions may be drawn from the results of the measurements. In the first place it turned out that the amount of global radiation does not depend on the speed of the wind, but certainly on its direction and that station N is surrounded by an area which produces some pollution mainly in the winter season.

If the sky is clear then the increase of the amount of global radiation, averaged over the whole period and over all wind directions, from the centre of the urban and industrial area of Rotterdam and Pernis to the fringes of that area amounts to 3-6% and from the centre to the countryside, which is supposed to be more or less free from man made air pollution, the increase amounts to 13-17%. Superimposed on these amounts of global radiation is a decrease in global radiation due to cloudiness; in season I (climatological winter season) this decrease amounts to 38.5%, in season II to 33.0%, in season III to 33.3% and in season IV to 32.9%.

With a clear sky the increase of the amount of global radiation, averaged over the whole period, in the direction to which the wind is blowing from the centre of the urban and industrial area, amounts to 3-5% from that centre to the fringes of the area and to 7-13% from that centre to the countryside.

It appears that the amount of air pollution generated by Rotterdam and Pernis is much greater than that produced by The Hague according to its effect on the global radiation at Naaldwijk. One has to be careful not to draw conclusions from too small samples of observations.

0-0-0-0-0

#### REFERENCES

- [1] Berlage, H.P.: "Eerste aanwijzingen omtrent kunstmatige versluieringen, verkregen uit metingen van de
  totale straling op het horizontale vlak op 7
  posten in en rondom Rotterdam, bij wolkenloze
  hemel en nagenoeg wolkenloze hemel van november
  1959 tot en met juli 1960", Kon.Ned.Met.Inst.,
  De Bilt, Verslagen V-107 (RIII-271-1962),1962.
- [2] Boer, H.J. de: "A calculation of global radiation in the Nether-lands with the aid of the relative duration of sunshine", Arch.Met.Geoph.Biokl., B, 10 (1961), pp. 537-546.
- [3] Schmidt, F.H. and Boer, J.H.: "Local circulation around an industrial area", Berichte des Deutschen Wetter-dienstes Nr. 91 (1963), pp. 28-31.
- [4] Nicolet, M. et Dogniaux, R.: "Etude de la radiation globale du soleil", Institut Royal Météorologique de Belgique, Uccle, Mémoires, Vol.XLVII.

. - . - . - . - .