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The principle of the measurement

Some genersl remarks

The specific artificial atmospheric radioéctivity can be

- measured according to the following principle,

a,.

b.

Ce

A sample Vm3 of atmospheric air is sucked through a filter (e.g.

V = 40, 100, 1000 m3/24 h).

Consequently this filter bears radioactive particles of dust from

the air (natural and artificial radioactivity). One waits a few days
(T1 days; e.g. 4) before counting the filteractivity (corrected for
background) for the first time, The true value may be ﬁ1 imp/hin. In
this short period the natural atmospheric radioactivity has decayed
(almost) completely, but in the same time also the artificial radio-
aétivity has decreased. Since it is the purpose to find the zero

day's value of the artificial radioactivity, say Bo, (zero day =

day of sampling), it is necessary to make at least one additional
counting of the filteractivity (true value ﬁz), say on day Tz,if it is
assumed that the decrease of the artificial radiocactivity follows

an exponential law with constant and numerically known exponent .

The values Py and 52 enable us to compute ﬁo. Since V is also known,
the zero day's value of the specific filteractivity « = ﬁo : V, the
true mean number of impulses per minute and per m3 of eir, can be
calculated, artificial
Next the true specific/air’radioactivity, say R, can be found by
means of the relation: ’

R = Cx C /3

Here C, a proportionality constant between R and x, is a function of

a number of quantities, characterised by the measuring apparatus and the
character of the radicactive substance. Even if all these characte-~
riétics were known (in reality they are not), 8till their numerical
values cannot be known exactly. Hence generally a value 6‘ is used
which may differ more or less from the true unknown value C. For two
instruments the values of C may differ, C1 and 02° Information on

this difference (without knowledge of 01 and 02 separately) may be
obtained by measuring with these instruments the same true, but un-

known, value of the artificial atmospheric radioactivity in such a
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notes 1)
2)

3)

1)

refer to the same place and the same time. If they could be drawn,
A A

then the values *®, and G2 could be calculated and next R, = C1.°(1

N\

and R2 = ﬁé.mz. Generally R1 and R2 will differ. Still there exists 2)

only one well defined specific artificial atmospheric radioactivity

way that the samples of air are "identical" o Such samples must

'y sothat one would expect Ry = R2. Consequently, at least one of
the values/C\1 and 6} cannot be correct. In spite of the fact that the
true values 01 and C2 are not known, the ratio q = R1/R2 may be used
as a reduction factor, the interpretation of which would be as follows:
as soon as these instruments are installed at different places and
simul taneous measurements would give the values W1 and Wz, then the

values W1 and Wé = q.W2 are "better comparable" then W, and W2.

Complicating factors

The above considerations are too simple, There are some further

complications,

Complication 1.

The filteractivity is counted during a finite time (in the Netherlands
about 15 minutes) and hence the measured mean numbers of counts per
minute, written fq on day T1 and 6; on day T2, are more or less accu-
rate estimates of the true mean values, ﬁ1 resp. Bz. The value obtained
for ﬁ; in a given quarter of an hour, is more or less a "random value".
If it would be possible to measure ﬁ1 once more, then certainly a quite
different value for ﬁ} would be obtained. This fact follows from the
statistical nature of the production of the impulses, which takes
place in time according to the poissonian law. Consequently, both 51
and ﬁz are measured inaccurately (Eﬁ and §2)32 Therefore, alsoﬁ% is
known inaccurately (E%), usually even far more inaccurate than @; and

@é separately (For more details see Addendum A), This means that even

A statistical definition of "identical" should be given.

Of course one should define the meaning of the "true specific artificial
atmospheric radioactivity" at a given place.and at a given time.

Underlining Q§1instead ofﬁ;) means that ﬁ‘ is stochastically distri-
buted. Would ‘one be able to repeat the msasurement of the same true
value B, an infinite number of times, then a population of @T—values
would be obtained, varying around p1 with a certain standarddeviation

o8,



if C, and 02 would be known exactly, then Ry and R2 could be unequal,
since usually 31 7(/8 09 in spite of the fact that ay =a, for two

adjacent apparates (equal zero day's values).

Complicétion 2e

It is impossible to draw two samples on exactly the same place and
in the same time. Of course the distance between both filters should
be made as small as permissible. Even then, the samples of air cannot
be completely "identical" (which assumption should be fulfilled in

the present reasoning), since both samples do not contain exactly
equal total numbers of particles of dusts this is especially the case
for those particles which carry large quantities of radioactivity
("not spots"). The filters, after having sucked through the "“same"
air, may bear 5 and 5 hot spots as well as 2 and 8 or O and 10, What
happens is more or less a question of chance, The one filter ﬁay
possess far more radioactivity than the other, notwithstanding_the fact
that both instruments sampled the "same" air, in this way the so called

"spatial random error" of measurement is introduced.

Nevertheless, when the instruments are brought together at the same

'place with their filters close to each other, it is certain that:

a. systematical differences between the true specific atmospheric
radioactivity of the samples of air are absent or neglectably
small;

b. random differences between the specific air radioactivity of the

samples, as mentioned above, are as small as possible.

Complication 3.

The constant C may be written ass
c-——21__10 1
a D'g gﬁ-i_iff e
a = fraction of the radiation absorbed in the window of the Geiger
Miiller counter
D = true known activity of the radioactive standard (e.g. Uy 8)
D'= measured value of D '
g = geometrical factor, relating to the position of the filter with
regard to the counter tube

note 1) For the sake of simplicity V, and V, (the samples of air) are supposed
to be known "exactly". In practice %he maximal error in the measurement
of V is about 1%,
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e = efficiency of the suctionj e.g. e = 0.70, which means that 70% of
all dust particles are cought by the filter.

In the Bilt C = 1,5, in Belgium C = 2.0, but these values 1.5 or 2.0
are only constant as long as the numerical values of a, D, D'y g, €

are constant (for this reason C is called a semi constant). Since these
numerical values are not known exactly,mly en estimate 6?of C can be
calculated. Moreover C will depend on the nature of the radioactivity

itself; this relation may not be known.

Complication 4.

Some remarks have already been made on the so called "comparability"
of two or more measurements. Apart from the fact that a fully satié—
factory definition of "comparability" is still missing, it is felt
that the concept of comparability is not only related to the systema-
Yical errors (questions of reduction), but also to the random errors,
Suppose for instance, that the systematical error would be known and
hence, when measuring the values W, and W2 with two instruments at
different places, one should correct W2 to Wé = qW2, where q is the
factor mentioned above. Then Wé and W, are better "comparable" than
W2 and W1. However, also the random errors should be taken into con-
sideration., If they follow distributions with standard deviations oy
and Y the true values R, and R2, of which W, and W2 are point esti-
mates, are situated ("with 0,95 probability")within the confidence
regions W,-20 to W,+20, and Wé—2cé to Wé+2oé. The o's may be so
large and hence these regions so broad, that one may even doubt
whether a correction for systematical errors makes any sense, We

will treat this aspect in detail later one.

Formulation of the purpose of the study

In the following sections we will consider in detail, theoretical-
ly and numerically, all statistical aspects concerning the computation

of systematical and random errors.

When sometimes these considerations give the impression of being
highly academical and of only little practical importance, one should
always bear in mind, that only an analysis of the whole procedure of
measuring and computing the artificial radiocactivity and a critical

study of each step in this procedure, in particular with regard to the
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underlying assumptions, will give an idea of the intrinsic value of
the ultimately published figures (pc/h3) which are used by the various
users (public health services; meteorologists, etc.). This knowledge
may assist in drawing conclusions in a statistically more justified
way., It will in any case be advisable to be fully aware of any special
assumption notwithstanding the difficulty of verifying its validity

€.8. a8 a result of scarcity of data.

Mathematical attackesymbols and definitions
P4

Let k instruments (of which it is not known whether they are
"identical™ or not)be installed close to each other at one at the
same place. The wording "close to each other" refers to the sucking,
sampling, units of the instruments. Let on each of n days ( i = 1 s 2y
3evsy n) simultaneous measurements be made with these apparates (3 =
1, 24044 k).

Of course the final results Zyy zz.l,zk(expressed in pC/h3) will
differ on each of these days. We will examine the origin of these dif-

ferences,

The following symbols and definitions are introduced.

C.,= true unknown reduction or proportionality constant for apparatus
J. C. possesses the same value for each dayy, but it is possible,
that C # Coreve # Cy

63= used value, i.e. the value substituted for C this value may be
different for the different instruments, but it is supposed to be

constant during.the n days.

N\
?;‘C ;1s mentioned "systematical error" (s.e. ) of C,
(CJ )t Cj is the percentual s.e. of Cj.
o, J= true mean number of impulses per min. and per m3 air far the artifi-
cial radioactivity of the filter of apparatus j on the sampling
day i.
. .= estimate of‘N. .o
~1) 1)
x = random counting error.
-13 13
@‘ :X. . = percentual counting error,
157 1J 1J
u; = true unknown value of the specific artificial air radioactivity

on day i at the place where all apparates are measuring, All in-

struments j = 1, 2...k are measuring the same value Uy which



(1)

Note1)

—6—

usually will vary day for day.

7N
. .= C.A
2137 V5043
in the sample drawn by instrument J on day i. This u ij is an

= true value of the specific artificial air radioactivity

estimate of u1 and differs from ul at random,

(ﬁ. - u, ) = the random spatial sampling error.

ﬁi;_,ﬁi) : u; = the percentual value of the random spatial error.

Eij = ngij = specific artificial air radiocactivity as measured by
instrument j on day i.

AJ. = lg(C :C, ) = (c ~C. ) C;» if the absolute value of the right

hand 31de is sufflclently small1
N o .
= X, .) = ca=X L) P X,
_lgij lg(o_(ij «13) (o_(IJ lJ) “13’ if the absolute value of the
right hand side is sufficiently small,
f..= C.& u, TU,. - u..
_13 J 13 1 =-1] 1

= 1301 : ui) = (ﬁij - ui) tu S fij Puy o, if

1}

£33/ <1,

The random nature implies

Egij = 0, Egij = C for each i and each j.

We state: if it would be possible to remeasure with the same instru-

ment on the same day i the same true value us and if CJ and “13

would be known exactly, then ul'j = Claij would vary around uy with
a certain standard deviation. NOW'm;j is not known, an estimate?{ij
is found, and hence C d i3 will be dlstributed around.”}j = CJ ij
with certain standard deviation. Now C is not known, but an (con-
aS
stant) estlmate‘ej is used; hence, flnally the value 213 = Cj'§&j
will vary around u, with certain standarddeviation.
‘ ~ I~ AN\ A
“13) (%43 3\[313
=R L = ce [ —|[—LR L ==
—1J J=iJ d\ e\ ) = C.\«x,
3" 1] JMij
3. \/C\/[R. .
=222 (o ) = vy exp.(E, +4)
=u |—— =~} = u., exp. e s+ A, + B ; exp.(E; +A,
Hu, /lc./\a, . i o 130 3 Al
1 VAN where E,, S e, , + B...
=ij " =i " =ij

Here the theorem is used: 1g(14m) ®m for small m,
The approximation is as follows: l{ig(1+m) - m} s m r(0.05 forsm‘(0.10.
Take for instance m = (6} - C.) ¢ C..

J J
Take the natural logarithm and we obtain:

E and A are dimensionless.



Note

1) -

Here, as said already above, e represents the spatial random error,
B represents the countlng random error and A represents the constant

systematical error. A

Hence, since Z;: 1s distributed around u‘zl in a certain way as ex-
plained above (suppose we would be able to measure the same true
value u; an infinite number of times with the same apparatus j), also
zij follows a random distribution, the mean value of which is approxi-
mately lg (mean value of Zij) and its standarddeviation g (E )

ioz (e ) +o° (B )}% Since the mean value of z i wrltten 63213,

is u, C : CJ, the mean value of xi .y Written éix 5 is nearly x, + AJ.

In thls way we have passed from (1) with a multiplicative character
to (2) with an additive character, better suitable for the application
of statistical methods1).

The following sketch illustrates the mathematical attack given above
for day i = 1 and apparatus j = 3,

- e Rt T it
(I
u1C3/C3

4

K (c R, 50315 Cj T1379%213
_CjK13

13 13 +]_313+A3

X, +e
) L 1 "13 . J!

v- l T
in linear scale in logerithmic scale

See following page.



3.
3.1
3.1.1

Note1)

-8

N.B. One can also proceed in an additive way, as follows.
Let be Wy = uy +4uyy , with €huy = 05

A .

913 = aqy+ oy s With Edgyy = O

N\

and 03 = 03 + L\C3

and ’1;?1 =C oy . . .
3 3713 on day i = 1 with apparatus j = 3.

Th ' Taoay, = (C, + 4C,)( Aa, _a \a
°m Zry = Oyegyy = (G # 40y)(agy 4 Agyy) = Cyeyy 4 Oydy g 4

01388y + (4Cy)(Aay,) = (u; + Auyy) + C30%, . + C.

3 13‘6;"
. ACy - 49,
(AC3)(QS,13) = (uy + aug ) (1 + -—63—) + Cyoy —-—lo(} + (403)(4313) =

G dey |
(u, +Q_1_113)(33-+ —a;—) + (8cy) (a2, ).

Now taking the mean valueé& (supposing one would be able to measure

the same uy many times with instrument 3) one again obtains
s

u1 I.CI—B
03.

Attention: 41_113 za.nd__d_q.13 are supposed to be distributed independently.

" Systematical errors

Simultaneous measurements on only one day

Estimate

Consider only one specified day, sothat we may drop the index i
in (1) and (2). The k instruments, installed close to each other at
one and the same place, give the values Zey Zoy o v oe T pC/m3 and the

In this connection the following theorem is brought to the attention
of the reader. When a statistical variable v follows a gaussian dis-
tribution with a mean value g and a standarddeviation O‘V (say & =0'/E,),
then w = 1g v follows a non normal distribution with a mean value

= 1gE - $56%and a standarddeviation o = 8, The approximation for
nis the better, the smaller 8. In the complete expression,

n= 1gg- $8° T, the positive term T is smaller than 3 6%: (1-8%,
Reversely, when a sample of w values gives the mean value w and the
standarddeviation s, then w and s are estimates o£ N _and Gwl

Then g and o can be estimated by € = exp.(w + #s°) S exp."w, if s
is sufficien¥ly small, and G=s%,



(3)

(4)

(5)

k values

.=X+E.+A. .'-'-1 2o-ok-
‘YJ 3 3; J y S

- These k expressions contain the same unknown value x. They will dif-

fer because usually the values of Ej and Aj will differ., If we want
to find 4, Az, .« o Ak’ we should bear in mind that there are k
equations with k + 1 unknowns x, E1+A1, o o o Ek+Ak

Each constant A is combined with a random value E « The number of

unknowns can be decreased with one in two ways:

i) either we consider the k-1 differences A -A1, J = 2, 39 « ¢ o ky
if instrument No.,2 would be chosen as reference ("reference
method"). Then each constant A —A1 is combined with a random
value EJ—E1,

ii) or we consider the k-1 differences AJ-A where A --— EE AJ

Then each constant A.-A is combined with a random value E.-E,

Now A refers to an "imaginary" instrument, say the "mean" appa-

ratus ("mean instrument method")., The larger k, the less A will

differ from zero, provided that the k instruments are not com-

pletely identical., Said with other words: the larger the number

of different instruments, the better will the overal mean measured

value approach to the true unknown value.,

More details as to these methods i) and ii) will be discussed in

section 3.3,

_ 1 ok _ 1 <k _ 4 Tk
Now define: E=-EZ1EJ; e=E21ej; B=EZ1BJ;
k
- 1Y%
= = .3 QE, =E, -E; QA =4, -X%.
¥ kL«,ya’aa J ? J J

Next compute the differences ij = yj - }, and we see that:

A . = AE. + A.o j =.1 2 e o o k.

.VJ j aQ 3 J y Sy

Hence Ay "almost equals" AA.. The difference is of random nature.
N\

Therefore ij may be con51dered as an estimate, say AAj, of AAj.

Write:

P . :
AAj =ayj. J = 1, 2, ¢ e o ka



(6)

=10~

The estimate is unbiassed for each j. The statistical explanation is
as follows: if one would be able to measure the same true unknown
value u on a given day with each of all instruments again and again,
then a population of values e 5 BJ, E (3 =1, 2, « « « k) would
result and hence a population of values of yJ, AA for instrument
N=,j would result., For this reason it would be better to underline

the statistical variables and to write:

;_rj=x+§j+Aj and §j=§j+_ﬁj.
Now, as said already, éE‘,BJ = 633. = 0, and hence &ﬁa = oy for each j,.
The populatlon of AA values (j given) possesses a mean value, written
as 6AA « If this mean value equals exactly the unknown value A&A,
which we desire to find, then it is "unbiassed". Now GAA \L\y ) =
c(A_'EJ. + 4,) =egEj = &(E; - E) = 0 because ag’a 0 for cach 3o

3.1.2 Accuracy

(1)

The hypothetical population of _Lz\_A_j values mentioned above also
possesses a standarddeviation, say O'(A_/Z_j), which may be considered as
the accuracy of the estimate @j. The differences (Z\\_A'J - Aj) may be

considered as an estimation error.
Referring to (4) we have:

: k
Aay;) = o*(8E; + 84,) = *(E, - E) - oﬁ{u - 1;)gj + %ng}

or: m;!j

k
142 1 .
m

Hereo’(gj), shorter O‘j, denotes the standarddeviation of the population

oAdd,)

of gj values, described in 3,1.1.

The underlying assumption is that I_:‘.p is not correlated with gq;
p#aPa=1 2, .. .%k This implies: the chance to obtain a
value E >0 is independent of the fact that Eq> 0 or Eq( O
If o, =0'2— ¢ o « Oy BBy then:



(8)

(9)

3.2

3.2.1

(10)

11

A
c’bﬁAj) = Eijoj =¢® for each j, and for sufficiently large k.
- Pas
k=2 ofdh) =0.T1 @ ,
= 10 0.95¢ etc,

The second assumption is that e and B are not correlated. Of course

this hypothesis is correct, because the spatial sampling error has
nothing to do with the counting error.
Then:

Oj=0'2(§a)=0'2(23)+02(§3) j=1,2,...k.

This means: if one wishes to study the differences between the spatial
random errors of two or more instruments by means of the o(E) values,
their 0‘@) values should be so small, that o‘(I_?) < ofe), or that
o(B) /o (e)¢ 1. If in practice this camnot be achieved, it will be
necessary to compute d(g) in each case separately., For details re-

garding this computation, see Addendum A,

Simul taneous measurements on several days

Estimate

Of course it is better to make simul taneous measurements on more
than one day. Let k simultaneous measurements (with k instruments;
J=1,2, . .. k) be made at one and the same place on each of n days,
i=12,...n, The groups of measurements will be Ziqr Zior o . .
24100 i=12 .. .n, giving

yij’ yiz, e o o yik’ With y = 1g V4

where
Zij =X, + Eij + Aj, with Eij = gij + gij
i=1,2,ooon; j=1,2,o.okc

The variable x has been underlined (3), since it will vary from day to
day.
Further E, e, B will depend both on the day and the instrument; however

A depends only on the instrument.

As an illustration, let us take k = 3, n = 8, The table of z values
will be:
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=1 2 3
i
1 Am
214 212 213
21 2z 2o 223
etg. Z81 282 283

The y-table becomes

J
i 1 2 3 mean
R Y12 Y13 h Yy 0T ¥,
21 Vo4 Y22 923 5 Ip OT ¥p,
s RE Y82 Y83 yg oT ¥g,
mean | y.1l Ve Ye3 ‘ oo

By computing the differences Ayﬁ1 =¥1q4 =¥V, 3 Ayﬁé = Yo = ¥4 etc.
we obtain the following table

"
: "
O¥g1  A¥gy  8Yg 0
mean Ay.1 Ay.2 Ay-B 0

with Ay1=y1—y °
On each day, that is in each horlzontal line of the table, an estimate
AA of AA can be made by means of AL, = Yiy = V3, =87

—ij
these n estlmates,oneobtalns as the overall best estimates

n
1 A.=—§ A.=—§..——§.= . - = Ay |
( ) A J n i=1 A 1] n le n yl yoJ yoo yoJ

N.B. Even in the case that on one or more days one or more measurements

T Averaging

fail, equation (11) can be used. The procedure is: calculate the average
values of the columns and the overall mean v, .3 the differences then give
the AA. values. Of course ZE AA = O,
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Now let us give the interpretation. Referring to (1) and taking
€.8 i =1 and j = 3, one gets:

13,73 = with AA, = A, - or A. = A4 + i
_13—1118 € sy W1 3-—3— I‘3= 3+

(e = base of natura% logarithm). Rewrite:

§3 AA} XY Yy
By = e e e Suwy (1+E,)( +44)(1 + 7).

Now AA3 is estimated as ZZS, but X remains unknown. Hence, when Z15 is

measured (with the purpose to find u1), we may conclude that the unknown

Uy is situated within a 0.95 confidence interval of broadth 46’(E)
around a central value 213(1 - AA3)(1 - i). In the same way on day

i=2 the true unknown value u, lies within the interval of broadth

40‘(E) around the central value z23(1 -151A)(1 - %), whereas the two

0'3 values may be dlfferent. Although the true valuedf A is not known this

does not matter, because all central values are affected with the same

factor 1 - X on each of all days. This fact does not influence the
"comparability" of the figures,

3.2.2 Accuracy
Consider instrument 3. For each of the n days the value of AAi3
is calculated according to (5) and its _accuracy o(4L, 3) according to
(7). The accuracy of the overall meanldA3, see (11), follows from the
statistical theorem that if y = X+ Xt ... x, thenoﬂ =0%, +
c’ +.. 0 n in case the varlables X are uncorrelated. Appllcatlon of

th1s theorem here gives:

n ' n
(12) W) -l A ‘HQZ (- + 2
i=1 i=1 J=1

In case on one or more days one or more measurements would fail, then
one should bear in mind that the summation within the brackets in (12)
does not comprise k — 1 terms. Again Gij stands for o(E, J). Next it
is desirable, but not necessary to make the following assumptions

°1j does not depend on the day, that is cj is independent of the level
of radioactivity, sothat the suffix i may be dropped. Then (12) may be
rewritten as:



(13)

L k=1
(14) J*ar) = . or O‘(AA) =0

o<
(14a) When k is large, then |o(dA) ¥c/An

3.3

A k
@al-L00 - H22 L LS o2 l [+ (x-2)0?)
n 1 J

14

o K
The same applies for j =1, 2, 4, . . . k; here o = -222 0‘3
If moreover Oy =G, =« . . Oy Say G then

k'; for each j

Here we like to draw attention to the theorem in the footnote on page 8.
For instance, for j = 3 we have02 —oﬁ(g ) + o’"(E ), i=1,2,..n.
We are able to arrange the measurements of the f11teraot1v1t1es in such
a way that for each level of radioactivity the 0’(2) has the same value.
If so, then the hypothesis 0‘13 = 23 = 5 . e =O’n3 implies the require-
ment that o(e, 3) is independent of the level. But &3 ’é’lg(fﬂ : ui)

and o(e ) = cr(u13 /u o Consequently, the assumption mentioned above
would :unply that the percentual standarddeviation of the random spatial
error possesses the same value at all levels of radioéctivity. 0f course
we should verify this assumption by means of a statistical test and (or)

try to examine its validity by means of physical considerations.

The "mean instrument" and the “reference" method

Reference is made to the methods i) and ii) treated under 3.1.1.
As already said we prefer to chcose the "mean instrument" method. The
reasons ares
a) Suppose we would choose instrument No.1 as the reference instru-
ment, ThenA Yo =¥y =4 =AE’2 + AA2 6 o o Ayk =¥ - ¥ =AEk +AA.k,
wi’chAI'I‘_.J = Ej - E1; AAJ. = Aj - A 3 J =29 3 ¢ « oke Again A yj may
be considered as en estimate ﬁhof AA and again this estimate is un—
= G,

1 2

« * Oy B8YyCT, then when measuring simul taneously during n days, each
A~

AA (3 =2, . k) possesses ,the same accuracy 0‘V2/i'1. In the "mean in-
’k
k

biassed. But what is its accuracy? Let us state for simplicityo

strument" method, this is gJ=— . Since 1—{21-(1 the "mean instrument"

method may be called better than the "reference" method., For large k,

the accuracy of each A/A? is nearly VY2 as large.



I

(15)

b) The second reason has to do with the verification of new instru-

‘ments,

Suppose simultaneous measurements during n, days have been made with

k non-identical instruments 1y 2y 3. . .k at one and the same place,
These measurements have given the estimates (6I1)k’ Q(Zé)k . . (ﬁii)k.
Next each instrument is sent back to the station of origine, Now on
certain day a new type of instrument, say N2 k+1, is introduced; there
are reasons to suppose that its systematical error differs from the
other ones. How to estimatel&Ak+1? Of course it is unpractical to re-
install now all k+1 apparates at one and the same place and to perform
again simultaneous measurements, say during Ny days. It is also un-
necessary. Suppose one decides to make simultaneous measurements during
n, days with the apparates 2 and k+1 installed at one and the same place,
Let us study how things turn out when applying both methods: I:'"mean

instrument" method end II: "reference" method.

A
The n, duplomeasurements (instrument 2 and k+1) give (AAk+1)2 as an
estimate of AAk+1‘ If it would have been possible (but it is not) to
install all k+1 instruments at one and the same place, then the N
PN
8imultaneous measurements would have given (AAk+1)k+1 as an estimate
P AN .
of AA, ,. Hence the Xglues (AAZ)k and (AAk+1)2 are available and we
would like to know (AAk ) « The question arises: how to make the
+1/k+1 A
best linear combination of Q(Zz)k and (AAk+1)2 ? As said already
A
« s A . A = - _
(AAz)k is an estimate of ( A2)k defined by ( A2)k Ay - A+ A

+ A . Likewise (ﬁ\AkH)Zestimates(AAk“)2=Ak+11-A1{+1+A2and (ﬁk-ﬂ ), £ ti-

mates (AAk+1)k+1 = A - A7 A+ oo A+ A .4+ It turns out
2k k

that (84, 1)y pq =) (88 )+ (E5) (84,)) -

' k

. . . . 2k '
For this reason we take the linear combination (k+1)afzk+1)2+(E:T)(AA2)k

as the best estimate of AAk+1 o

The estimate is unbiassed since its components are unbiassed,

Next we are interested in the accuracy, say 05(I), of this linear combi-

nation., Take for the sake of simplicity oy = Ty = o « .O'k = °k+1, say

oy then we obtains

(oo’ o+ o2 @]
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In case n, = n., say n, then

k(3k-1 3
(16) o5(1) = ( ; — -0
n(k+1) n
k —3 o

II. Next the second method, with instrument N2 1 as reference instrument’
will be discussed, We would obtain:

P
(AA2)k as an estimate of (aA

2)k A2-A1 (nk days) and

(/\ ) n " " " "
/\Mk” 2 (Bh 15 = Beyq-4y (n, ) and
( ) " n " " - "

AAk+1 k+1 (AAk+1)k+1 = A 14 (nk+1 )

P .

The values of (AA2)k and @§2i+1)2 are available and we wish to esti-

matelSAk+1. This means: there have been made. simultaneous measure-

ments during n, days with the k instruments 1, 2,.3 . » ok, and n, 8i-

multaneous measurements with 2 instruments N2 2 and k+1. We see

(AAk+1)k+1 = (8a,), + B4 4), , sothat we combine (52;)k and

( in the same linear way as an estimate of .40 This esti-
+172 +1

mate is unbiassed, since its components are unbiassed. Its variance

becomes:

2 2

(1) oA(I1) =(— + —)o?(does not contain k), if again Ty= 0o Oy q»88YCT ,
n, n

2 k

and .

4
(18) o5 (II) = - o®, if n, =mn , say n.
: n

We now compare (17) with (15). Since op(I) < o4(II) for each k and

each n, and n, we prefer the "mean instrument" method over the

Yreference" method.

4. Random errors

In the foregoing chapter it has been shown that numerical values
of the accuracies of the estimates A/A\J of the systematical errors AAJ.
can be computed only if the standarddeviations CysT o o o & o, of the
total random errors are known. Thus, the question arises how to find

these standarddeviations ?



4.1
4o1.1

4.1.1.1

(19)

(20)

(20e)

(21)
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Another reason to pay attention to these random errors is that a
better éomparability between the final figures can only be obtained

if both systematical and random errors are known,

We shall consider two cases:

a) Simultaneous measurements between k instruments installed at
one and the same place are carried outs

b) Simultaneous measurements between k instruments.installed at

the stations of a given network are carried out.

Simul taneous measurements at one and the same place

Estimates

Duplo measurementsy; k = 2

Let u; be the true air radioactivity on day i3 i =1, 2, . , n,
Per definition X; = lg u.. The instruments give Ziq9 zié pC/m3 and
Yi10 Y500 The instruments are installed so close to each other that

they measure the same true unknown value uy, sothat:

Ti1 =X * Byv hy and g, =x + B4 a,

For the sake of simplicity we will drop the index i,
Each day gives a difference 4=y - I, = (§1 - gz) + (A1 - A2). These
n differences possess a variance, say 8y We have

§ = sf + sg - 2rs192, and if E, and;gz are not correlated, then

Op =0 +0'§ (for n —de 3 T —>p= 0).

Here sf is the variance of the n values of ¥4 (n—m ; 5y =—»9,)

and sg the variance for Yo etc,

There are two cases: )

Case a):01 =0, » Say o ("identical® instruments with respect to the
random errors). Thenoi = 2@ and the best estimate, say'1>,
of ois found by means of

N
o =% SAw/'Z




(22)

(22a)

4.1.1.2

(23)
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Case b): oy £ e It can be proved that the only linear combination

of 812, sg, SA2 which gives an unbiassed estimate 01‘0'12 has
the form
s N
2 2 2 2 . 2 2 2 2
0'1=%[SA+31—52] and in analogy 0’2=%-[5A+82—s1].

Attention: one of these ¢® values lies above, the other below -%—sg .

If on the basis of physical or instrumental reasoning one is "certain"
that01‘= o3, We can use (21) immediately., If the equality seems un-
certain, it %E\?ecessary to apply a statistical test in order to exa-
mine whether o3 and o3, see (22), differ statistically significant

or not. Then also the accuracies of these estimates are needed. For
this detail see 4.1.2.

Sometimes it is interesting to test the assumption p(§1, §2) =0,
that is the hypothesis that E, and _F_I_z are not correlated, whence
(202) would follow. Therefore we rewrite (22) as follows:

A 84
0% = 8182(;;— r)
S : S5
a5 = 818, (5= - 1)

1

Here r is the correlation coefficient between. the n pairs y,, Yo
(n == y T —> p).Generally even in casep = O, the value of r will
differ from zero,

Attention: p = O does not imply oy = oy!

Triplo measurements; k = 3

We proceed in the same way:
T =X+ B A 5 Fo=x+Bythy 5 yy=x+ By o+ Ay
Again there are two cases:
Case a): o,= 0,= O

2 73
of the n values Y1=Y5 s etc. we obtain

y say o. When defining 812 = s2(y1-y2) = variance

N1 1
62 = 3'532(Y1—y2) + 92(Y2"y3) + SZ(Y3—Y1)} = g‘(31§ + S§3+ S§1)

Case b): 0’:1< c5’2<0'3 (at least one<sign).

N N
It can be proved that the best estimates éﬁ\, 0'22, 0‘23 of 021, o

ares

2

> andoé



(24)

(25)

4-10103

(26)

(27)
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A

2 2 2
o =% (s, - 853 * 813)
A 2 2 2
oy =% (s5 - 839 + 815)

2 2 2
{’; =% (s3) - 8y, + 553)

As soon a8 0y =0, =0y, say 0, then (24) gives three estimates of
the sam\e{and averaglng these estimates gives expression (23).

It is possible to rewrite (24) in such a way that the correlation

coefficients Ty, T r<y1,yé), ryq and ry, (which are not related)

appear. We get

N b JJUPES, Py T r I" PN . r
2 2 J127y >_ 2 23712, _ 2 13723
oF = 8§ (13); 2. 42 (1 "'71;—)’ o2 - 85 (1 - 12)

Four simul taneous measurements; k =4

NOW_)Q =§+§1 +A1 o o ;[4=J_c+g4+A4. Again there are
two cases: '

Case a): 01 = 0p =03 =0,y 88y 0. One obtains:

S )
2 1 2 2 2 2 2 2
o =1—2-(s12+313+s14+s23+sg4+834).
For the proof, see in 4.1.1.4.
Case b): 51\{02 60-3 40-4 (at least one <sign). Then:

/0'?= 3 (:s12 + 89y + 814) —%(523 + 354 + s§4)
/cr?-—-%(sg +s§4+s12)-g(s13 s124+s§4)
/o‘?=% ( 324 + 531 + 332) "'Z (812 + 31244- 334)
Zi\,_. ;‘ ("21 * s’42 * E‘43> - ?a’ (5122 + s123 + 333)

When trying to rewrite (27) by introducing the correlation coefficients
T1gr Tq3 T1gr Ty Togs T3y We should bear in mind that as soon ag
k >3 these correlation coefficients are interrelated. This can easily

be seen as follows, Since ¥y= x+§1+A1 o . y4= x+E4+A4 and because

E  and E, are independent (r#t), we have:

T



(28)

4.1.1.4

(29)

(30)

Note1)

2 2 2 -
Tyo = sx/s1 853 r13 = sx/s1 s3, r14 = sx/s‘l s4‘ etc. Defining d.1==sx/s1
etc. we get 6 equations with 4 unknowns dy, d2, d3, d4, namely Tip =
d1d2; Ty = d1d3; r14 = d1d4; Toy = d2d3; r24 = d2d4; r34 = d3d4.
Consequently there must be interrelations. They are: r24 = r, 41'23/1-13

and r34 = T, 4r23/r1 o*

Introducing these r's in (27) we obtain:

e T4 AT VoS T, T
of =82 (1- 121y ; B 2 (1o 224

23 34

P~ r,,r P rT,..r
0'2 = 82 (1— —A——B 31) H 0'2 = 82 (1-— "ﬁi"———1 42)

3 3 T4 4 4 Tyo

N.B. As soon asoy=0,=03 =0, sy say 0, then (27) gives 4 estimates of

the same o™ Averaging gives exactly (26).

Simul taneous measurements with k instruments

General formulas

Now yy=x + B, + 4, . . « L=X + B+ A

Case a):o'1=o’2= + + .+ Oy SBY G

> 2 2 2 2 2 2

This may be proved as follows.
The variance of the values Ti19 Yip0 ¢+ « Y On day i is defined by
, 1\ 2 1 K
91 = %=1 Z_ (vy5 - ;)7 5 where y; = Tc'z Iij
J=1A =1
On each of the n days (i=1, 2, . . n) an expression as (30) can be
calculated. Because of the assumption that ¢ does not depend on the
level, the overall best estimate 02 of 02 is made by pooling these n
values (30). Pooling1) gives

On one or more days one or more measurements may drop out. Then pooling
should be carried out in the correct way, that is by taking into consi-
deration the correct number of degrees of freedom: ki ( £k) instruments

o/n\day i, then dj=ki-1= number of degrees of freedom on day i and

2 n 2 n " R
o = Z sy 44 321 dj. When each kj=k then expression (31) again holds.



21

P (k—1)s12 + (k-1)s§ + . . o(k-1)5121

<
(31) 0'2 = n{k=1) =Li=1 L

Next the following mathematical theorem is used:

—k k
2 1 2
(32) > (v, ;) =-§ (yi, = ¥54)
L 5.1 ij Y4, k r, 4=t 1T it
t>r
Substituting for instance k=3 (32) furnishes

2 2 2 1 2 2 2
Ti1m93) "+ Gypy)™ + Ggyv)® = 5 317952 (r35933) ™ (r537)

(7; 573/ n(ie=1)
=1 *

Using this theorem in (31) we obtain:

-
S
> 1\ 2 2 2
33) | & = Zr,t=1 "r,t [ M o, = 87 (royy)
ty>r

Substituting k=3 one obtains (23)

Case b): 0,{o,&¢. . & (at least one ¢ sign)
L SVk

e ‘ k
1 2 1 2
(34) 0"2 = — z S, , = m— s
1 k=1 =2 13 k-2 _j T, t=2 rt
tor ;
In general form (1<j<k)
A k k
1 2 1 2
(343) 0‘2' = — Z s - —— Z s
J 7 k1 vl IV k=2 r, t=1 rt
v#j Tyt
t)r -
4.1.2 Accuracies

> .2
One should not be content with only the estimates o of o
without kg);ing the accuracies of these estimates, An extremely in-
accurate ¢ is alm/os\t valueless, Moreover when verifying whether two
or more estimates o‘? are statistically different, the application of

a statistical test needs knowledge of the accuracies of these varian-

ces,

The case % =0’2 =+ ¢ +0 is the simplest one. We will start with
treating this situation and refer to some well-known statistical for-

mulas,



(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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When one draws random samples of m elements from any population and
computes the variance 82 in each of the samples of constant size, then

the value §2 is a stochastical variable with a mean value:

e(s°) =o?
and a variance:
2.2y _ 1 n-3 4
o—(_s.)=m(}14"'m_ 0.)0

» 1 m 1 m
Here s =1T—TZ1 (xi—x); X=Ez1 X 3
0'2 = variance = Zth moment in the x population:

32 is an estimate of 0’2; p4 = 4th moment in the x population. In parti-

cular for normal populations we have:

O_Q(EZ) =-—2—O'4 or 0.(52) =C’2 m—ff
m-1

In the same way the standarddeviation 8y defined by\/-;z, is a stochas-
tical variable, with

1
C(E)EO"’]—W 2’0’1—% ' and

0'2(_5_) 2 02/2(m—1) °=’o’2/2m approximately for large m.

PN
Referring to ( 31), where the estimate o° is based on n(k-1) degrees

of freedom, we replace m by n(k-1) and s° by0'2 y80 that (37)and(39)

gived(gz\) Y 2/n(k-—1) for n(k-1)>>1

(> ¥ o\ /2n(i-1)
2

Since 0'2 is known, but estimated as 0'2, this estimate 0'2 must be sub-

2 N
stited for 0 in (40) andV'o“ must be substituted for o in (41). Then

- \}/A\
/U\(éz\) ’;ng\\/z/n(k-ﬂ andQ(g‘go/'\W/Zn(k-U, with/o\’= o

Interpretation (although not quite correct): the 95% confidence region

"for the unknown 0’2 lies between

N o N\ YN
522 NP and o2+ Fo(d)



(44)

4.1.2.1

(45)

(46)

and (only approxiniatively) the interval for ¢ lies between

V?— 2/;(/02\) andv/02\+ 2/0\'(@ or, better,é\- 2/;(?) a.nd:r\+ Z/O\G

Duplo measurements; k = 21)

There ar two cases a) and b).
Case a):o-1 = 0, 88y C
Substituting k = 2 in (42) we obtain:

D AN

Case b): oy £ o,

D>
It can be proved that the variance of the value 0‘12, which isa

statistical variable, estimated by means of the n pairs ¥qs
Yo via (22), is given by

AN
2,72y _ 2 1 2 2 2.2
o (0-1) = = 0‘14 + E:T{o'x(of +0,) + of10'2} and likewise

2,7 2 1 2, 2 2
PG« e+ iR B il

The values 0’12, Og, o’i are the variances of the values Yis Yoy x if
n » », Here the variance of the true unknown value x (varying from day

to day) appears. For k>3 0’}2{ does not enter into the expressions,

In practice we know neither 04y nor G,y noOT Oy 0f course we substitute
61\ and é; from (22) for 04 resp. 0’2, but what about 0'x ? )

We have 0‘2(y1) = Gi + of and 0’2(y2) = oi + 0‘2 or anc = 02(y,) - o2

= 0'2(y2) - 0‘2,50 that it is obvious to substitute for 8:2: ¥ 0 the ex-
pression ‘

3 e
(47) % {(s%(y,) -02) + (e2(r,) - 02 }= 4 s%(y,) + s%(y,) - 2

Note 1)

: 2 ) g 2 2 .
Substituting (47) foro _ and 0§ resp. > from (22) for oy and 05 in

(46) we finally obtain:

See also the paper "On estimating precision of measuring instrurents
and product variability" by F.E.Grubbs in Journ.Am. Stat. Ass. 43 243
1948.



(48)

(49)

4.1.2.2

(50)

(51)
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PO AN N
1 2 2
F(0?) = 251 of - s26%(y,)]
2 1
0'2(0'2) = ;F[ O‘g - S. (y2)]
N2
2
,ifo_#o. Zere 0'14 2 o}]

If one is certain (on non-statistical grounds) that x does not vary
during the n days of simultaneous measurements (0’X = 0), then (46)
may be rewritten with the help of (22) as

)
NN o N
2 1 2 2
a%(cf) = o (@5 + &)
SN N o‘.2 > ifo, =0
0'2(0'2) - =2 (0'2 + s2)
2/ 7 n-1 2 A

These expressions may be used when it is known that during the simul-

taneous measurements the level was constant day after day.

Triplo measurementsg k =3

Case a): oy = 0, =03, say . Then (42) gives (k=3)

_»|é\(?“\> RNV

Case b): 0'1< 0'2< oy (at least one <sign)

It can be shown that the variances of 94, og, o‘§ are

2,72 2 4 1 2 2 2
o)) = = o7 + — [ o] o§+o‘2 o§+0'3 of]
N
2 2 4 1 2 2
o%(0%) = 25 9% + 7 [°§°§+"3"1 + o oF
N
2,52 2 1 2 2 .2 2
o (0'3) =n70“31+ 3 [o§0'1 + 0505 + 05 0‘3?]
In case a statistigg}test would lead to the conclusion that 0‘ 0’2,0‘3
do not differ, it is/correct to average the three expressions in (51),
VOR
but (50) should be used. Averaging would furnish 02(02) 04 but

(50) gives -1-0'4.

Substituting the estimates (28) in (51) and 5122 = var. (y1—-y2) etc. we
obtain as estimates:
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S Vo
1
(52) ACHRE= BEARREN
3 1 T 2 2
o (?2) = oot [o5 + s5395]
> 1 2 2
o (G§) = = [og + 8383

Such expressions would facilitate the computations. Firstly one
makes the difference y,-y,, ¥.~¥4y ¥ ~Y¥,. Next one computes the

5 1720 2703y 3T 5 5
variance 8¢5 of the n values J1-¥oy and likewise Sp31 S3q- Then
with the help of (28) the estimates of the accuracies are calculated.
Finally the estimates of the accuracies of these estimates can be

calculated, see (52).
73 2.0
Accuracy of 07 is defined by No (0’1) etc.

4.1.2.3 Four simultaneous measurements; k = 4

Case a): o) = o, =0y =0, say o. See (42), we obtain

A D e
(53) o(o®) = o\ 2/3n
Case b):0’1< 0’2<0'3<0‘4 (at least one < sign). We obtain
4
S 20
22 1 1 2 2 2 2 2 _2: 2
o (0‘1) =7+ [jz—(cr1 O, + 07 03 + 0 0'4) +3—24;§(o—2 o§+
2 2 .2
+ o‘g o, +O3 0‘4):]
(54) ete.
0'2(@) ﬁ+—1— [—4—(0’202 22 4 o? o2) + 24— (02 £ 4
4=n-1n-13241+42 4737 T 22 1 %2

When substituting the estimates "J- from (32) in (54) it will be
possible to simplify the expressions; we did not work out this

substitution in this report.



4.1.2.4

(55)

(56)

4.1.3

(57)
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General case; k instruments

Case a): 0y =0, = «eees 0y, sayo.
/c}(?) N 2/n(k-1) |

Case b): 0'1<0'2< cee S o) (at least one < sign).

' 2

A 4o k k
A oty [ At P 22

n n (k=1) 2 4 (k=1)%(k-2) T, t=2 T
t>r
Analoguously for j = 2,3 ....., k .

N.B. We have always distinguished two cases
a): 0y =05 = «... o, and b): q<0—2< ..... <<yk (at least one < sign).

The second case skould be understood as follows: we know nothing a
priori about the mutual relations between the O‘J. values. It may be
thato, =0, = 0‘<o‘4<0'5 (k=5), but also that <o <0‘3 oy =05
etc. If we knew the relation, we could use this information and quite
different expressions for ;3 and 0‘2(02) would result., We did not treat

such a case in the present report.

How to find a firm estimate ofd ?

Suppose we know for certain that some instruments possess the same
standarddeviation o of the random errors, but o itself is unknown.
We want to find a firm estimate of 0. How long should we measure with
these instruments simultaneously at one and the same place and is it
possible to decrease the minimum duration of these measurements by

placing more identical instruments close to each other ?

The value ofG’\ which can be considered as a firm estimate of o can not
a priori be indicated; it is more or less a question of taste. Of

Pa
course one should consider the accuracy o(o) with which o is found.

The requirement, which is to be satisfied, will be of the type
A ~
o(@) FS t ; e.g. t = 0.05; 0.1.

Then (41), when substituting & foro, gives

n}[ 2(k-1 )t2] -1 days of simul taneous measurements.
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If t = 0.1 then n 250/(k-1). Thus, with 2 identical instruments one
should make at least 50 simultaneous measurements; with 3 at least
25; with 4 at least 17; with 11 at least 5; with 51 at least 1. At
first sight the decrease of the minimum n with increasing k looks
strange, but it should be realized that the basic assumption is that
o does not depend on the level of radioactivity. Then one could
make simultaneous measurements with a few identical instruments on
each of many days as well as simultaneous measurements with mény

identical instruments on each of a few days.

Simul taneous measurements in a network of stations

The statistical considerations with regard tc the estimate of the
standarddeviation of the total random errors when performing

simul taneous measurements in the stations of a given network in-
stead of at one place (per station one instrument; k stations) have
been developed by Drs. W.J.A. Kuipers. Since these considerations
would fall outside the scope of the present report (matrices algebra,
etc.) we only give here the line of thought. The reader is referred

to a separate report of Kuipers for details.

If the true values uy of the specific artificial atmospheric radio-

activity on day i possess the same value at all k stations, then

this situation is completely similar to the situation that all

instruments have been installed close to each other at one at the
same place. How to know whether all uy values are equal? Sometimes
on physical grounds the assumption may be considered as true. If not,
then the next simple hypothesis would be that the field vélues uij
on day i are linear functions of the positions of the stations. If
uij were plotted in a vertical direction then the ug surfape would
be flat. If gj, nj are the cartesian coordinates of station J and if

xij =1lg uij on day i at station j, then we suppose

¥i3 = Bi1 TR0 By By gy
The number of days is n, the number of stations ky i =1,2,....n3

j = 1,2,o-o-ko

The true values of the coefficients 4 are unknown. Since the position



(59)

(60)

(61)

(62)
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of the plane surface uy will vary from day to day, the true values

M1 My By will also vary from day to day.

Next write yij = xij + Eij 3 Eij = random error:&ETi'j = 0 for
each i and each j.
We suppose that systematical errors are absent or that corrections
for systematical errors have been applied. On each of the n days the
. . A A~ ~
values of;1.1,;112, M3 shoulc be estimated, sayti1s Mo My by
means of the values Yi19 Y50 eoeee ¥, ik (i =1 92 «ees n) on each day
separately. With the help of these estlmates u 1’/312’/~i3 we can
calculate on each day new estlmates y1, Yo ovv- yk of x4, Xp eeee Xy
using (58) by subst1tut1ngg¢1, “2’ ;3 for By Moy M. Consequently,
we have two estimates of the same unknown le’ namely ylj and y ij
for each day.
L E, 7
et be i5 = yij - yij .
Let be again 9, Oé ceosa Gk the standarddeviations of the total random
errors at the k stations (independent of the level of radioactivity!).
It is possible to derive the following expressions
2/ 2 2 ;2
O—(E1)=D11O12+.000- Dk—]o_k
2% 2 42 2 R
g =
(E2) = D%y + eeeet DO
etc.
2 _pl &2 2 52
(Ek) - Dk1 1 + o 0 00 Dkk k

Here the D's are functions of the coordinates of the stations in the
network. They are the elements of a determinant, the value of which

is identically zero.

The measurements on the n days give estimates of Gz(E ) Gz(A ).

Although it is not necessary to assume 0} = Oé = ....tfk, say o, this
3§§umpt10n simplifies the calculation considerably. The best estimate

0’2 of 0’2 becomes

A sz(E1) sz(Ez) sz(Ek)

D: . D,

This expression is so simple only as a consequence of the assumption

that the u field would be linear in all directions. As soon as this

assumption is not valid, expressions of degree two, three etc. in
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the cartesian coordinates should be used instead of (58). Then the
expression for 0~ would become very complicate. For this reason it

is highly desirable to examine whether the mentioned assumption is

to be rejected or not. Such a statistical test needs knowledge of

the accuracies of the estimatesif},if;;if; on each of the n days,

It is possible to derive rather simple expressions for these ac-
curacies. Once knowing these accuracies it is also possible to select
all the days on which the true values u, although belonging to dif-
ferent stations, are equal or "almost equal" (then we may speak of

pseudo simultaneous measurements).

The proposition of Grandjean

Introduction

At the Buratom meeting of 26 November 1959 the Belgium delegate
Dr. J. Grandjean (Royal Meteorological Institute) proposed to make
a thorough comparison between the instruments, which measure the atmo-—
spheric artificial radioactivity in the various countries. When study-
ing the figures given by the stations of the European network, especi-
ally when they refer to one and the same day, it seems obvious that
they are not sufficiently "comparable" and that they should be correct-
ed for systematical errors, for some stations even in a marked degree.
A way to find the necessary reduction factors would be to install all
typical instruments at one and the same central place and then to make
here a series of simultaneous measurements. If the instruments are
installed close to each other, the differesnces between the daily
figures can only be of systematical and random nature since it is per-
mitted to say that they are all measuring the same true but unknown
atmospheric radioactivity. Prof. Bleeker, the Netherlands' delegate
at the meeting, expressed the desirability to examine all statistical
aspects beforehand and to try to estimate the minimum duration of
such an experiment. Such a study could also give some indications
about measurements to be performed by each of the pérticipating

countries prior to the comparison.
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The principal purpose of the proposed simultaneous measurements,
suggested by Grandjean, is to compute the so called systematical
error (s.e.) with which the measurements should be corrected so that
the corrected values are better comparable than the original ones,

A theoretical statistical attack of the question immediately

leads to asking three questions:

a) Since the Grandjean experiments will be performed during
a finite (preferably a small) number of days, the resulting

systematical errors will be inaccurate. Which accuracies are

required for practical use ?

b) It seems senseless to correct for very small s.e. Which

level should be surpassed before corrections are applied ?

c) The performance of the Grandjean experiments will cost
time and money (the instruments must be brought to a central
point; simultaneous measurements are to be made very carefully;
the results will have to be analyzed statistically, and so on).
We like to know, even before the experiments will start; during
how many days simul taneous experiments should be made. How to

estimate this minimum duration ?

This leads to the development of a so called

duration- and selection criterion.

The duration criterion D.C. aims at giving a minimum number of

days of simultaneous measurements with the instruments of the
participating countries at one central point in order to fulfil
specified conditions.

The selection criterion S.C. After having made n simultaneous

measurements (n given by the D.C.), the s.e.'s can be calculated;

z&AJ =1 .... k. There may be small and large ones (in a relative
sense). The S.C. is intended to indicate the level IAA I for each of
the instruments beyond which the measurements made w1th the instru-
ment j should be corrected both in the simultaneous experiments and in
future as soon as the instrument is brought back to the country of

origin.

Of course it is desirable to start formulating criteria as

general and as objective as possible, but in the last instance, when
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numerical values are to be decided upon, the preference of the user

is decisive.
We consider the following situations.

A. The standarddeviations Gy Tpy eeee Oy of the random errors are
exactly known or highly accurately measured a priori.
A1, ) =0, = «us. Oy 88y 0.
A.2. The equality does not hold; say oy <0'2 <.....<o’k (at
least one< sign).

B. Theoﬁ ey Gk are not known a priori, but are to be measured
during the Grandjean experiments.
B.1. o, = Oy = +se. O, sayo.
B.2. The equality does not hold; say O, <bé§.....sgck (at

least one < sign).

It is easier to deal with case A than with case B. A good a pricri
knowledge of the O's will be necessary. The way in which O can be

1
estimated before the simultaneous experiments will start has been

described fully in chapter 4.

The standarddeviations T4y Tp sees 0y are known exactly

The standarddeviations are equalj o, =0, = 0,

2 = +eee Oy sayo.

Duration criterion

It seems reasonable tgﬁsontinue the simultaneous measurements
so long that the resultingAAj value is a "sufficiently accurate"
estimate of the unknown true value AA ,Tor cach of *the k& instrunents.

Now the standarddeviation G(gzj) onTKj is a statistical
measure of this accuracy. Consequently the requirement may be trans-

lated as follows: Let the series of simultaneous measurements be

It goes without saying that in all following considerations the
hypothesis is made that each of the . and each of the A A; values
is constant in time, and doesrmﬂ;depeng on the level of atmospheric
radioactivity. Of course this hypothesis should be verified. Bven
if it is suspected not to he true on strictly theoretical grounds,
this hypothesis may act as an working hypothesis provided that it
is not obviously rejected by the numerical facts.
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(67)

(68)
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sufficiently long so that the ratio <KAA ) s sz[ "sufficiently
small" for each j (=1, 2, 3 .... k). On first thought one would
choose for this ratio a prescribed value (which itself is to be
decided by the user). On second Eggught however, it does not seem
practical that both a value e.g. AA = 0.02 and a value AA = 0.50
should be calculated (measured) w1th the same percentual accuracy
of for instance 5%, in which case the 95% rellablllty region for
84, would be 0.018 to 0.022 and for AA, 0.045 to 0.055. It is
obvious that very small AA values may possess g very large absolute
inaccuracy; in other words a very broad 9536re1iability regicn as
0.00 to 0.05 for the unknown AA=0,01 ispermissible, but an analoguous
percentual accuracy for a large systematical error, say 0.80, is not
permissible. Consequently we should not fix the ratio CQ;Z ) e (AA )
once and for all beforehand, but let the ratio depend on the value
of‘AAJ itself. This seems impossible because the AA. values are un-
known; we wish to calculate them by means of the experlments.
Nevertheless we could continue as follows, in any case satisfy-

ing the requirement that the percentual accuracy decreases with

increasing absolute accuracy.

How to do thls° One of several possibilities is to require
that a value mAA. (with m:>1) is measured with a percentual standard-
AN
deviation which is m times as small as that of AA. Formulated

mathematically
o~ A A
o(mdA) lmAAI = %-O(A A) :|AaA| or shorter

R(zdd) = R(3A)/n

P
A
when 1ntrodu01ng R(AA) G;Né = relative accuracy of the
| Aa| systematical error.

Condition (64) means
A~
O(AAj) = constant, say d

It is easily satisfied just because all g's are equal.

. =~ k-1 .
Since o(AA) = ¢ o for each j,

from (66) follows:

- l‘f{l £2 with £ =0 /d.
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This is the duration criterion in a very simple form. For a sufficient-

ly large number of instruments it only depends on the ratio of the
standarddeviation of the random error and the accuracy of the system-

atical error.

It seems obvious that one wishes to know the systematical error much
more accurate than the random error (to know the random error implies
to know the standarddeviation of it probability distribution). In
other words: we wish d<K gor f =¢/d>1. How much f must surpass 1
depends on the preference of the user.

There are two possibilities (attention: theo is given a,priori):
I. d is fixed beforehand, then f depends onocj; e.g. d = 0.01; f = 1000
II. f is fixed beforehand, then d depends ono; e.g. f = 55 d = 0.2 &

5.2.1.2 Selection criterion’

It seems reasonable to correct for s.e. only if the difference
between the corrected value and the not corrected value is "sufficient-
ly high". In defining what "sufficiently high" means, one should take

into account the existence of r.e.

In the following the value IAAjl is chosen so large that the whole
95% confidence region, laid around yj + IAAj [, lies outside the
0.95 region around the not corrected value yj. We propose to speak
then of a "sufficiently large" difference between the not corrected
value y'j and the corrected value yj + IAAjI . We therefore require
that point b in the graph underneath representing yj +] AAj[ - 20

is always to the right of point a, representing yj + 20 .

(69) or y. + 20‘<yj + ]AAJ.| - 20,

J f‘ZO'(AAj)
(70) or IAAjI >4c 2
}
|A A,I | S
J !
a 1). f i i A
e 46 — et 1G5 —]

In this reasoning the true 8A, is used. However, this true value is
e A~
unknown; the estimate is AAj. For OUXAJ) see (67).
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5.2.2

5.2. 2.1

(74)

(75)
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Consequently it should be so arranged that point b' is to the right

of point a, or formulated mathematically:

s S
¥y 20‘<yj + {IAAJ.I - 20(AAJ.)§ -, which gives
N -
Ba; >40c with ¢ = 1 + % l‘l-(;:—>1 and

[¢]

1+ %'A,;' for large k.

In this way even for the lower boundary of the reliability region

of AAj the inequality (69) applies.

Next we substitute the n value for (68) into (72) and obtain

|&5]>4 00 + 5

2f

In this way, provided that Cys Opy ween o) are equal and given

beforehand, the duration and selection criterium have been derived
see (68) and (73).

’

Both depend on the same, more or less arbitrary, parameter f.

The standarddeviationcr1, Tpy eees o, are not all equal

Duration criterion ‘

Let be o <0’2<0'3 ....<o‘k (at least one < sign).

we also have
Pa A~ e
o An) S (84,) .....<cr(AAk) .

Here we particulary should bear in mind, that generally o is not
related tob A, i.e. that any dependence between systematical and
random errors is absent. It may be that AA, =10 AA5 ando, = %-65

and so on. Nevertheless we wish to derive an expression analoguous

to (68) without any a priori knowledge about the AA values.

Referring to section 5.2.1 it is now impossible to require that (64)
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is fulfilled just because (66) %ﬁ\not true now; reference is made to
the essential inequality of the AAj values in (74)/2Pd (75). We
propose, however, to maintain the "requirement" o(AA) = 4 "with a

(76) small changement", and we require thatcr(iG.)-g constant = 4 for
=1, 2 «... k. ’

(77) Introducing Fj = [{?+ (k-2) crf} : (k-1)]%

- \ [ k=1
(78) so0 that o‘(AAj) =Fj 0 =12 ...k

(79) with F1<F2<F3 cer. SF,  then
from (78) and (76) follows
1 k-1 2 .
(80) n?;ET F i=1,2.... k.

With regard to (79) the minimum duration should be

1 k-1 2
(81) n - KL g2

Written in a different way

2
(82) kil £20° Eil (£%) where

T=F /T ; £ ror f=0/d

As soon as the given o's are unequal (in the sense thato
+++. =0, does not hold true), then T»1 and f*) f 1).
The proof of the statement T »1 for oy <:Gé cees <bk runs as follows:

1:0‘2..

T = o 4 (k-2) cii : (k-1)(6)2>1 would imply

~———

o+ (12) 02 > (1) @2 = (1-2) (D2 + ()2 .

Note 1) The following theorem is of importance. leen Xqs ’X2 seee X not
all being equal and defining

o(+) =[ 13k t]* b then 1% ¢(2)<«3) ete.

Or — 1 — 1
< (x9)%¢ ()? ete.
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(84)

(84a)

Now certainly &% (372
and certainly (k=2k7 > (k-2) (0 ) bebause<rk is the largest of all

05; thus we have proved.what was to be proved,

Cf course (76) must reappear as soon as ths value of n from (81) is

substituted in the expression (78) for 0(635). We obtain:

c@r) -a Fifp i1, 2...x
J k

and indeed (76) reappears as a consequence of (79' From j=1 to k
(with a not decreasing order of O9's) the (ﬂ\‘) values increase to d.
Attentions the smallest G(AA) (here j = 1) may belong to the instru-
ment with the smallestA A value as well as to the apparatus with the

largest one.

kel Fok ~ {k=1)f ;E + gkn-z)aE} /(k=1)
2

k Kk d2

In (82) we also read n =

Now compare with (68), where 0, =0, = . . . 0,, sayo. We see o® is
replaced by{(72 + (k=2) Ui }s (k=1), which is always larger than (3??,
as soon as 0, = Gé o o = Gk does not hold and Gk is the largest of all
O 's. This fact suggests a second "solution" of the problem:

maintain the expression (68) but replace the o by & . (2!16?53. Then
the duration criterium would tecome:

2
/-\ o
n_ls;:.\d =—f‘ with £ = &/d

It is difficult to conclude whesher (82) or (84a) is "better", be-
cause the definition of "better" in this connectisr has not been for—
mulated,

Once more st-ess is laid on the differences between the consequences
when starting from (82) or from (84a)°

In the first case all c(ﬁﬁi)$§d, whatever may be the j.

In the second case o(ZZB) = d Fj/(;, and this value grows, going with
J from 1 to ky from a value smaller than d to a value larger than 4,
It seems preferable to require that g&l}o(ﬂi}) values should be smal-
ler than d. h

It is obvious that any inequality of o's increases the minimum duration

n of the Grandjean-experiments. Morecver, it can easily be seen that
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(85)

Note1)
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the "more unequal these 0's", the larger the increase of n. Instead

1
of proving this mathematically ’, we only give some numerical examples,

Numerical examples:

Let us fix d as 0.05. We will compare the following cases,

1) o, = T, =0y (=0) = 0.30. Then (68% gives n, =.§ (8 gg)
24 days.
3

2) 4 =010 0o, =0.30 oy = 0.50, so that o = 0.30; ¢ = 0.117;

F3 = 0.429. Then (82) gives n, = %-(8:82) (8 §§9)2 = 24 x 2,0 =
8 days,
3) o = 62 = 0,10 03 = 0.70, so that & = 0.304 ;é = 0,170 and
Py = 0.575. Then (82) gives ny = £ (g gg)z (OO 30)2 = 24 % 3.69 =
84 days.

These three cases possess the same g = 0.30.

The result is n3:>n2>>n1, which illustrates the general effect, that
the larger the inequality between the o's, the larger the minimum dura-
tion of the Grandjean-experiments, Roughly spoken the increase depends

on the ratio of the largesttrk of all o's to the overall mean value T

Selection criterion

Suppose that the value of n is calculated by means of (82) (the
c's being given'!) and that during n days simultaneous measurements
have been made., Next the values of4613 are computed and again the
question arises which instrument should be corrected for systematical
errors,
Referring to (71), where now the G(Kzi) values are different for dif-

ferent j values (see (74)),we obtain:

IKA\I >>40' + 2 F §;1 5 J=1,2...k

An exact mathematical proof would require the formulation of the
popular wording "the more unequal". It is too academical to elaborate
on this aspect.
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The value of n is computed from (82), so that for each j the right
hand side (the selection level) can be calculated, This gives k
levels, As soon as the measuredlﬂj] surpasses its corresponding
level (and only then), the measurements with this instrument j de-
serve correction for systematical errors.

When (82) is substituted in (83) we obtain:

lA/A\J. | >457(qj + tj) , Where 9 stands for 0‘3/5:,

Hlro

tj for Fj/Fk and f for G/ d.

It is interesting to compare (85a) with (73). Whereas in (73) there
1

is only one selection level, the value of which is a factor (1 + >F
as large as the 0, now, in the case that Oy =05 =5 o %y does not

hold, there are as many selection levels as instruments. Even if o is
replaced by O, all these levels need not be larger than 4&, in con-
sequence of the fact that qj grows from smaller to larger than one
and tj grows to one, for growing j (1, 2, . . . k), so that certainly
for j = k the selection level is larger than 4 Oy but for small j
values (j = 1) the level may be smaller as well as larger than 4 &,

according to the value of 4,

Numerical example:
Let be k = 4; 0‘.l = 0,053 o, = 0,103 0‘3 = 0,153 0‘4 = 0,20 so that
¢ = 0.125; 0° = 0,01875 and F, = 0.1810, Let be chosen d = 0,05,

O.,125)2 (0,1810)2 _
0.05 0,105 ~
4,7 x 2,1 = 10 days (this duration is so small because of the large

Then the minimum duration, see (82); becomes i— (

d value).

See the following table for more details.



Instrument N=j | 1 2 3 4 remark
let be given & | 0,05 0.10 0.15 | C.20
F is 00093 00113 00169 00181 see (77)
q | Cs4 0.8 1.2 - 1,6
t ' 0452 0,62 0.94 1.00
let be measured
after n days L8| 0,70 -0.80 0.60 L0.50 sum=0
the selection
level 0. 41 0.65 0.98 1,20 see (83)
instr. needs
correction for
s.e. yes yes no no
because 0.70>0.41 | 0.80>0.65 | 0.60<0.98 |0.50<1,20

5¢3 The standard deviations T4y 0‘2 + « +0) are not known a priori.

In this case the Grandjean experiments are also used to calculate
t
the 0s, This complicates the analysis. We again distinguish between
two cases, First case: oy = 0'2 = 5 . .O'k, say o (the equality is known,

but the value of O is Unknown). Second case: thed 's are not all equal.

56301 Standard deviations are equalj 04 =0, = .+ « o0y, BaY O.

503.1,1 Duration criterion
Referring to (67) we should take into consideration that o is not

N\
known. The n simultaneous measurements furnish an estimate G, which

possesses an accuracy given by

' VS
(86) q/E) = =% and measured as?(@) T —

V2 n (k-1) Vz n (k-1)

This means that for each of the k instruments the 95% reliability

A, N\
region for the unknown ¢ 'lies between 6-\_ 20 (o )and{r\+ 2o (o).

In case O were exactly known, the requirement would be written as:
c@) = 0'\

-\ -
(87) {o+ 2@(0‘)1 %—1—]- =4 from which follows

-1

w

=d , see (66) and (67), but now we write analogously:

d

)
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(88) n = -151—'(-1- £ (1 FTQE-TT )2 with £ =& /d

This equality contains n implicitely. We wish to find n as an expres-

sion only in k and f and; if possible, in the form
n = k—l‘{l (£%)2  with £% = f.q.

where g is an function of k and f only,

The equation is of the second degree inv n. An approximativﬁ solution

1[@

Comparing (88a) with (68) we see that f has been increased to fi9 but

(see Appendix) is

(88a) ‘n'ﬁ Eil (fi)2 * = f.g.

the increase is the smaller the larger f and (or) the larger k. The
fact that the absence of any knowledge about o has led to an increase
of the minimum duration is easily understood, because the same data
are used for two purposes, namely for the calculation of the systema—

tical errors as well as for the calculation of the random errors.

Numerical example:

0-1 = 62 = 0—3 = 0-4 = 0-5 = 0-6, Sayo-e Take f = 50

1) ¢ known. Minimum duration n = 2-, 52 = 21 days.

2) o unknown. Minimum duration n = g'o 2 (1 + 5 30 = 26 days.

503.1.2 Selection criterion

Reference is made to the graph under 5.2,1.2., We again require that
the whole 95% confidence interval for the unknown true value which is
measured as y, lies outside the 0.95 confidence region of the corrected
value, but we should now take into account both the uncertainty in O
and in AA. Consequently we should yJ+2o‘(see (71 ) replace by

¥+ 2f o 20( o*)} s Whereas -k%:l- should be replaced by A 2(/)_\(/0})\"13"
As a result,(71) becomes:

(89) 7+ 213+ SN <y, +LIER) - 2(e% & |l 1o Dy A

with N\
N\
(90) (o) = g

Vzn (k=1)
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It then follows that

A
(91) |KA\3|>4O’c.c' with ¢ = 1 +%q >13 if k - 00 then ¢ -)14»4_
c'=1 +v=ﬁ>1° if k = 00 then c' = 1+ 2' m

The right hand side of (91) represents the selection level, Of course,

since 0 's are equal, although unknown, there is only one selection
level, As soon as the measured lﬂjl surpasses this level, instrument
J needs correction for the s.e.

The absence of knowledge about o has increased the selection levelj
compare (91) with (72). The influence of the factor ¢' is the smaller,
the larger the numbér of participating instruments. Next we substitute
n from (88a) in (91) and we obtain:

- 1 Yo 1
(91a) &% > 49 (1 + Y (1 4+ = — with f* = f.g.

We see that the correction level decreases both with increasing f and

increasing kybut remains larger than 4 G,

5¢3¢2 Standard deviations are not all equal; o, <0'2 .« o o <o'k.

5¢362,1 Duration criterion

1t is easily understood that as in section 5.2,2 the degree of
inequality of the 0's must affect the minimum duration. In the former
case the 0's are known, so that the inequality of the o's enters into
the n expressions by means of F,, see (81) and (77). If any knowledge
even with regard to the interdependence of the o's is absent, it seems
impossible to attack the problem. Now in practice we usually posses a
rough idea about the mutual dependence between ¢ values, although the
Ovalues themselves are unknown., This idea may be based for instance
on the sampled volumes of air. Such a rough idea should be applied as

follows.

Numerical example:

Suppose g, s 0‘2 2o e o Og is approxnnately 121:2:2:2:4, dut gy 1is

unknown., Then G = ag, _2 5ct’,1 and, see (17,
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(92)
(93)

(94)

(95)

= J=

F6 =UJ§ (5 0—12+ 4 x 160—1? ) = 3,720—1, so that T = F6/o_’ = 1,86 and,

using (82), n = g- £,2 3.5

If f = 5, then n = 73 days. In this way an estimate of n has been made;
some knowledge on an interdependence of the g values was necessary.
Sometimes this knowledge is very rough, hence also n is estimated very
roughly, but even a rough estimate is always better than no estimate
at all. In case the exact value of the interdependence of the o values
is considered of particular theoretical or practical value, it is of
course desirable to test whether the assumption made on this value is

valid,as soon as the o values have been estimated,

Selection criterion

It seems impossible to continue our line of thought in the most
general way.
Analogously to (71), but now giving indices j too (since the o's, are
not all equal), and at the same time each o‘J replacing by its upper re-

PN
Iiability limit ob + 2 o‘( o:]), say 7., 5° with

o (0' ) = cr /V 2 n (k-1) )s we obtain the requirement

where \'
F.(7) —\I’E {?j + 23(35)} + (k=2) ic + 20‘(0‘ )3 sV k=1 =
2. (e2)s,

k-1

analogously to (77),when replacing each o by T

The selection criterium becomes

F.(r) &
" k=1 4 _ L tuti
ﬁjl >4 'c,j’ + 2 Fj () = 4ta. + 2 Fk r when substituting

n from (82)° The largest F (that is Fk with the largest O‘k) can be

expressed in 0, as a result of the assumption that we know exactly or

approximately the interrelation between s Toy o e e G'k, without

knowing each o separately., That implies that in 0'13 0'2: c o o O'k =
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1 3 a, ¢ By o o o By We know the a's exactly or approximately. In the
same way o is expressed in 0y and hence Fk : 0 does not certain 0‘1.
Attentions it is sufficient to know exactly the interrelation between

the J's; in order to find the minimum value of n.

Numerical example 1:

Let be k = 3, the o 's are unknown, but we expect ©

1:3:110 —
- o2 2

Put 0'2=3o‘1 and 0'3=11 Oy, SO that CF=50’1 and = 43,7 0'1 .

gO’ :o_r.

1 2 3

3

In order to estimate the minimum duration n we compute, (see (77)) F
9.1 o, and T = 1.82,

If £ =5 is chosen a priori then (see (82)) n = % . f2.T2 = 55 days.
After having made 55 simultaneous measurements the estimates /6'\1, ’6‘;

and /0'§ prove to be e.g. 0,01, 0.04 and 0.13,s0 that, according to (51)
??(S?) = 0,0007, ‘??(éz) = 0,0014 and‘g>(é;) = 0,0088, so that

T4 = 0,011, 7, = 0,023, Ty = 0,148,

With these ¥ values we obtain F, = 0,062 F, = 0,063, F3 = 0,121

(see (94)). In this way the selection levels (see the righthand sides

(95)), can be calculated. The following table contains details,

Instr. No. 1 2 3 remark
Suppose 0 = o, 30, 116:‘

Let be measured o 0,01 0.02 0.13

Let be measured AX |[-0.60 -0,08 +0,68 sum O
Computed 7 0,011 0,023 0.148 T+ 25(0)
Computed F(g) 0,062 0.063 0.121 see (94)
Selection level 0.058 0,106 0,619 see (95)
Needs correction - | yes no yes

for s.e,

Because 0,60>0.058| 0,080,106 | 0.68>0,619

In this example the interdependence %urned out to be '6'7 3 é; H é; =

1 ¢ 2 : 13(which is an inaccurate estimate of the true value). We
assumed 1 : 3 : 11 before the experiments were started. With 1 ¢ 2 : 13
the minimum duration would have been Evith g =5 1/3 %3 o? - 58,0 012 3

F3 = 10,6 oy5 T = 2,07), see (BZH r = 72 days (larger than 55),
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Numerical example 23
Two cases I, II,

I. k = 33 all O's are known, e.8. 04 = 0.05 o, = 0.=0 oy = 0.15
II. k = 330 's unknown, but it is assumed that Oy 3 0y 10y = 1:(2%3).

(3 2 3). Extreme possibilities 1 : 1% : 3% anda 1 : 2% : 2%

Case I, n = Eil f2T2; choose f = 5, hence n = §~x 25 T2
7 ® 0.10; 2 = 0,017 .~ Pl - Q01T +.0:0225 _ 4171 5 Fy =0.130
T = F3/ G =1.3 and n = 28 days
Case II, —_ 4 2
. ° = . i . = . 2= 2' 2_ ’1 + 0'8
a) o, 1Oyt 0y =1 .12.3%..0’~20'1,o' 5.170'1..F3— 5 ]
8.17 o ; Fy = 2.960; .\ T = Fy o =1.48
Hence n =-§ x 25 x 1.482 = 36 days. ___
) 480,10y = 13 28 2525 = 2075 0° = 4.42 OF -.F§=
4.42 + 25/4 L2 2 . _ P p oo . -

Hence n ='§ X 25 x 1.152 = 22 days,

The uncertainty as to the true interrelation gyt cé H 63 leads to a
fairly large uncertainty as to the minimum duration ny,namely 22 to 36
days. Preferably one should choose 36 days.

Appendix
Rgference is made to (88). We wish to solve the unknown n. Putting
= f«;k-; y Q= T{_z_— and'x =Vn we get: ,
( X + Q) P=x orx" - P x =pq= 03 The solution becomes
+\/a
X = -\/7 + DPQqe.
1,2=8P-Vip Q.

Here only the positive sign can be used

x=Van=dpl1+V1+@va) /r (k)]
n=i—p2[1+1[]2 or
oo ket 2 [1 + V1 4 (4wf2k)/f(k-1)]2

- 5 5

Now for sufficiently large f and (or) k, we have approximately

E.:] T30 4+V1 4+ 4v2 /el A 41 4 2V Wk = 1 W2 /8 kD>
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o k=1 _2 2w k=1 2 22 \>Sk-1 .2
and n = == f (1 +V 2/8Vk) & =t (1 + ¥7E—) = s

or written in a different way

ng

nPEL (52 with - g and g +~1\Eé £f=5/4

k f

In this way (88a) appears.

Numerical examples
Numerical example 17/18 September 1961, De Bilt, K.N.M.I.

From 9 h 17-9-1961 to 9 h 18-9-1961 a volume of air 34.4 m3 was
sucked through the filter at De Bilt., The measurements of the filter-

activity and other qunatities are assembled in the following table,

date imz v img m?n f=b/k o dgy : =; Z :1 g
min | imp min -

Sept.

1?/15
18 | 445.8] 4000 17.2 | 8,62 26,0 | 1,62 0,2 5.2 | 16.2
19 | 360.4| 4000 20,4 | 16,46 17,7 | 1.67 1 6 17
20 | 305.8| 4000 20,2 [12,28 15,2 | 1.69 2 7 18
21 | 258.6| 4000 20,3 [ 14,20 12,8 | 1,71 3 8 19
22 | 222.6| 4000 20,4 | 16,46 10.9 | 1.73 4 9 20
23 [ 189.1 | 4000 17.0 {19.40 11,1 | 1,72 5 10 21
25 | 155.5| 4000 17.3 [ 23,17 9,0 | 1.76 7 12 23
26 | 144.7| 400 17.1 | 24.74 8.5 | 1.77 8 13 24

27 |133.7] 40C0 | 17.6 |26.42 7.6 | 1,79 | 9 14 25
28 | 116.2| 4000 | 17.7 |29.85 6.6 | 1.83 | 10 15 26

29 |112.7| 2000 17.5 115,37 6.4 | 2,58 | 11 16 27
30 | 111.2] 4000 17.8 |31,00 6.2 | 1,83 | 12 17 28
Oct.

4 87.8 | 4000 17.5 |37.98 5.0 | 1.89 | 16 21 32

6 83,1 | 2000 20,6 15,29 4.0 | 2,79 | 18 23 34

7 T7.9 | 4000 20,8 |40.56 3.7 | 2,00 | 19 24 35
13 59.6 | 4000 20,6 |49.86 2,9 | 2,13 | 25 30 41
17 49,5 4000 17.7 {59.70 2.8 | 2,13 | 29 34 45
25 39.1] 4000 18.0 [59.32 2,2 | 2.31 | 41 46 57
27 38.6 | 4000 21,3 | 66.69 1.8 | 2.46 | 43 48 59
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Explanation: b = mean number of impulses per minute of the filter-
activity corrected for the background k; b is based upon a total N
number of impulses (pure activity + background) in D minutes.

6 = percentual accuracy of b, computed as & = 1—%%%12 s £ =1b/k

T = age of the artificial atmospheric radioactivity = number of days
between the day of explosion of the bomb and the day of sampling the
air, ‘ '

T = number of days between the day of sampling air and the day of
counting the exposed filter.

T =T+ T = time in days between the explosion day and the day of
counting the filteractivity.

Since the sampling took place from 9 to 9 h and all countings of the
filteractivity took place in the morning, say between 9 and 11 h,
each T equals the duration between the end of the sampling and the
time of counting the filteractivity, expressed in a whole number of
days. The very first counting always takes place at about 5 hours
after the end of the sampling in order to obtain a rough idea of the

activity ( 5 n = 527 = 0,2 days).

Using only two measurements

The zero day's activity (extrapolation) as shown in the monthly
published table is based on the countings of the 4t and 11th day
(Ty = 43 T, = 11), The table, given above, says: by = 222,65 ky=20.4;
£, = b1/k1 = 10.9; N, = 4000 so thet 8, = 1.73%; likewise b, = 112.7;
ky = 17.5; 1, = 1)2/1«:2 = 6.4;5 N, = 2000 and &, = 2.58% (weaker

activities are measured less accurate). Hence 6; = 6$ + 83 = 2,58% =

relative accuracy of q = b /%1 = 0,505,

Next nomogram D with g = 0.505% and m = ‘I‘2/T1 = 2,75 (@ = 1 .58),
gives ¢ = 2,05 and T = 1.8, Hence tre zero day's value b becomes
bo =c b1 = 457 1mp/h1n., with an accuracy 6 = C.m. = 8,9%.
Consequently for the specific artificial atmospherlc radloact1v1ty in
the sampled volume of 34.4 m3 we find the point estimate =r§ZTZ-1.5=
19.9 pC/m « The 95% confidence interval (broadth 46'/3 becomes

16.4<1<23.5 pC/m .
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Next we compute the age and its accuracy.The q = 0.505 gives

~

G = 1.93 (see nomogram D). Further q = 0,488 (that is 1/c) and ¢ =
give m_ = 1.78, so that

4>= T, s (m'r -1) = 5.1 days, the point estimate of the ageT . Next
the accuracy §_ = ] 8, = 10.7%, so that the 0.95 reliability inter-

val for the unknown T becomes4.0< t <6,2 day‘s;v.

-1,
Remark: the nomogram D is based on the law B = const ( 7T + T) 20

it is therefore assumed that the value of the exponent is exactly

known,

The considerations given above refer to the random counting error,
but there exists also a random sampling error. The standarddeviations
are iTB resp. O _ , whereas the total error possesses a standarddevia-
tion op =|o2 + G% . Now duplo measurements at De Bilt (July '58 -
July '59) of the atmospheric radioactivity around a mean level 2,9
pC/m3 (range 0.2 to 10.0) have learnt that o, < 0.18 and that o
does not depend significantly of the level within this range.

Assuming that G, possesses the same value on higher levels, we ob-
tain GE = Vb.182 + 0.0892 = 0,20, Hence, taking into account

both the spatial sampling and the counting errors, the 0.95 reliabi-
lity region for I becomes 11.9< I < 27.9 pC/h3, with a point estimate
19.9 pC/h3. The large breadth of this interval (in other words: the

large unreliability of the figure 19.9) certainly will surprise
the reader. Of course the question as to whether such a result is

almost without value, is a matter of the user. Since o> Op,y &
more accurate counting of the filteractivities does not decrease o

E
markedly,

Using all measurements, two different graphs

We have at our disposal 18 countings of the filteractivity (see
the table shown above for T = 1, 2 etc.). Let us plot two different
graphs. In the first one we plot b against T+ T, for T = 5 resp. 16,
in a double logarithmic scale; in the second one we plot b-1/1°2o

against T in a double linear scale. ;

a) b _against T+ T in a double linear scale.

In case the atmospheric radioactivity belongs to only one specified
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bomb ( Tgiven) then, because of the law B = const ( T+ )P, the
points log P and log ( T+ T) lie on one straight line. We have plot-
ted the couples b, T + 7 for twot values : 5 and 16 days (see fig.1).
It is obvious that the points in graph A4 are better linearly arranged
than in graph B, although there seem to be two groups of points, that
is the points up to T = 12 seem to lie better linearly than the points
for higher values of T. The points T = 4 and T = 11 (used in the fore-
going section) have been connected by a straight line, which (of cour—
se only by chance) seems to be also the best fitting straight line

through all points. The slope of this line gives a value'5'= 1.20

The line cuts the vertical b axis in the zero day's value 446, which
value of course should be the same as the value 457 found by means of
nomogram D, see under section6.1.l. The difference is only a matter of
accuracy of reading the nomogram and of plotting graph A. We have indi-

cated in the same graph the 95% confidence interval for 90.

Although the points in graph B do not lie linearly, one could draw the
best fitting straight line. If this is done only visually, this
straight line gives'g\= 2,053 the fact that this value differs so
strongly from 1.20, illustrates that the activity cannot possess an
age of about 16 days. Moreover, attacking the question purely synop-
tically, it is quite probable that the activity which was sampled
17/38 September originated from the explosion on 12 September.

b) b -1/1.20

If 1.20 would be the correct value of p we could plot the points

b -1/1.20 against T. Then the values of b and 7" are unknown (see graphs

againgt T in & double linear scale,

01, 02 in fig. 2). Again there seem to be two groups of points, the
left hand group up to T = 12 and the right hand side group for larger
values of T. One could draw two straight lines, the first one C4, fit-
ting the left hand group (nearly the straight line passing through
the points T = 4 and T = 11) and the second one 02 through the points
of the other group. As is known from the basic law the straight line

A
cuts the horizontal axis in the value of« C1 gives T = 5; 02 gives
AN\ oo
T = 12.
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The increase of the accuracy of the extrapolated value bo when

more_ than two countings of the filteractivity are used.

We should distinguish two cases.
a) Given the fact that only countings on the days T1 = 4 and
T2 = 11 have been made, one could ask what may be the influence
on the accuracy of the extrapolated (zero day's) value b if also
countings on days between T1 and T2 would have been performed and
used in the extrapolation., With n countings in total (first one on
T = 4; last one on day T = 11) we find for the accuracy (So)n of the

extrapolated value bo the expression

5 - —
6y - S| g T s

where m = T%:Z 9 D = average of the accuracies of the n countings
and the countings are supposed to be equidistant in time,
When substituting § = % (1073+1072+1076+1o77+1°79+1.,83+2958)=1,88;%

we obtain

2 3 4 5 6 7 8 times
8.9 2.7 2.5 2.3 2.2 21 2.0 %

n

(3))

o'n

We observe thats (60)n decreases with increasing n.

Consequently, when counting the filteractivity on each ¢f 8 successive
days (T = 4, 5y 65 Ty 85 9, 10,11), ail countings being equally accu-
rate (1.88%), and when using all these countings tc find b_, then the
accuracy of bo becomes gigﬁ; based on only two countings, namely the
first one ( T = 4) and the last one (T = 11), the accuracy was 8. Y.

b) Given the fact that only countings on the days ’I‘1 = 4 and T2 =11
have been made, one could ask what may be the influence on the accura-—
cy of bo if also countings on the days 18, 25, 32 etc. would have been
made and used in the extrapolations again we suppose that the countings

lie equistant in time, Then:

(60)n -5 “ 12 n° + 12 m(n-1) + 2(2nm1)(n,1)\

n(n2u1)

$ n = 3,4,5 etc,

with m = 1—?:? and o = "’17 (1:734+2.58+ . . . 2.46) = 2,30%
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Hence we obtain

n

2 3 4 5 6 7 times

(6 ) 8.9 2.7 2.4 2.1 1.9 1.8 %

o'n

We see: (50)n decreases with increasing n, but quicker than in case a.

Three measurements to compute ¢, T s Pin B= c('t+ T)—p

We need at least three measurements b1, b2, b3 on the days T1,

Tz, T3 in order to solve three unknowns Csyty Ps For ¢ we get

log g4, i log (¢ + T2) - log (74 T,) . o A
log a3 “log (1 + T3) - log ( T+ T1) 3 Qp = by/by; 413 = by/by

Suppose we want to use the countings on the days T1 = 43 T2 =11,

'1'3 = 18 with b, = 222.6; b, = 112,7; b3 = 83.1, so that 9y, = 0.505
and Q75 = 0.372; (log q12) : (log q13) = 0,692,

Thet equation can be solved only approximately, Since the right hand
side of the equation gives 0.670 for ¢ = O and decreases for increasing
T , the equation does not give a positive solution for © . How to

explain this fact ?

a) first explanation

The point T = 18 probably does not belong to the groups of points
for T <12,

When using the countings for the days T = 4, 8, 115 then the T be-
comes nearly 6 days.

b) second explanation

Since b,, b,y by are inaccurate, also the ratio R = (log qy,)

(log q13) is accurate and even far more inaccurate than each of b1,

b2’ b3 separately., The question arises how to find the accuracy of

lo
G( gq12) ,
log q13

Here we use a statistical theorem, which says:

R, written as

2(_35/ ) 0_2 072
—Sey——gg- ry —%- + Q%- y if x and y are uncorrelated,
- X J
& (-/Q) by uy
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Substitute x = log 945 and y = log 943 9 8O that

2 2
o Cay,) o(ay4)
0‘2=—-§-—-1-2—=512 +5§and 05,:-—-—2——1—3—_ 12+G§
v2(a,) b2(a )
I This is not quite correct be-
ence o 5 5 5 cause X and y are “pseudocor—
oz(R) A181 +»62 b 7+ 83 related",since g9, and qq3yare
= - + ratio's with the same denomi-
2 2 2
H g €%log CPPN €7 1log 44y nator by.

Substituting €log q12';jlog (o 445 andjﬁ PN '-—110.505; ' q13"=’ 0.372
we finally obtain

O’(R)/p.R’;’ 12, 4%

This means, that the 0.95 reliability region of the true value, from
which 0.692 is a point estimate, is situated between 0.692 (1—2x0.124)
and 0.692(1+2x0.124) or between 0.52 and 0.37. In other words: the
value 0,692 is so inaccurate that the reliability interval of ¢ , if
computed with only three countings of the filteractivity, is extremely
broad and even contains the zero value. The lesson could be to use
more than the minimum number of three countings., We did not elaborate

on this aspect.

Duplo measurements at the K.,N.M.I.,, De Bilt

To begin with we analysed in the beginning of September 1958
the differences between duplo measuremnents made in De Bilt (two
sampling units were installed close to each other). Two so called
identical instruments had been measuring during 48 days simul taneous-
ly the atmospheric artificial radioactivity; it appeared/@hé%nﬁiﬁgmes
components of one and the same duplo differed strongly, even as much
as the largest difference between the measuring stations in the
country on that day in question, It is exactly for this reason that
we started to study the statistical aspects of measurements on the

atmospheric radioactivity.

The results referring to this period of 48 days are summarized
in table 1, They suggested to continue these simultaneous measure—

ments in order to obtain a better estimate of the random error.
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The second analysis refers to 212 duplo's, see table 2,

The general conclusion is that, at least within the range 0,1 -
13.0 pC/h s the standardev1atlon<rE of the total random error did not
depend statistically significant on the level, Further: systematical
eérrors seem to be absent, so that it is not necessary to reduce the
one measured value positively and the other negatively in order to
make the measurements with two adjacent sampling units better compa-

rable,

Furthers a statistical test learnt that the hypothesis o (1)=G (2)
needed not rejection. In other wordss the spatial random errors of
both instruments probably are equal (the random counting errors cer~

tainly are),

It is regrettable, that the accuracy of the counting of the filter—
activities varies much if the level varies much, This is due to the
counting rules.in the laboratory of the K.N.M.I. Consequently, it is
difficult to computecr from Og by means of 02 O = Ops unless one
would do so on each day separately., Of course an approximation was ob-
tained by substituting the overall mean value s (an average over all

daily sB-values foro )

A second difficulty is the fact that the sampies are not constant,.
See e.g. instrument 1 in table 2, where the daily samples varied be-
tween 24 and 52 m3, around & mean value 35 m3° Still the assumption

of their constancy underlies our statistical considerations,

In the first analysis (tatie 1 1) we worked with the zers day!
values (each based upon two countings of the fil¥eracti rt Ly, usuaily
on the days 4 and 11). As is shown ir this report the inaccurasy of
the extrapolation value is always larger (sometimes much larger) than
the inaccuracies of the basic neasurements separately° For this reason
in the second analysis (table 2) only the 4 day countings of the
filteractivities are used. Since Gﬁ = 02 +<T§ the consequence will
be ( Op in analysis 1 being larger than in analysis 2) tpa*O‘(1) >
o (2) Now we see that the Sg values in table 1 surpass the 5g values
in table 2, but statistically spoken it is not Justified to conclude
that the fact s (1):>G (2) implies o (1):>G (2) without considering
the large rellablllty intervals for -he O's 238 a comsequence of the

fairly small amount of data,
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Further, it is questionable whether to reject the "suspected"
duplo's (the components differing markedly) or not when computing
8 and‘ix. If there are no reasonable special physical arguments for
such a rejection, also these duplo's should be taken into account in
the statistical considerations. Then s increases considerably. See
table 2. There were made radiograms of the filters of some of these
special duplo's, but unfortunately they did not indicate for certain
whether hot spots caused the extremely large differences or not. -

So the problem what to do with such duplo's remains unsolved.
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TABLE 3

Suspected duplo's; July 1958 - July 1959; De Bilt, K.N.M.I.

date 2 z, pC/'m3 zi/éj

13/14 July 1959 0. 21 1.56 T.4
12/13 Nov. 1958 3.63 0.93 3.9
9/10 Nov. 1958 | 10.11 3,26 3.1
30/1 Dec. 1958 5.47 2.40 2.7
26/27 Dec. 1958 2.27 6.45 2.2
10/11 July 1959 0.79 1.65 2.1
7/8 Dec. 1959 1.38 2,64 1.9
9/10 July 1959 0.60 1,08 1.8
25/26 Dec. 1958 2,27 3.98 1.8

Analysis of duplo measurements of atmospheric radiocactivity

(calcination and non calcination method) in Belgium

Introduction

Two so called identical instruments for measuring the artificial
atmospheric radioactivity were installed close to each other at Ukkel
in Belgium. The daily sampled volumes of air were large, say about
1600 m3. For each of both instruments each day the exposed filter is
divided into two parts in a ratio 73893, The activity of the small part
is counted directly with a Geiger Miiller counter. The larger part is
calcinated and the activity of a part of the ash is counted. In this
way each of both apparates gives two values for the specific atmospheric
radioactivity, each of which may be c%gﬁ%dered as an estimate of one
and the same unknown true activity. These/?igures will be mentioned
here, for the sake of simplicity, the "non calcination" (4) and "calei

nation" (B) figures, The first pair will be denoted with Z, and z,
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(instruments 1 and 2); the second pair with z3 and 24 (also g€iven by

instruments 1 and 2),

1)

As said already, these figures Zys Zos Z39 z4 will be considered
as simultaneous measurements of one and the same unknown value % ,
which generally will vary from day to day., It is as if four instru-

ments ( in stead of two) have been installed "at one point",

Several questions arises

1. Is there a systematical difference between the non calcination
data Z and z, ?

2. Is there a systematical difference between the calcination data
z3 and z4 ?

3. Is there a systematical difference between the calcination
figure and the non calcination figure of one and the same in-
strument and is this difference different for the instruments ?

4. Do these systematical differences depend on the radioactivity
level ?

5 How large are the random errors for each of both methods and for
each of both apparates ?

6. Do the random errors depend on the level ?

Random errors

Thé 94 daily simul taneous measurements Zyy Z z3 and 24, kindly

1
placed at my disposal by Dr. Grandjean, relate tozthe period 28~7-1958
to 18-11-1958, The z4 values varied between 0,2 and 8,0 pC/h3° We have
made two groups:

I. all quadruplets with z1‘<1°OO (45 cases);
II. all quadruplets with z1;>1000 pC/m3 (49 cases). (See table 1),
All calcinations are based on the natural logarithms yislg z.3 i=1,

2y 3, 4.

If the standarddeviations of the random errors in the non cal-
cination case are equal ( Ui = O saytTA), and do not depend on the

09
level, and if also O, =0, , say O,
P T p fhem the best

p °f 9, and O are given by * sy V2, with = ¥4=¥, TeSP. ¥y-Y,.

P
Then ‘TA = 0,133 1;; = 0.06, The difference between 0.13 and 0.06

proves to be significant. This result could be understood a priori,

then the best estimates 0(: and

All figures are computed with the 4th day countings. We preferred
to avoid the use of extrapolation values,
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because the ratio of the sampled volumes of air for both methods will
be (nearly) equal, day for day, to the ratio 7:93 in which the filter
was divided and it is easily understood that o decreases with increasing
air sample (see table 2). Next the level of activity is taken into
consideration by grouping all data in only two groups, so that the

numbers per group are not too small and not too unequal,

In this way the boundary level was laid at 1.00 pC/h3. Then the
non calcination ¢ 's become 0,15 and 0.12 and the calcination 0 'sg
become 0,058 and 0.056. The difference between 0.058 and 0,056 proves
to be not significant., The difference between 0,15 and 0.12 seemed to
be caused by too rough a calculation (to save time all logarithms were
noted in only two decimals) and by several more or less "outlying"
pairs (1arge ratio's of z, and z, or Zy and z ) The conclusion may be:
a, there is a ca1c1nat10n effect on o

be there is not a level influence,

Next we verify the assumptionO’1 = 62 and 63 = 0‘4 for the
i t l‘
measurementst{n ota ’EP
We obtained oy = 0.01695 3 62 = 0,01705 for method A and
?< 0 3 ;3= 0.0159 for method B,

The values 0.01695 and 0.01705 are statlstlcally equal. Of course it
will surprise that<73 < 0 (whereas G :>O) This strange result is
both a sampling effect and the consequence again of too rough a cal-

culation.

The conclusion may be: both with regard to the calcination re-
sults (B) and to the non calcination results (A) the instruments seem

to be identical in the random errors.

Systematical errors.

When comparing the "four" instruments, the systematical errors
are calculated in the standard way with the help of the mean y values
y and the overall mean y value ; s y= %+ (y1 + y2 + y3 s y4 )s
AA =y - y1 etc. (See table 3),

The AA figures are very accurate, In the method A both figures
possess a standarddeviation 0,011; in method B 0,007, There seems to

be a slight level effect, Since; however, the difference between the
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PO
group A A values in case A (see table 4) is not significant and like-
wise in case B (table 5), the conclusion could be, when using all

four figures together, to correct the A figures with —16% and the B

figures +16%. However, looking in detail it seems senseless to do even

this, because the systematical errors turn out to be small with res-

pect to the random errors.,

To explain this we would refer to the formulae developed for the
80 called selection or rejection level, treated in chapter 5. In this
case we are dealing with k = 4; the four o's are unknown a priori and

they are certainly not all equal. The section level is:

k-1 . N AN ANy A
413 + 2Fj('r)4} — with T - crj+ar(cj), cr(crj)= crj : V2on(k-1) ;

T

ol B
<

2 (2 2 -
Fj=§r + (k-2) Tj}: (k=1); =xi

e N

°
H

Substituting @, =0, = 0,13 and 03 = 04 = 0.06, we obtain as levels
0.597 0.597 0.282 0.282,

Only in case the measured'ﬁzs surpasses its‘ggrresponding rejection
level, it deserves application. In any case AAj should surpass the

4Tj (nearly 405) value. In all four cases the“ﬁz‘values is much smaller

than the rejection level., Hence: the random errors are so large with

respect to the systematical errors that application of these syste--

matical errors seems t6 be rather senseless,

Interpretation

Suppose the instruments are installed in future at two different
stations any-where in Belgium, Suppose at some day the one instrument
gives z, = 2,0, the other z, = 2,2 pC/m3 (non calcination method).
These figures look different, but is the difference real ? As said
already the application of a correction for systematical errors is
not necessary, hence we only should consider the random error.
y4 = 1lg z; = 0.682 and ¥, = 18 z, = 0,786, The 0,95 confidence region
for the true value 7 1 (measured as y1) is 0.682 = 2 x 0,13 = 0.422
to 0.682 + 2 x 0.13 = 0.942; hence Z 41 1s situated between 1.53 and
2.58 (z1 = 2,00 is an estimate of ¥ 1)0



Likewise é

estimate of‘ g ) The confidence intervals are so broad1)

is situated between 1,69 and 2,85 (z

b=

= 2,20 is an

because

of the large °'va1ueso There need not to be any difference between

é and é

(and even Z < é may be true), although Z, >z
values of 01 and O (O 13 and O 06) are so large,

The

that, keeplng
24 = 2.0 and increasing Z, from 2,2 to higher values, only for =z

larger than 3.2 it is"statistically certain"(with a O, 05 chance

2
of

being wrong) that 42 > é o This value 3.2 is found by means of

y2>o 786 + 2 x 0,13 o V2 =

1,154 and ¥y =

lg 2z

20

Table 1
non calculation A calculation B V'm3
pC/m3 extreme extreme mean
n ER Z 5 z1/z2 23 24 z1 /22 1] 213 4
I z1<(1,00 45 | 0.90 0.66| 0,645 1,47 0.50 0,49 | 92.88;1,31
IT 2, 21,00 | 49 | 2,23 2.11]0.815 1.95 | 1.60 1.62 0.7631.12
all 94 | 1.60 1,42 0,645 1.95 1,07 1.08| 0,7631,31{110 126{1385| 1576
mean 1,51 1,08
Z2, values varied between 0,2 and 8,0 pC/m3
Table 2
C wvalues in %
under the assumption 0’,E :-0‘2 = o‘A; cr3 = 0'4 =0p
A(1 ;3 2) B(3 5 4)
n non calc, calc,
I 45 12_ 5.6
LI 49 i5 5.8
all 94 13 5¢7
Note1) And they are still broader when taking intc account alsc the

random counting error.
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Table 3
P
AA values in %
A B
non calc. calc,
n 1 2 3 4 sum
I 45 -17.3 -=14.6 +12,7 +19.1 0
II 49 -1805 "'1 208 ‘+1 508 +1503 0
all 94 -17.8 -13.5 +14.3 +17.1 0
mean =16 +16
Table 4
A
duplo measurements (non calc)
P PN
n DA% BA, % sum
I 45 -1 o4 +1 o-4
II 49 -2,8 +2.8
all 94 -1,0 +1.0 0
Table 5
B
duplo measurements (03100)
P
n KA\% Ar % sum
3 4
I 45 =3,2 +3,2 0
II 49 "002 +002
"'066 +Oo6

all 94




There was no time for reproducing ADDENDUM A and B. As the

report can be read without studying the Addenda, it has been

reproduced in the present form.

Addenda can be forwarded as soon as possible on request to

interested readers,
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ADDENDUM A

Statistical aspects when counting the activigx

of the exposed filter.

CONTENT

Introduction

Derivation of the formulas

1.1

1.2

Prefixed measuring time T
Prefixed measuring number N of counts
The methods 1.1 and 1.2 are statistically identical

Measuring the pure filtereffect
(anticoincidence method)

Measuring total effect and backgroundeffect separately
and simul taneously

1.5.1 Preset time method

1.5.2 'Preset count method

Comparison of the one instrument and two instruments methods.

Nomograms.



1)

~1A~

Introduction

Let be:
B

true, unknown, mean number per minute of impulses (counts)
produced by the pure (nsked) filteractivity;

VAN .

B = estimate of B .

L]

= true value of the unknown, mean number of impulses (counts)
per minute produced by a filter which is not infected by
radioactive atmospheric dust (background, zZero effect).
In De Bilt K.N.M.I. «% 17 imp./min.

f = K
S _
f =B/ = estimate of f/\
O(E) = gtandarddeviation of <]
A A /\ had
B) = estimate of ofp)
N

= G(E)/b = percentual standarddeviation of /B~ or relative
accuracy
(/\)/ﬁ = estimate of §

Now the specific artificial atmospheric radiocactivity (e.g. in pC/h3)

may be written as R = const.g\/ v ), if v m3 air have been sampled.

The purpgis is to measure the unknown B . The measurements give an

estimate P of B.There are two possibilities.

i ) The measuring-time T is pregiven;then the total number of counts
E will be stochastic (meaning: for an immediately following
measurement of T minutes the value of K may be quite different).

ii) The measuring total number N of counts is pregiven; then the
measuring time T will be stochastic (meanings for an immediately
following measurement the period for obtaining N impulses may
be quite different).

In both casesi§~will be stochastic, i.e. Ti\—ﬁ will be distributed

in some (symmetrical) way around zero and the standarddeviation G(E)

Strictly speaking this is not correct. In the formule for R the‘E\
should refer to the zero day's value ﬁ of the pure (naked) filter-
activity (of only artificial nature). It is, however, impossible to
find ﬁ by counting the filteractivity only once. At least two measure-—
ments (days T1, T2, see Addendum B) are needed. These measurements éﬁ}
and 32 give ﬁ by extrapolation.,
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(1)

in this distribution will be a measure for the accuracy with which
AN

the computed IE represents the unknown value B .

Some practical questions which gave rise to the following statistical

considerations are:

A. One wants to measure a given unknown filteractivity p with a given
accuracy 6 . What must be the total number N of impulses to be
"almost sure" that the requirement is satisfied ?

B, When measuring an unknown filteractivity P so long that the number
of impulses N attains a pregiven value, what is then the accuracy &
of the measured filteractivity ?

C. Prescribing the total number N of impulses, one wants to know the
range of filteractivities B , the measurementsof which are more
accurate than a pregiven value § .

These questions can be answered if it is assumed that the background

activity is exactly known.

Derivation of the formulas

Prefixed measuring time T; the so called "preset time method"

Suppose x is known (by means of measuring the unexposed filter during
.8 24 hours; so that the computed value is highly accurate). After
having counted during T minutes, the total number of counts K is read
off. N may be written ass

N o= B o+ F

with gp from P-effects §K from xk-effect. Both EB and Ex follow a
poissonian distribution.,
Consequently, &_IEB = o‘(_ljﬁ) = T8
and EF = T (B +«x ).
N.B.:s Eﬁ' and Ex are distributed independently.

™
=
]

o‘(gx) = T.x

Consequently,

AN) = P(Bg )+ AN ) =1 (B+x)

We only count N, not Eﬁ and Ex separately. Nevertheless we need
Ep =N-N,. After estimating N, by Tk (in individual cases T.x
will be either larger or smaller than Ex s but in the long run T«
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(3)

(4)

(5)
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~
will be a correct estimate of E“ )s I_Wp is estimated as Np =K - NK =
N - T.K .
Next an estimate & of B is made by:

=§/T=(1_¢/T)-x

N.B.: Since N is stochastic, also R
Now Cﬁ = ( N -Tk ) /T=TB /T B; this estimate P is unbiassed.
N =

The accuracy of B ) of B is given by:

N 1
o‘(/é\)=c(";- -x>=Ta<g>-UT<a+x) ;o

AN
and the percentual accuracy &= of B ) /B thus becomes:

q1 + 1/
R

Here 0 is expressed in the pregiven T and the unknown B s Which

s
E is stochastic.

S =

appears as well in the denominator as in the numerator (in f). It is
AN

clear that B should be substltuted for B in order to obtain an

estimate 5 of & . ‘

The formula shows that only for sufficiently large activities (i.e.

£ >>1) the percentual accuracy ® is inversely proportional to the

square root both of the pure activity itself and of the measuring time,

For radioactivities small with respect to the background, this law
does not hold,

In (3) & is expressed in terms of B and T. Of course it is also
possible to express P in d and T, or T in B and & :

1 +V1 + 4 kT8 1 1
B = _ if kT8> 1, that is — (1 4+ —)>>1
or £<<1
1+ 1/
T =
p &*

Three points may illustrate the use of these relations:
a) For given B and T the & follows from (3);
b) If one wants to measure a given P with a given accuracy & s One

should measure during T minutes, as given by (5);
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(6)

(7)

(9)

1)

Y-

¢) Only activities higher than B , given by (4), can be measured with
a given accuracy O , if one wants to measure not longer than a

given period of T minutes,

Prefixed number N of counts; the so called "preset count method"

Again ¥ is supposed to be known exactly, Now T is stochastic. Since
- Iy

K=N, +N , and since N is unknown, an estimate N = T.x is

substituted; so that Eﬂ is estimated as §B =N-T.«x and B is

estimated ass

7\

P =’§E : T o= (N/1) -«

Note the difference with (2), In (2) T is pregiven and N is stochastic,
in (6) N is given and T is stochastic.

AN = AN
This estimate B proves to be biassed, that is & B #48.
Before giving the proof it is necessary to d/e\rive the probability
distribution of T and of 1/T ; because o B)=No( % ).

It is possible to show ") that T is distributed as:
o N1

e_#g T -2 dg s With cp(o) =¢ (co) = 0

?(2)d2=(nw2)! T

and p =8+ k .

This distribution is not symmetrical. Some of its characteristics are:

N-1 A N1 2(N=1) N-2
ET = == 3 T) = —g~ 3 3= —g—— etc, Mode = ——
T=grms o@ =75 we= m

The iarger the N, the less asymmetric the T distribution,
Let be x = 1/2 s then x és distributed as:
N-1

M -u/x =(F=1) K
¥(x)dx = Q X dx 4 with €x = — 3
- T (§-2) - - T N-2
o?*(x) = s
T (§=3)(m-2)?

The only assumption is that the impulses are produced in time in
such a way that the probability distribution of their situations

in the time axis is a poissonian one.
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Using these formulas, we obtain:.

1 +1/f
(9a) 8= >
w3

This is the exact expression for & as a function of f and N.

1 +1/¢f
Vi~

\ PAN ‘
Again § is estimated as § by substituting B for B (in f) in (9b).
Special remarks:

(9b) Usually N is so large, that 52

N\
a) As said already B is not-unbiassed. We have
A N X
k&ﬁe&(%-K):N&(%)-x- B+ >B
- - = N-2 N-2

The bias, however, is very small for large N,

b) Comparing (9b) with (3) we state:
In the preset count method & diminishes approximately proportional
toﬁ, but, strictly speaking, also the value of B itself affects 5,
although the influence is less important for larger p values.,
Formula (9b) may be rewritten as:

K

(10) - s{w-1

SDRNEEE @%ﬂ)

Formula (9b) is well known in literature. The usual reasoning is then
"Suppose N counts in total have been recorded, then the standarddevia-
tion in this N isv N and the relative standarddeviation is t= V K:N =

1 :v N, Now when measuring the unknown pure activity p , the standard-
deviation consequently will be t ( B+« )s wherein « represents the
background activity, which is exactly known (e.g. 17 impulses/minute );
the relative standarddeviation (relative accuracy) will be t (B +« )sp .
If for instance N = 2000 (hence t = 0.022) and if for instance the re-
lative accuracy should be smaller than 10%, then £ should be at least

4.8 impulses/minute, corresponding (if the efficiency is 0.30 and the
air sample is 40 m3) with 0.18 pC/mB".
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A,

B,

—6A~

So far this reasoning, which in our opinion is not quite correct,

since the fact that N is measured with a standarddeviation implies

that N satisfies a probability distribution, in any case that N is

not prefixed (as in the preset count method). However, the reasoning

may be continued approximately as follows. Starting from (3) (in the

preset time method) and remembering §F = T(B+x) = T ﬁ(1+%ﬂ, we obtain:
1 + 1/f 4

V N
Comparing (9b*) with (9b) we like to draw attention to the difference
between N and N. One should not "forget" the bar. Thus (9b) is "deri-

S =

ved" in a way, whichAmathematically speaking is not correct, but which
is permissible from a practical point of view., The error is small if
the following condition is fulfilled. The preset number No should be
80 large that a relatively small difference between the actual measuring
time '1‘o and the value Ty which is needed on the average to count No’

is highly probable.

A second formulation of the same condition is the following. The number
No should be prefixed in such a way, that a ;elatively small difference
between No and the value Ny which is counted on the average in the
actual measuring time To’ will be highly probable.

With the help of the relations Sby, 10 and 11 it is possible to answer

the questions A; B and C mentioned in the introduction.

Some numerical illustrations:

Let be N = 2000. Let be required § <10%., This is only possible (see
(11)) for f - values equalling or exceeding 1 : (0.10V2000 -1)=0.299.

In case ¥ would be 17, this would indicate a range of P values > 4.9
impulses/minute.

At the time of writing this report, the Netherlands' rules for measuring
filteractivities were as follows, Each measurement should not last less
than 15 minutes., In case the pure activity is so small that within 15
minutes the total number of counts (pure activity plus background)

would be less thanm 400, then this number 400 is preset and the measuring
time is read off (larger than 15 minutes). If the pure activity is so
large, that within 15 minutes the total number of counts would surpass
400, then one of a set of possible N values is chosen (400, 800, 1000,
2000, 3000 etc.according to circumstances) in such a way that the total



-1

Ce

measurement should not last much longer than 15 minutes,

Three practical examples may illustrate these rules.

Let P be very small, e.g. 3.4, so that ( k= 17) £ = 0.2, With a
reduction constant 1.5 and for a sample of 40 m3 this B value would
imply a specific artificial atmospheric radioactivity R=1.513.4/40 =
0.13 pC/w>. Since 15 ( B+ k) = 15 (3.4 + 17.0) = 306< 400, one should
prefix the total number of counts N on 400 and measure so long (of
course longer than 15 minutes) that this number 400 is obtained.
Then & = (1 + %) : V¥ = (1 + 5%5' : V200 = 306 5 T =19.6 min.

Let B be very large, e.g. 3400, so that f = 200. With a reduction
constant 1.5 and for a sample of 40 m3 we obtain R = 1.5 x 3400/40 =
128 pC/h3, being very large. Since 15 (B+k) = 5125523>400, one should
prefix the total number of counts N on (in accordance with the possi-
bilities of the apparatus) for instance 55000 and read the measuring
time (somewhat larger than 15 minutes), In this case

5 = (1 +1?) SR sV N = 1 :m=0.4%and-'f'=16.1 min.
For an intermediate value B = 415 (f = 23.4; R = 15 pc/m3) we would
obtain, if N = 8000 (hence T = 19 min.) a value & = 1.2k, situated
between 0.4 and 30,

These examples illustrate that extremely different activities are

not measured equally accurately, see the difference between § = 30,
& = 1.2 and § = 0.4%, for 0,13, 15 and 128 pC/m.

This is; of course, a consequence of the instruction. If also in
case a) the & value should be about 004%, than ﬁ should have been
(instead of 400)s [(1 + -lg-) ¢ 8]% = (6 : 0.004)* =-2250000 11
(measuring time nearly 110294 min = 1838 hours !)

Concl.: If one wants that the measuring periods are nearly constant
and short (e.g. 15 minutes), even in case that the levels of radio-
activity vary markedly, then the necessary consequence will be that
the relative accuracies of the measurements of the filteractivities
will vary strongly. If it is required that the percent;al accuracies
of the countings of the filteractivities will be next to constant,
then the measuring durations will vary strongly and may be too long
in practical routine.

The rules imply : since from 15 ( B+ k) = 400 and k = 17 follows

f = 0.57 we should distinguish between two classes : f <0.57 and> 0.57.
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f = ﬁ/l( ;
for all cases £<0,57 for all cases £>0.57
prefixed N = 400 prefixed N according to circumstances
T >15 min. ?< 15 min,
The larger T, the smaller The lafger Ny, the larger f and

§ = ++ /L &S — for large values of f

\/400 YN
g

for z=1.5 v'pC/hB; z<0.36| 220,36 pC/’m3
V = 40 m3

Conclusions if it desirable or advisable 1) to measure all artifieial

atmospheric radioactivities with (nearly) equal relative accuracies,

- then this wish should be taken into account when establishing the in-

structions for measuring. Application of the formulas and nomograms

developed in this paper could be useful,

In Belgium N is prefixed at 3000, whatever may be the activity. Then
i

& has a value of (1 + 50 3 VBOOQ0

For a comparison between the effects of the difference between the

Netherlands and the Belgian counting rules, the following table is

instructive,

Netherlands Belgian

pure effect | f=B/x | « imp/min] N |T min | 6% N | Tnmnin| 8%

0.13 pC/m> | 0.2 17 400 19.6 | 30 [3000]| 147 .|11.0
15 23,4 17 [8000| 19,3 | 1.2[3000{ 7.2 | 1.9

N.B. A specific artificial atmospheric radioactivity corresponding
with a pure B value, which would egqual numerically the background
effect (say 17 imp/hin) amounts to (V = 40 m3; reduction constant
13) 0.64 pC/h3o

This is mainly a question for the user of the data. Because of the
great variety of the users, the wishes with respect to the numerical

value of & djffer markedly,
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13 The methods 1,1 and 1.2 do not differ statistically.

There seems to be no statistical difference between the preset time
and preset count method, This may be shown with three examples.
i ) We want to measure certain B with a prescribed accuracy 8 . What
method (preset count or preset time) should be chosen ? In case
of the preset time method, T should be fixed on Tp = (1+-1f:) : p&?,
see form (5),
In'case of the preset count method, N should be prefixed on
N, = (1+1?)2 / &% . The measuring time to obtain this number is
on an average Tc N, ¢ (B+k) = [(N—l,-)3 : 8%1 / (B+x) =
(1) + B6° .

Consequently TT = Tc

NMAAAANNAANS
ii ) A given P is measured during a given time T in the preset time

method. Consequen‘tly 6‘1‘ =d 1"'}7 :\‘ BT . In this T minutes on an
average ﬁ'!' = T.( B+«) counts will be observed.

‘ Next we measure the same acti-
vity in the preset count method by fixing N on §p = (B +x ).
. 1 pey
What will 5c be ? 60 = (1!4?) : | Ny = (1+f) : BT.
Consequently 5T = 5c o

iii) Suppose P (anﬁz\\e/r\;;\;\'f) and T are pregiven in the preset time
method. Then the relative accuracy becomes & = 1+-i-.- :m and
the number of counts, NT, in this time T is on an average
(B+k) T - Tﬂ(‘l-q%)o
Next suppose we measure the same P in the preset time method,
and we require the same & . Then the Preset number of counts
should be N_ (1%‘)’/ 8% (1+)3/ {(1%) : BT} = TB(H-%) 1),

Consequently ﬁ'l‘ =N_.
NN

1) These computations are babed on the approximation 9b, which holds the
better, the larger N. Starting from 9a, instead of 9b, N must be solved
from a third devgree equation. It can be shown that there is only one
real root which is somewhat smaller than the right hand side of 9b, but
the difference vanishes for large PBvalues, Consequently only for very
small values of P the preset count method may be considered better
‘than the preset time pethod, i.e., on an average, the measurement will

take a shorter period of time, Generally this aspect is completely
unimportant, ’
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(12)
(13)
(14)
(15)
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Conclusion: Statistically speaking, the methods are identical.

Both methods require an exact knowledge of ¥ . Usually «x is measured
during a large number of hours before and after the measurement of
the exposed filter, so that the estimate/x\is highly accurate.

The question ariseswhether it is preferable to count only the im-
pulses of the naked activity or to measure the ( B+ k )-effect and
the naked x effect simultaneously and separately (with two separate
apparates). Let us first consider the first idea.

The naked P impulses (the so called anticolncidence method).

This method usually is called the "anticoincidence method". The name
does not seem to be correct. If a coincidence is defined as a P and «
~ impuls occurring simultaneously, then the alternative (anti)situation
would be either a naked P or a naked x impuls. In fact in the anticoin-
cidence method only the naked P impulses are counted; the P impulses
coinciding with k impulses are lost, but this loss is unimportant.

In any case the marked advantage is: it is not necessary to know «k .

Again we may distinguish a preset time and a preset count method.

Preset time; given T

Substituting of ¥ =0 (f =) in (3), (4) and (5) gives:
”\.
g=x/1
s=1/VTp
B=1/178 relations between T, B and §
T=1 / ﬁ&a *’
<

1.4.2 Preset count; gi‘ven N

(16)
(17)
(18)

We obtain:

Tex/1

5=1 /V N relations between & and N;

N=1/58" B does not appear !
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1.5 Measuring total effect and background effect separately and

simul taneously; two instruments—me thod,

In the first instrument the exposed 4filter and in the second an
unexposed filter is measured. So we measure B + K and «'' simul-
tanec;usly; the smaller the distance between the -instruments, the
smaller the difference 7 = k'' - k'y where k' and «'! represent
the backgrounds for the instruments. We want to derive the formulas

as génerally as possible and again for the use of either the preset
time or the preset count me thod,

1.5.1 Preset time methods; T is fixed

] ]
After T minutes in the first instrument N = I_ip + 1_1‘: counts are
L ] ] R A
measured and N, in the second. If K, is replaced by Ny then Eﬁ

may be estimated as:

/\ ' [
§ﬂ S‘E-Eg

1 't

)

1
=§ﬁ+(§x _gx

(19) 50 that | B'= (@'-§'") + 1

is an estimate of the unknown B.

: P
Evidently -!-Ip is an unbiassed estimate of N B only if the two back-
ground effects are equal, However, we do not want to make this assump-

] e
tion, but we do suppose that Ez and Ex are correlated with a corre-
lation coefficient P :
Then:

) = ABY o E )00 (1= 2po(n ) on')e 16 + me's 1 o oI
Introducing T=k'"' - g' and Iq |=I-c' : k'<<1 , then

o) =Vele+ (1-p) (20 4m)]
N\

Since B =/_N\B /T and § =0'® /B we obtain
(20) o ! V1 (-p) (2x) ith f =B/
S — + w =B/
uTﬂ f

This is the general expression; O depends not only on T, B sy Ty, but
also on q and P .

Formula (20) may be rewritten as:

(21) B ':?6’ [1 +Vg1 + 4(1—9.)(2+q) xT&’]‘
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and

(1-p) (2+q)

£
pa®

(22) e

The approximative nature is a consequence of the assumption |q |<3(1 .

Of course we wish to compare (20) with (3) and examine whether the

two instruments method has any advantage above the one instrument
method. Therefore it is necessary that (1-p)(2+q) <1 or (1-p)):(24q).
Neglecting q against 2 (since it is very small, e.g. 0.02) the in-
equality would be fulfilled if p>0.5 . What can be said about the

’ p value in practice ? We must bear in mind that g represents the
correlation between the paired T minute numbers E'x and §‘; and proba-
bly depends on T, i.e. grows with increasing T. .

Now if p would surpass 0,5 and if ‘q LQ<1, then the surprising result
is that the preset time method using a second apparatus to measure the
naked background effect simultaneously with the measurement of the
total effect leads to smaller & values (for given T and B) than the
one instrument method (where x should be known exactly). It is true
that krowledge of both k' (in order to compute f) and k'' {in order

to find t and q) would be necessary, but, although k' and x'' may show
small day to day variations, the difference = may be (nearly) constant,
so that only one very accurate measurement of v would be needed, where-—
as the k' could be measured less accurate. Unfortunately we do not

know ﬁhether P depends on T and how this dependence may be.

We were able to estimate the above mentioned p in the following way.

In two neighbouring instruments during 93 nights the background effects
were measured. The measuring times were not equal night for night. They
varied between 15 and 16 h. The total numbers varied around 16000. For
each of the 93 nights the one minute mean value was calculated for each
of the apparates; the overall sverages proved to be 17.1 for the first
instrument, 16.7 for the second. These values 17.1 and 16.7 differ
statistically significant. The correlation coefficient between the- 93
paired one minute mean values turned out to be r=0.73, which differs
statistically from zero (the 0.95 reliability interval for the correla-
tion coefficient is 0.59-0982)1), '

1) See following page.
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Let us return to (20) again and consider four special situations
A, B, C, and D,

Suppose T = 0 (k' = K'') N.B. This does not include that P =1
Then:

e —————————

1 1+42(1-p)
(e £

Suppose p = 1. This needs not to include that T= 0. If for instance
in each individual minute the background effect in the second instru~

8 =

ment would be twice the background effect in the other one then p =i
and © £ 0, It looks curious that even if T would be not zero, still
(20) changes into (13) of the anticoincidence method, but we should
bear in mind that using (20) B must be substituted by its estimate

in (19) and just if v # O this estimate would be biassed. Generally
in practice, however, the situation p—>1 will include T —0,
Now, substituting p=1 and ©= 0 in (20), (21), (22), the relations
(13), (14) and (15) appear. So this hypothetical situation is analo-
guous to the anticoincidence method.,

At the time of finishing this report some results as to the value of

P with regard to its dependence on T became available. For two count~
ing apparates, installed near to each other, at every hour the one
hour sums of counts were read photographically simul taneously. These
background measurements could be made only during the night. In this
way n=364 pairs of one hour totals were obtained., The correléfion
coefficient r was ry = =0,006, which value does not differ sfatisti—
cally significant from zero, The 0.95 reliability interval is -0,11

to +0.11, Next adjacent and not overlapping grbups of k=12 were made
and the group sums were calculated. The correlation coefficient Typ
between the n=30 pairs became 0,37 (reliability interval 0.00 %o
0.65)c Next k was made 18, Now n=20 and r18=0.58 (interval 0.19 - 0.79).
Next k was made 24. Now n=15; T 54=0:592 (0.11-0.84). The 364 one hour
sums for the one instrument varied around 1063, with a standarddevia—
tion 31; for the second instrument these figures -were 1083 resp. 34.
The one minute meéns were 17,7 and 18.1 imp/min,

Concl.: it is highly probable that p increases with T and is 0.5 at
about T = 12 hours,
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(25)
(26)
(27)

1.5.2
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Suppose p = O, then 6= - “ 1 + (2+q) 1?

)

Since 2 + ¢ >1 for every x' and x'', this & value always exceeds

the value in (3). This result could be understood s prioris if the
instruments (the one measuring the true effect plus background; the
other only the background) are installed so far from each other that
the background effects are uncorrelated, then it is always certain,
vhatever may be the background values, that, for given B and Ty the
two instruments method leads to larger § values than the one instru-
ment method (this means that the two instrument method is less accu-
rate), |

Suppose p=0and T =0 (¥ = «"')
This means that the backgroundeffects are exactly equal, whereas the
correlation is zero, These facts need not to be contradictory.

Then we obtain:

i e e »-' j T
8=“1 /£ ﬁ=1+V1+8KT6d c;._'[g\!g_ p_ 1+ 2/f
BT 2745 5 VT po*
if kT 6%>M

:Le;-%(1+%ﬁ$ﬂ or £>1

We wish to compare (25), (26), (27) with the expressions (3), (4)

and (5),

The approximations for B hold good if £ >>1 s that is for

sufficiently small B values and, consequently, for large T values.,

Then from (3) to (25) the & is increased with a factor of almost v 2
from (4) to (26) the B is multiplied with nearly v 2;

and from (5) to (27) the T is nearly twice as large (whereas T it-

self is already large).

The larger the P (that is the smaller the f) the smaller are these

enlargements,

Preset count methody N is fixed

This somewhat unrealistic case implies the following: in the first
instrument the measurement of the exposed filter would last so long
that a pregiven number N of counts is reached, whereas in the second

one an unexposed filter is counted also so long that the number of
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counts attains the same value N, Then N = Eh + E; = Nk}, but N is
measured in I'minutes in the first instrument and in 2" minutes in

the second one, T'' ¥ T' generally.

Tl
Since N’ is unknown, we substitute —— N,' for K' , so that the
e
estimate of Ep becomes: I '
- A I T
Ma =N~ N' = N~ N'"' — =N (1 « — and
-6 =K S 1 Pt ( T") "

N '
E-:ST =N(%.-F'r)

PN
As to the bias of;E we find

I ' vy N
-] - e se

8o that the bias ié‘amaller, the larger N and the smaller the dif-

A
ep -nler, —exrlaw

ference betweeh the two background effects,

The computation of G%'E;) becomes very difficult.

Although it is possible to calculate both o{%FQ and o ( E%T ) we
also need the correlation coefficient p* between 1/2' and 1/7'0,
We have not made the calculation, since this situation seems to be
too unrealistic. When measuring with two instruments simultaneously
(the one for the total effecty, the other for the background effect)
it seems more reasonable that the measurements should last the same

time T and that T should be pregiven.

A _comparison between the one and two instruments method.

ﬁomogzams.

Nomograms enable the user to avoid calculations,

In the first place a nomogram A based on formula (3) has been drawn.
We take f as parameter aqd plot & and N on axes with logarithmic
scales. Then each f curve is a straight line. There exists no straight
line at the upper side, but we propose to take f = 0,1 (B=0.1k).
However, there is a boundary line at the lower side (f = w), repre-
senting the anticoincidence method. The density of lines increases

with increasing values of f.
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Numerical examples

1) Suppose ﬁtﬁ‘%x' o Require a measurement with §= 0.05. Then the
nomogram shows that N should be fixed on 3600 or so., If however
6 needs not to be smaller than 0.10, then N = 900.
For B2 10 & the analoguous N numbers would be 500 and 120.

2) If ¥ would be fixed on 400, then the nomogram shows that there
are no P values which can be measured with accuracies $< 0.05,
since the straight line f = » passes through the point with coor-
dinated & = 0,05 and N = 400,

3) If a very accurate measurement is required ( §= 0.01) then the low

activities (say £<1) require preset numbers of counts larger than
40000,

Next a second; supplementary graph B is constructed by means of which
a new suxiliary parameterrfiE can be read so that even in the two in-
struments method the formula (3) referring to the one instrument
method can be used only by substituting % for f.

Now compare (20) and suppose «* = k'’ (i.e., q = 0), so that (23)
results, Introducing ¢ = 1 -p we obtains

d1+2% u1+2-§f— V(1+Jf)(1+2%) 1+lf-x

a: = =

E FS(H;)— B v

In this way we have defined £%. Write X = f.c; so that
1

C =

—f+Vf2+(1+2e~,)f+2e

We have drawn curves of c¢ against f for the values g =0, 0.1, 0,2,

0.4, 0,55 0.6, 0.8, 0.9 and 1.0 . Then if we want to measure accord-
ing to the two instruments method during a pregiven time T, we can
compute, as soon as p is given, & as follows,

The measurements give an estimate fphof B , see (19).

With this estimate N = T'(Bi-K) can be computed. Nomogram B gives
(with f =E? s k) the value of c. Hence f* = f.c is known. These values
T(B+ k) and £¥ are substituted for ¥ and £ in (9b%). Hence § is known.
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e) If p=1, then 6=V(1+%)g°ﬁ=1 s* BT
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When drawing the nomogram c=c (f, p) we should bear in mind that:

a) If p=%, then c=1 irrespective of f (horizontal curve).

b) If p <%, then ¢<1 for all f values; ¢ decreases very slowly for
increasing f;, the slower, the nearer p to 0.5,

c) If p>4 . then c>1 for all f values; c decreases with increasing

p the quicker (particular for £<1) the nearer p to 1.
d) If p-o,then'5=(1+%g)zﬁ s with £* = of and
c=13: (-£+V£°+ 20 4 2 )

For the range f = 0 —d= then ¢ = 0,71 —> 0. 67

-

also & = (1 +~%§) s | K
with £ = fc and ¢ = 1 s (= £ +v £2 + f).

This represents the anticoincidence me thod,
£f) If £ = @ thenc —1 s (0.5 +¢) s With e =1-p

Some numerical applications.

Suppose f is about 2 and suppose two apparates are used of which the
average one minute values of the backgrounds are equal and of which
the background values are correlated strongly e.g. with p= 0.8,
Suppose one wants to measure the unknown B with a relative accuracy

& = 0.05. Then the question arisess should we measure with only one
instrument (preset count) the ( B+ i )-effect and next with the same
apparatus the x effect separately, highly accurately ? Or, should we
apply to the two instruments method ( B+ « and « simul taneously)?
Answers graph A gives for &= 0.05 and f = 2 & value N = 900 in the
one instrument preset count method, With graph B we obtain for f = 2
and P = 0.8 a value ¢ = 1,3 and consequently % = cf = 3, Next we
enter graph A with f = 3 and & = 0,05, Consequently N = 760,

Hence the method of simultaneous measurements with two separate in-
struments requires a 16 percent smaller number of counts and conse-
quently a 16 percent smalier measuring-time. The disadvantage, however,
is that two instruments are occupied simultaneously, whereas in the
one instrument method only one apparatus is needed. During nights be-
fore and after the measurement of the total effect this apparatus may
be used for measuring the naked background effect, It is to be decided
by the user which of the two methods is preferable.,



-18A-

2) For very large activities, say £>10, c is nearly constant with regard to f
but depends strongly on P o But since the density of straight lines in
graph A grows fast with increasing f, the two instruments method, whatever
may be the value of p , does not change N seriously. Now the difference
between the two methods is relatively small.

3) For very low activities, say £<0.5, ¢ is not constant with regard to f,
especially for p >#%, and moreover depends strongly on p ; say, c lies
between 1 and 4 (provided that p>0.5). Consequently the preset number
of counts is diminished markedly when using the two instruments method

and the more markedly, the larger pe
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Statistical aspects concerning the estimates of
the “age" and "the zero day's " value
of the pure filteractivity
by means of measurements of the filteractivity
on two, three, or more days after

the sampling day.
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aspects concerning the estimates of the "age" and the

value" of the pure filteractivity by means of measure-

ments of the filteractivity on two, three, five or more days.

Introduction

T =

Given B,

P2

Problem 1)

2)

Definitions

number of days between the day of explosion and the

day of sampling the air; “age"

number of days between the sampling day and the day

of counting the filteractivity T, T

T4+ T g e B L
+ KR o

true mean value of filteractivity (counts/min),

corrected for background

|
Basic_principle: | B= const. t P ‘

constant, dependent on the composition of the radio-
activity (e.g. P = 1.20). (The value of P is constant
during the period between the day of explosion and'the
day of last measurement of the filteractivity).

(on day T1) is measured as b,, with a relative accuracy O,;

(on day Tz) is measured as b,, with a relative accuracy 8.

Find the age<;‘and its accuracy 61'
Find the zero day's activity b, and its accuracy & ,

using the two inaccurate measurements b1 and b2°

Age, estimate and accuracy

Estimate

Substituting Ps, v+ Ty, resp By, v+ T, in (1) forp
end t, we find two equations with two unknowns, to wit
the constant and < .

For v ¢ T =

a

, - with a =1/p; o¢=85/Bs
- ¢

In practice q = b2/b1 is substituted for ¢ = By/ B,
A
and consequently an estimate % of ¥ is found.
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= f (b1;b2) with q = b2/b1

Ac curacy

A sharper formulation of the problem goes as follows, Suppose one
would be able te remeasure the same true, but unknown, values Ba

and By again and again, then generally each time a new rair of values
by and b, would result, each pair Eisng an estimate of By , B, .

Bach pair b, b, furnishes a value ‘z (see (3)), Since b, satisfies a
Probability distribution around value P1y with a standarddeviation Oy
(with 84= 0, /B, ) and since the same applies to b,y also® follows

a distribution. We like to know the mean value 61>and the standard-
deviation G(4>)o Even if b1 and b2 would follow gaussian distribu-
tions, the distribution of ™ will not be symmetrical and hence cer-
tainly not normal because of the fact thét‘1>is not a linear function
of by and b,.

Three attacks of the problem will be treated heres

Strictly spoken, as soon as the probability functions 31(11)dx1of

Xys with m, <x1<n1 s and gz(xz)dx2 of X5 with m, <x2<n2 s are
given, with y = f(x1912)9 then the probability function g(y)dy can

be derived as:

g(y)ay = g1 (xy)g(x,)ax, with X, = h(x,y) from y = £(xq,x,)
1

with min.y SySmax.y, where min.y and max.y depend on m,, nyy MWy Ny,
Next all moments in this y=distribution could be calculated, This is
very difficult for a function as given in (3). We have given up this
attack,

It seems reasonable to reason as follows. Given the probability
functions of Xy and x, (ef. previous point), there are 4 combinations
of pairs:s & x4 z 20y, 6x2 bt 20, namely ++, +=, —+ and ~—.

For each of these pairs the value of y can be computed; take the
smallest and fhe largest one., Call the difference between these ex-
tremes 40& and the arithmetic mean of the four y values €y. This
attack may be very incorrect and even senseless for "complicated"

functions y = f(x1;x2), as will shown further on,

See footnote on page 4B,



c) The third attack of the problem is followed usually. Before de-
scribing this attack, a statistical theorem should be mentioned.
Let be given n interdependent stochastrical variables Xy Xy 0 o o

x , with correlation coefficients? Pyr 1 £33 4, §=1, 2. . .n

Let be By the mean value of X, 3 o’£ the variancej By the kth

moment of x, =1, 2, ., . n.

let be given a function y = f(x,, Xpy o0 o X )e

Then Gy and o(y) can be developed in a series:

(4) € = (i .pa)ebl 09+ . . £, 00 1+ -13-! [, byt o o £, 1s ote

t
'

Note 1) Of course, this attack is a better approximation of the exact
method treated under ¢, the smaller the values ofd, and &,.
When substituting b2(1+28 )s y(1-28,) in q in (3) we obtain:

A T2q - T1 + 2a(T2q5 + 1,0 )

Likewise, substituting b2(1-262), b1(1+281) in q in (3) we obtain:
a
o Tl =Ty -2 (Q—

TR Hence v-*< 7% Define 40 = t*-1
a T
1 = q + 23(-——_)

11
L

In these expressions 8 and6 are considered so small, that
(1+25) = 1:236 ‘l‘he case 5 £ 52 is somewhat complicated. Take
for the sake of simplicity &, = o9 sayd. Thens

) T2+‘C

q® T+ P
- tth 40‘ < 836(——-—— (T -T ). substitute q -( L )
(see (11)), and it follows thats

(T1+'r)('1‘ +7)
- 2 ~
O'T/'t=2 (T—T1)'t ad and 28.8!

Hence the expression (12) reappears ! In this way the fact that
attack b) holds the better, the smaller both 83 and 93 s has been
illustrated.
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2 2 2
o (y)=(£26% + o £o02) 4 2[f1f2&20'1 T+ e fp g TaP g 0 19 14 ete

Here fi= af/axi and fii="82f/axi2 for the arguments My etc./\We wish
to use this theorem. In our case n = 2; x1'='b1; 12‘=‘b2; Y=T ;5 fe
function in (3)5 p,,=0.

Here p-12=0 since b1 and b2 are completely independent, for instance
the chance that b2>ﬁ2 does not depend on whether b1> 51 or b, <51.
Of course we use the exact (5) and truncate (4). Then:

&%z 1= £(B,,B,) = (T,e=T,) s (1-¢®) with o= Bo/B, and

2,70\ 2 2

o~(1:)=f,,“ 0’12+f20‘g
The truncation is made here after the first term in (4); of course
the consequence of this truncation should be verified. Therefore
we also investigated the importance of the term in brackets with
the 0‘12 and crg; it turned out that (6) is a sufficiently close appro-

ximation of (4) o

Next f1 and f2 are computed, We obtaing

s T2 T ala- Ty
f, = af/ab =-8f ———— s f s Sl
1 1 (1-0®)2 2 a,2
B, (1-9%) B,(1-¢°)

Substituting (8) in (7) it followss

8
¢ (T ~T,)
() - 272N 2

o3 )
(1_(?&)2 ®

where per definition § = ay/f; 6, = o/Bps 82 = 8 + 5
A o
Next follows 5, =0(7) st For © see (2). We then obtain:
a
6 = 7T
T

(1-9%) (T 9%-1,) =

B T2+'r ~P
In view of (1) we have @ = <5 ( )
51 Ty+7%

Substituting (11) in (10), with a = 1sp, we obtains



(12)

(124

(128
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(z+ T1)(T+ T2)
6 = 8,6! = v.a&i 5 v >1
T (T2-T1)t

This is the most general expression for & .

7\
Next the assumption is made, that the value of 4 is distributed
around T with a relative standarddeviation §6_ in a gaussian way1),

so that there is a 0,95 probability to findﬁ?‘between T(1-25k)
and ¢(1+2§Q

Expression (12) shows, that & is smaller,
T
a) the smaller © , provided that = >VT1T2 ;
b) the smaller T,, irrespective of 7 , Toy Ty 3
¢) the larger T2, for all T,, Tz,'r;
d) the smaller 6,5 that is the smaller 8, and &, ;

e) the larger T o~Tys for all Ty, T,.

From (12) follows that & certainly exceeds a &
The factor v=1 only if T1T + 30,7+ r%G<T
When T2=mT1, with m >1, this would require t-+(}—m)¢T1+mT <0

Since this inequality cannot be fulfilled for reasonable values of

T, and m; it is almost certain that 6T surpassed a&i and usually
in a marked way.

There are two extreme cases:

A) ©>>T.; the explosion took place "very long" ago. Then (12)

becomes:s
67= T2—T1 ad If more?:er Té>>T1, then
6¢=(1+E;? ad_

B) =T, €<§32; explosion took place recently. Then (12)
becomess

T1+¢ T,+T T +7T
ad_|, with >1, but not

5 =
T

>,

How to choose T, ?

Generally T1=394,5; how to choose the best possible value of T2 ?

Suppose we want to estimate T by only two measurements b1 (day T1)

It would be a very difficult problem to investigate what would be
7\
the degree of skewness of the true 7T distribution.
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and b, (day Tz), then the question arises how to choose T, for

given ‘1‘1, 61, 62 in order to find a sufficiently accurate {c\?
Now solving (12) with respect to T,y we obtain: )

6T1 + (T +7) a5

T

x5
61:1:- ('1‘1 +7) ad_

Rumerical examples

Let be 8, =8, = 5%, so that 8, = T.0%; let be T, = 4
Pp=1.20 a = 0,83, Let on certain grounds be supposed that < is

about 100 days. We will require 5 = 10%, Now, how to choose T2 ?

Equation (13) gives 163 days. Of course this T2 is very large. It
is "impossible" to wait so long before the second measurement b

can be made. What to do ?

2

a) One could choose T2 smaller and be content with a far much
larger 8 3 for instance T2 = 20 and 5 = 45%,

b) One could fix T2 on 20 and prefer to make a third measurement,
on day T3° How to choose T3 so that 8 = 10 to 20% ?
This question leads to the formulation of a new problem: given n
measurements by, b, ... b with relative accuracies 5, 52, ces
& n? what is the best estimate of © and what is the relative
accuracy &(7% T") and how should Tys Ty oeee T, be chosen to fulfil
special conditions ? This problem has only partly been solved in
the present Addendum (see chapter 5),

c¢) One could measure P, and ﬁ far more accurate. In case a):
5 = 45k, If we want to decrease 0,45 to 0,10, then 51 and 5
should be, say, 4 times as small and the measuring times 16 timea
as large, If this would give practical difficulties, one could
prefer the "two instruments method" or the anticoincidence method
for counting the filteractivity in order to save time,

If one wants not to wait so long before making the second measure-
ment so that in any case T < T or even T <<1:, then (13) gives
5. Ty + (T +1:)a5 <(<<)6 T - (T +7T) a8  and hence

T+ T1
) >(>>) 2 — ad >2&8

T T1
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This implies that one should be content with an accuracy of 7 ,
which is in any case larger than 2 a.6aE namely 1'785£ = 2,40
for p =1.20 and &, = 52,Aday,6‘.'

" 2) The second example refers to an observation at 6/7 - 1 - '59, de Bilt.
2=12 the value b2r46.7
imp/hin was measured (both corrected for background). The relative
accuracies were 61=3.O and 52=3.1%. Substituting p=1.20 and a=0.83

(3), we obtain T = 65 days.

Here & _ =10.030%0,031% = 0,043 and a8 = 0.0356.

Certainly 61_ >0,0356. The exact expression (12) gives 11.8 36! = 0,42,
whereas the approximation ( T)$E1, T2, see 12A) gives 9.3 x aéi = 0.,33.

On day T,=5 the value b,=52.4 imp/min and on day T

The difference between 0.42 and O.33 is not large. Note the large value
of 51 which can be interpreted as: there is a probability of 0.95 that
T is situated between (1=2 x 0.42)65 and (1+2 x 0.42)65, that is be-
tween 12 and 118 days. (Observe the marked breadth of this interval!).
Let us now see how the incorrect attack b), section 1.2, works., Here
consider the pairs b,(1+26,) = 55.5; b (1 28, ) = 43.8; and b, (1-28,)=
49.33 b (1+2&1) = 49.6, The first pair gives, see (12), = 26 days-
for the second the computation comes to a deadlock, since 49.6>49. 3

Nevertheless, there is a 0.95 reliability interval for ¢ , namely
12 - 118 day's.

3) Let be T, = 33 b, = 503 8, = 0.01 and T, = 10; b, = 45; &, = 0.01,
1 /Q 1 2 2 2

Then (3) gives T = 74 daysj (12) gives 6. = 0.146, whereas (124)
furnishes 0,124, Here a 8 _ = 0.0118. The values 0.146 and 0.124 do
not differ much, The 0.95 confidence region for < is 52 to 96 days.
The attack b), section 1.2, runs as followss b1(1+261) = 51.03
b2(1-252) = 44.1 give = 52 days, whereas b1(1-261) = 49.03
b,(1428,) = 45.9 give T = 121 days. This example illustrates that

attack b now gives an incorrect answer, although not too incorrect.

Note 1) Notwithstanding the rather small values mf51 and 62 this
approximative attack gives a senseless answer here. (see also
the note on page 4B). Obviously, there are still more require-
ments to be fulfilled (such as: q sufficiently different from 1)

before this attack can reasonably be applied,
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2.1

(15)

(152)

2,2

(16)

(17)

(18)

Nevertheless, generally, we prefer attack C,
in this Addendum,

Zero day's activity: estimate and accuracy

Estimate

Substituting ﬁo on To = 0, ﬁ1 on T = T1,
relation

P=const. t P, with t =t 4 7

described extensively

ﬂé on T = T2 in the

and eleminating the constant and Ty Wwe obtain as true value of the

filteractivity on day zero:
a _ -P

- ( .9 T1>

o 2 T2 - T1

Next we substitute bo for ﬁ09 b1 forﬁ1 and b

a =P
by = by (22 11)
0 2\ T2 - T,

£(by,b wi

2)

Accuracx
As explained in the foregoing chapter on the

follow the attack expressed in the formulas (
y = bo; X, = b2; f is the functio
Then we obtains

Xy = by3

&bo = BO = (15) and

2 2 2
o%(b,) = £202 4 £505 with £

for the arguments ﬁ1 and Bzo

We obtain:

o _atl
(T(p-T) a ¢
£ o=l 2 1
1 T, - T, o1

withe = ﬁz/ﬁ1; a=1/p

> for ﬂz, then

th q = b2/b1

AN
T accuracy, we again

4) and (5), here with
n (15a) and F4, = O




-10B=~

Substituting (18) in (17) we obtain:

M a -iﬂ-*’}z
L eT T.¢ - T a
(19) cz(bo) = | T2_§1 ( 52 — T11 ) i (wgdf + 02 )

We wish to find the relative accuracy of 50, denoted by 50 EO’(bo):B 0"
With (15) and (19) we obtain:

T ‘Pa, p———

S = ____2__..___5 with O =V 62 + 52

0 a x x 1 2
Lo - T

Substitution of (11) in (20) results in:

T2('|:+ T1)

(21) 50=W 5!

When substituting ";.‘\(see (3)) for T one obtains:

p X
6\= 2 5 ='——-1——8 ,ifTiaTqa
o x x % 2 1
T.,"- T T
2 1 1 - __l_
x
T2
With regard to (12) we obtain:
(22) 87= (1 + -';-;—)aéo Note that the expression does not contain T,.
2

Obviously the estimate of T is usually (very much) more inaccurate

than the estimate of B . and this is the more so, the longer ago
the explosion.

We see, that 60 is smaller:
a) the larger<T
b) the smaller T,
c) the larger T,
d) the smaller&z
e) the larger T~

There are two extreme situations.
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(24v)

2.3

(25)

2.4
1)

(25a)

Note 1)
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1) T

T >>‘1'1 so that 50 4 6! . Then 50 = T2 -21‘1 8! « When moreover

o 1
T2>>T1, then 50 = 5! )o Explosion long ago.

_ T
T ~T, ;T<<E2 ; explosion short ago. The 5, = (1 + -7t1—) 5!

6 o
whereas c = 9.50

How to choose T, ?

. Generally T1 = 3, 4, 5. How to choose T2 ? Suppose we wish to esti-

mate P by only two measurements b, (on day Ty )y b, (day T2) and to

choose T,, for given Tys 84 62, in order to find a sufficiently
accurate boo

See (21) and solve T,. We obtain:

T = 6°T1 T
5 -
8017 - (T+T1) 5!

Numerical examples

Let be 81 = 62 = 0,05, so that 5! = 0,073 ‘I‘1 =43 p=1.20; a = 0,83,
Suppose on certain grounds we know that % s 100 days. Suppose we re-
quire 80 = 0,10, Then (25) gives T, = 15 days. (Remember that

81_ = 0,10 would require T, = 163 days),

Since usually 'r>>T1, (25) approximates to:

50'1‘1 8o
T, > ; consequently >1, since T, >T,.
25 _ 5 5 -5 2=
0 = 0 %

If a 50 value is wanted k times as large as 6!, then T2 should be
chosen E;k-f as large as T18

In this way, provided that T>T, and T2>>‘1‘1 (e.g. T =43 T , T2>15),
we see that the relative accuracy 50 of the extrapolation value bo
only depends on the relative accuracies 51 and 52 of the basic
measurements, because 52 2 5’12 +8 g, so that & depends neither on. -
P nor on T,
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(26)
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T2 x X
8o = ¥y then T = 17y (k = 15 =5 =) (1.5;5 3) (25 2) (35 1.5)

1 1
(43 13) (55 129 (105 1.1).

See the second example in 1.4,

by = 52,45 Ty =535 b, =46.T; T, =125 & = 0.030; 6, = 0.031;
p = 1.20, so that (3) and (12) give ©°= 65 days and 8 = 0.42.
Further (15a) gives b, = 57.4 and (21) gives 50 = 0.079;

B, lies between 48.3 and 67.5 imp/min.

The Bo region is rather broad in spite of the small © values.

by, =50; Ty =335 b, =455 T,=10; 8, =06, =0.013 p=1,20,
1 1 2 A 2 1 2

so that (3) and (12) give 7'= 74 days and&T = 0,15,

Further (15a) gives b = 56,0 and (21) gives 50 = 0,0203

B, lies between 48.0 and 52.0 imp/min,

Nomogzamo

Modification of existing nomogram

In the routine work at the Royal Meteorological Institute of the
Netherlands a nomogram is used with the help of which the measure-
ments b1 and b2 on the days T1 resp. T2 enable one to find quickly
both the extrapolated (zero day's) value b (estimate of Bo) and the
age 7 (estimate of <),

We shall show how the nomogram has been modified so that it may be

A
used also for reading the relative accuracies 50 and 61 of bo resp. T

The existing nomogram (see fig.D) contains a left hand vertical axis
with the values of m = T2/T1and a right hand vertical axis with the
values of q = b2/b1. The oblique axis contains the values of:

<% 0.834 -1 >—1.2O
c,q—g_—__

m- 1

The nomogram holds only for p = 1,20 (a = p'-1 = 0.834).
The procedure is as follows:
Let be given measurement b1 on day T1 and measurement b2(<51) on day

T2.
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Calculate m = T2 : !l'1 and q = b2 : b1. The straight line through
the points m and q cuts the c-axis at a value ¢ = c's. Then b o™C b,‘.
The straight line through the points q=1tc' and ¢ = » cuts the

. N\
m-axis in m, ; then 7= T1.(mt— 1),

Now, see (10), 6. can be written: . = - qo. 34
and, see (21), 8, can be written: 5, = o0 834 n:1 5,

Define ¢ = o°° 834, qQ = 0.834 : (1—q0'834) and m = m : (m=1).

N QN
Then: & = c.q&i and 80 = cm5! .

This suggests to write the values of o along the c-axis, the values

of q along the g~axis and the values of m along the m-axis,

The following numerical example illustrates the use of the modified

A

nomogram to find b, T, 8, 67 by means of b, (day T1) and bz(day T2)‘

Numerical application

De Bilt 6/7-1-1959;
b, = 52.4; 6, = 0.30; T, = 5; b2 = 46.73 &2 = 0.031; T2 = 12,
Then §,= 0.0433 m = 2,40; q = 0.891; B =1.72; § = 9.3.
Step a) gives ¢ = 1,095 1/c' = 0.916; A 1.076. Hence bo = 57.0
(5704) imp/mino '
Step b) gives m,_= 1.08; hence T = 62,5 (65) days.
Step c) gives 5. = 0,43 (0.42); confidence interval for < is 9 to

116 days

60 = 0,079 (0.079); confidence interval for 5 is
48 to 66 imp/min.,

The results of calculation with the formulas have been placed between

brackets, Hence the nomographic method is in general sufficiently Aac—

curate,
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4, The exponent p in the basic law

4,1 The exponent is unknown and should be estimated

Let us again start from the relation B, = c(t+ Ti)-p; i=1,2,3.
Now there are three unknowns c¢, p and 7 and it is the purpose to
compute on the basis of three measurement (the least number with
which it will be possible) the values of % and [50 and their accura-
cies, In this Addendum only © will be considered (the (30 case is

very complicated).

4.1.1 Estimate of <

From 1g61/ﬁ2 = -p lg t1/t2, with ti = T+ Ti’ and lgﬁz/ﬁ3 = -p 1lg t2/t3,
follows:
lg t,/t, 1lg B/,

(30) = y say k.  Let be k_ = A2 k
lg t,/ty  1lg B,/Py A12

Now suppose T>>T,, T,y ‘I'3, so that,introducing A12 = T,-Ty3
- - . = - . = 1 . = .
A23 = T3 T2’ A13 = T3 T1 5 810 "Q'(T1 +T3) i 81p3 = %(81 2"‘8'23) H

8py = ‘12‘('-['2""1'3), we obtain:
A T- g, )
(31) K S 12 12
Bp3(7 - 8p3)
’ ] i ko+1
(32) Whence|T= % = A13 + 813 '

Next let be T2-T1 = T3-T2’ equidistant measuring days, so that
A.2_5 = A12, say A; A"B =2 A g1py = T, and

< T > |
¥ é,

TEEET AL,

(33)

Substituting the measurements b,, b2, b3 for B1, [32, 533 one obtains an
estimate /'r\of T .

4.1.2 Accuracy of N

Next we want to compute the relative accuray 8'1: of 7 .
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Using the expression 0”(1) f1ca + f202 202‘ s Where
£, = af/abi withi =1, 2, 3; £57 isa function of by, by, b
We finally obtain, under the assumption Tyy T T3<3<T,

2 -
6;.-:’(—}) a\J 612+6§+5§ , with 61’5'11' and i =1, 2, 3

30
2’

a = 1/p, where p and © are the true unknown values,
In the case of two measurements b and b (days T T ) and under

the assumption that p would be known exactly, we would have found:

5 = T av 63 . 52 In the 2 measurements method (51)2
24 In the 3 measurements method (61_)3

Note the relations (5%_)3 ‘E‘%E (51:)2 wi'th ©/A >>1,

We seem to win nothing., Of course this surprises, but let us state
explicitly, that these two situations cannot be compared easily:
iﬁgﬁmeasurementsg only ¢ and % are unknown; p is knowh. At least
iwo measurements are needed. They give two equations with Iwo un-
knowns;, of which only T interests usj; via 4?, the estimate b of
the zero day's value can be found.

three measurements ¢; p and % are unknownj; three equations with
three unknowns; of which only p and % interest us. By way of p and

‘? the estimate b of the zero day's value can be found.

A comparison which would make more sense could be:

case 1) take three measurements, although there are two unknowns
¢ and T, Then use a fitting formula to find % and compute
(8 )2 ;3% 2 unknowns, 3 equations;

case b) take four measurements; although there are three unknowns
Cy T and p. Then use a fitting formula and find T and com-
pute (5t)3;4; 3 unknowns, 4 equations.

N?ft compare (61)3,4 "with (6T)2;3° We have worked out this statis-

tical problem, which is rather diffjcult, only partly, because of

the fact that the basic relation between B and t is exponential,

Next compare

(61)395 with (3§ )2 43 in general (s )3 3 with (51)2°j;

J =35 4, 5 etec,
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The exponent p is inaccurately known

Expressions

In the foregoing chapters the basic law is f = c.t ? with a known
value of p. The nomogram was constructed for p = 1.20. Each particular
value of p would require a new nomogram. The question arises what may
be the consequence of a small inaccuracy in the "known" value of p on
the zero day value, its accuracy and on the age and its accuracy.
We will derive expressions for abo/bo, 88 /8, a7/ 7, a&T/BT ,

for an infinitesimal increase dp of p. On the basis of the formulas

A . T+ ™
for b, &, % and 6, and since ¢ = —'I:TTI'; ; a = 1/p,we come to:
2
5. 3p ) T T, T 2
= 2 T 12 21
3/t = - 1g q 5. T 5, = —_ 1gqp D
)
o /o = 1 oa_p_ 850 ~T1('c+ T2)l ?3 1

A
2 2 o(T
where q;=(52/[31; q_; b2/b1; b= T,-T,3 6* =u 6y + 52; 81_3 ——(-;2-;
5, o oC1) 5 _oC2)
b1 > U2 b2

1

These expressions hold only if ap/p is small,

In case T>>T,, T, one obtains:

3T/t - 1g q ¥+ — 88 A = - % 1g q9p/p
. P AL
w — Smmettun =
9y /b ¥ 1g q 5, 98 /o =z 1lgq9p/p

Numerical -exampl'e

De Bilt 6/7-1-1959; T, = 45 b, = 52.4 imp/min.; 8, = 0.030;
T2 =12; b2 = 4607; 62 = 000310 ‘
Consequently b _ = 57.1, with 60 = 0,064 and
7> = 65 days, with 8 = 0.42
(small 6, and 62 and still large &, and rather small 60).

The expressions derived above gives
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(39) 3b,/b, = = 0.21 3p/p 38 /5 = - MLBQPP; if p = 1.20 then -0,08 5;}

P
/\ - 1.0 QR - - ’ -5_2
a«c/c = 1.36 ap/p 351/‘% =5 7 3 if p = 1.20 then 0.08 2

Interpretations:

per 1% increase of Py then bo decreases with O, 2}6; /'t\increases with
1.4%; 50 decreases with 0.1%; 6_increases with 0.9%.

Por instance: if p would 1lie anywhere between 1.10 and 1.30 around
1.20, then:

the b range would be 56.1 to 58,1 imp/min (range of 3.5%)

N " " " 58 " T2 days ( " " 23 %)
g " 0,063 0.065 (" " 1.3%)
" 51. " n " 0.39 0.45 (" " 15 %)

In this example the relative total ranges of 'b0 and 4'-'\, caused by
the inaccuracy of the exponent Py are almost the half of the corres-
ponding relative inaccuracies 50 and 51. of bo and (U\, caused by the
inaccuracies in the measurements b1 and b2. In other words: it be-—

comes fairly senseless to measure ‘b1 and b2 extremely accurate if

P _itself is rather inaccurate. We will not elaborate here on this

statistical aspect,

Substituting ¢ from (11) for q into (38) one obtains:

3b, TZ(T1 +7T) T+ T,
(a) ¢ )= lg 9p< 0, since 1'.'1<T2 and 9p >0;

o (‘1‘2-T1)'r T+ T,
and . ( Y
T T, +1)(T, +1) T+ T
(p) € <§7\_>= L 2 <1g 2)6p>0, since 3p >0,
T (T2-T1) T+ T,
ab,_ o%
Differentiating é—b— resp. GT as to T2 or t, we obtain:
0

8(a)/07,>0; 3(a)/8v<0; 3(b)/0T,<0 ana a(b)/6v 30 ,

for sufficiently large ©, then > O,

In other words:

the percentual change of b caused by a small positive change 9 p
of p is the smaller, the larger the age and the smaller the T2 value
(that is the nearer T, to T1) and
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the percentual change ofﬂ?‘caused by a small positive change dp
of p is the larger, the larger the age (provided it being sufficient-

ly large) and the smaller, the larger the T, value (that is the lar—

2
ger the distance between T, and T2).

More measurements than are strictly necessary

If p in B= c( T+ T)"P would be exactly known a priori, then two mea-
surements b1 on day T1 and b2 on day T2 (after the sampling day) are

sufficient to compute ¢ and © (the two unknowns) and hence to compute
the extrapolation value bo on day zero (T = 0). As soon as there have

been made more than two measurements,there are more equations than
-a

i
against T, (i=1, 2...n) in a Cartesian system, the axes of which

unknowns and we deal with a fitting problem, Plot the points b

contain linear scales, the vertical axis for the value b = and the
horizontal one for the value T.

Would all measurements have been exact, so that the P values would
have been found, then the n points would have been situated on one
and the same straight line, provided that the basic law P = ct P
would hold good. Since the measurements are inaccurate, the points

do not lie on the same straight line and the best fitting straight
line should be found. The position of this line depends on the degree
in which the measurements bi differ from the corresponding values

ﬁi (i = 1, 2 coo n) and hence the segment cut from the ordinate axis
and the segment cut from the time axis (b;ahndfﬁk) will be inaccurate
estimates of the true unknown values B:?and < (zero day's valuesage).
We wish to compute these inaccuracies among other things as a function
of the relative accuracies &, of the separate measurements b,

i i

Measurements on three days

The first case treated here is the situation of three measurements
made on equidistant days: T,; T, =T, + A Ty =T+ 24, Denoting
the ordinate with y = b’a, the best (least squares) straight line

through the three points Yis Ti’ becomes:



1
< T ﬁ l f f 2? (Ti-iﬁ(yi—y) -
(41) % — v - (-F) + 5
2 (1,-7)
i - = - = A T =
Slgce T2 T1 T3 T2 s We have T T2 and
¥y =¥ -
(42) y =23 (T-1) +¥F
5.1.1 The zero day's value. Estimate.
First of all we want to know the value yo(=bo-a) for day T = O.
Yy = ¥4 _ 3T, + 5 1 3T, + A
y =-1T +y=y< >+—y-—y< )
0 2 2 ! 6 3723 44
37, + 54 3, +4 T -p
(43) b= — b1a+lb a _ 1 b, 2
Hence after measuring b1 on day T1, b on day T2 = T + A and b3 on
day T3 = T2 + 4, the foregoing formula gives the extrapolated zero
day's value, provided p being known. A nomogram could avoid calcula~
tions.
5.1.2 Accuracy
Next we are interested in the relative accuracy 5 = G(b ) e o
of b on the ground of the relative accuracies 61, 82, 63 of the
measurements by, b2 and b30 This b is a function of by b and b3
and hence
2 2 2
ab ) <ab> b>
2 0 2 ) 2 90 2
(44) G(bo>’(—ab o7\ oy N5 o3
1 2 3
for the arguments 61, Bz, 63,provided that the separate errors of
measurements are uncorrelated,Finally we obtain:
N\
\/A2B1'2a +B%,7% 4 c2ﬁ3‘a
(45) & = 6% . 3p=° _ sp -2
ARy 7+ BE, T - CBy
with

3T, + 54 1
A‘-—-T—;Ba?; C=T——
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Since the P's are unknown, the b's must be substituted.

Now the basic law gives ﬁi = c 7+ Ti)’ i =1, 2, 3 and therefore

10 >
(46) 5, = p VAz( T+ '1‘1)28.(‘2 + 32( T+ Tz)zbg + 02(1:+ T3) 8§

Let us suppose for the sake of simplicity 'c>>‘I'1, T2, '1‘3, then

_ o 2.2 2.2 22"
(47) 5°=\FA81+382+C§

If moreover &, = 62 = 539 say & (all measurements relatively equally

accurate) then 6, approximates to

- 2
(48) 5 §5\6T1 + 6T, + 5K
0 AYVE

This is the moment for a comparison with 50 in the case of two
measurements and & = ,, say &, and T2, , T,
How should this comparison be made ?

There are many possibilities,

2 meas, 3 meas.
1 2 ‘ 1 2 }
a) ——- FEY
1 2 1| = ~ 2 3
b) — A A
2 A 24
and so on.
T, A 2\13T12+3T1A+%A2
(49) &) In case a) (50)2 =—3 &v2 and (60)3 = — E

and consequently (60)3<(6°)2

\l3T12 + 60,8 + 5
(50) ©b) In case b) (8 ), is as above and (8§ ), = )
o’2 0’3 V6

and again (60)3<(60)2, now in a more marked way.

13T$ + 1218 + 20 A2
(51) <¢) In case ¢c) (&), is as above and (8 ), = )
°o°2 °’3 2 AVE

and (80)3<(60)2 in a still more markedly degree.




(52)

5.1.3

(53)
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Case a) may be the most illustrative: in what degree becomes 50
smaller if halfway between the measuring days of the two measure-
ments method a third measurement would have been made ?

Compute the ratio K = (60)3 : (80)2

2
I(2m12112+12m+5 m-T.l/A
12m° + 24m + 12

For decreasing m (increasing A; fixed T1) K decreases asymptotically
to 0.65 =\ 5/12, For T, = 4; A=8 (m2 =12); K = 0.72

Hence in case a) 80 be decreased to 65% of the value in the 2-measure—
ments method, for sufficiently large A (provided 'c>>‘1'1, ‘1’2), by
making a measurement halfway.

Next consider case b).

) _
Now K2 w B+ 6B+ 5 5 _ 0,42  and K+0.64 1f m » ©
5 212
12(m + 1)

Again K decreases asymptotically tow/5712 for increasing A . For
T1 = 49 T2 = 12, then K = 00579

Next consider case c).

2=m2+4m+6

Now K ->
20(m + 1)2 10

if m o o.

Again K decreases to V5/12 for increasing A . For ’1‘1 =4, T, =12

we have K = 0,50,

2

Es t_ima te /'t\

Substituting T = O in the equation for y, (see (42)), we obtain:

/'r.\n 2—L— A -1 with yiabi’a; a=1/p

Hence obtaining the values b1 on day '1‘1, b2 on day T2 = T1 +4 and
b3 on day T3 =T, + 24, the above mentioned formula gives the esti-

mate of the age of the activity. A nomogram could avoid calculations,
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/N
5.1.4 Accuracy o(7)

(54)

(55)

(56)

A\ /N
We are also interested in the relative accuracy d = c(®) 1x ot’x.
. . NNoa 2 Y1 + Y2 4+ 73 T

Using the approximation ¢ = 35 A
3 Yy = ¥

(suppose DTy, Tos
TB) we finally come to
2 4a
a‘c
=2 2 =2a 2 , =2
2 5 (B2 (30 430450 %4 7% £ 634 8,722 (30430, 45 ) 262 ]

5° = 5
T 36(1:+T1+A) A

Next substituting ﬁima =2 (g+ Ti)9 then 61’_ approximates to:
2 2 2.2 2"
at| & + & 02/ P52+ 67
5 % ——
® 24

o
]
ay
o]
8
o
—
N
+
ot
D‘\J
~
N
He
o
G
~
(o]
€l
>
-

24

Next compare this result with the two measurements method, in which

case we obtained

1 2
anve | | |
E"r = -ﬂﬂzx-mﬁ * I A
Note that 5-¢ does not contain T4,
Next we maske comparisons as we did in the section on 500
1 A 2 1 2 3
Case a)s —&2— Lzﬂ—]—%x—J
( S ) o> 81{2 (6 ) «> 8.17{2
t/p = T B w3y T T &
Hence there is no difference.
1 2 1 2 3
Case b)s L—4 A L4 '
V2 aT
(5_), 2 == (8. ), = 6
T2 4 T3 AV2

Here (61_)3 8 (5T)2 ~ %,



5.1.5

5.2

(58)
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1 2 1
Case c): LA ' -2 f 24 i‘
o _8gY?2
(8), = =55 (8); = -—“--M 5

Consequently (81_)3 : (Qt)2 = 3.

Conclusion: if one wants to obtain a more accurate eastimate ¢ of
the age T by using three instead of two measurements (b,, bé, by in-
stead of by, bz) of the pure filteractivity, then the third measure-
ment b3 should not be made on a day T3, situated half way between 'r1
and T, (that is T_,’--'I'1 = T - 3), but on a day T,, situated so that
Ty- 2=T2-T1 (not'1_—3'—'—2‘but1‘ R é)

Although the relatlve accuracies, denoted by (& )2 and (6 )3, of the
age estimates 1'2 and /'r\_,), found in both methods (b1, b2 resp. by,
'b2, b ), is constant (nearly 0.5), the accuracy (8“_)3 is inversely
proportional with the equidistance defined by T, —T1 - T -

2 3
In this conclusion all measurement are supposed to be equally accurate

( 51= 52 = 53)°

Numeri cal exa.mple

De Bilt 6/7-1 -19593 Ty = 43 by = 52.45 &, = 0.030; '1‘2 - 12;
= 46.T3 8, = 0,031 (say &; = b5, = 0.030) |
Consequently b = 57.1; with 8, = 0,064 and = 65 days, with 5 = 0,42,
Suppose we would ‘make a third measurement, on day '1'3 = 20 (s0 that the
equidistance T2 - =Ty -1y = 8 days). What are the new values of
8 a.nd6

We obtain (5 )3 s (& )2 = 0.57 (see above), so that (§ )3 = 0,57x0,064=
0.036 and (8)3 s (6 )2 = 0,50 and (5 )3 = 0.50 x 0.42 = 0,21,

Messurements on five days

A next step could be to stqrt from 5 equidistant_measurements, 8o that
T, =Ty +48; T3-T1+2A;T4=T1+3A;T5-T1+4Aand'l‘='l‘3.
Let be again¢>>T1,....'1‘5 and & = ..... 65, say & , then we obtain:

V'l‘12 + 447, + 642
6 = S
° AV10




(59)

(60)

5.3

(61)
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1
: A
Then in the case 11__mmwe_mUm_ﬁ? t~*ﬂAg A " ﬁ¢14 L2
We would have
T \
T,+4 VT1 4AT+-2%A2
(zso)2 = V2, (60)5 &
AV10
Substituting 3 A& for A in (58) we obtain
= 2
(&) 2 1 ‘
Kzgg#i - lem +12m2+4?~-;1% and K » 0,55, ifm , 0
L(Sb)z 15(m+1)

For increasing A the K decreases to V6/20 = 0,55

Conclusion: when making 5 equidistant measutements during the total

period fixed for the two measurements method, the & value would
decrease with almost 45% (3 eq. meas.: 35%).

Measurements on more than five days

It is interesting to see ;hat the influence on both the accuracy of
the zero day's value and the age would be, if still more measure-.
ments on equidistant days would have been made within the period
between day T1 and day T2 fixed for the two measurements method. The
problem can be attacked rather easy for 80, but is difficult with
regard to ¥ » For this reason only 50 is considered here,
First of all we refer to a statistical theorem. Suppose to each of
a set of n values of Xy (1 = 1y 2¢e0e 1) belongs a distribution of y
values,; each distribution possessing the same known standarddeviation
g
Suppose that the mean value of ¥y denoted with m 4 is lineair related
to x according ton = A + B(x-X), with A and B unknown constants. Now
let be observed only one ¥y value corresponding with X495 Only one Yo
value corresponding with X, etc,
Usually these points Xi9 Yy do not lie on one and the same straight
line.
It is possible to prove that the statistical best estimate of A is
given by A = ¥ = % 5335 the statistical best estimate of B is given
by *

~ n

_ - n - 2 - 9 n
B = 81 (x;=%) (y;-¥) 12 (x;-%) 5 X = fxi
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With these values‘x'andfg the straight line can be drawn and for each
given value g of x the corresponding mean value yg of y can be read
from the stralght line, Since this straight line lies statistically
(because A and B are stochastical quantities as being based on the
statlstlcal variables Y ceo¥y ), also z is stochastical, The vari-

ance o (z ) is given by

(62) o_z(zg)= 2|1 +_(is_;x_)m
2 (x = x)z

We want to use this formula in our problem.
Identify ¥ with b (a being known) and x with T and think of an o0dd
total number of measuring points n = 2m + 1sm=1 2, ... Now 02

is the variance of Y and hence not of bo

Since Uz(li) = Gz(bza) = za(cz/ﬂi 2a52 the values

Gz(y.) with 1 = 1, 2 ....n, can not be equal if the values of 5 are.

Nevertheless we will approximate all values 02(1 ) by a25-2382, which
approxlmatlon is the better the smaller the slope of the line Yy against

peeeT ).
Next we consider the ordinate of the straight line for T = 0, This

T,y that is the larger © (here appears the assumpt10n¢>ﬁ>T1, T

point, mentioned Yo = bo s Pcssesses a variance given by (see formula

(62); substitute x = g)e

(63)  oP(y,) = a%p;%852 5
whence _
2
2 2| 1 T
(64) 85 = & | = +
0 n z?(Ti _ 7)2

Now we will distinguish two cases A and B,

1 A 2

A. L , i n=2
1 2 2
L ! 1 ns=13
Iu ? jl ? 5I n=5

etc,
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Here

2

1 12m 2{ 2n-1 -1 2 . T

(50)2 - L + 2(20-1) /(n=1) 6% , withm = 3
n(n+1)Qn—1)
n = 3’ 4, 5, 6, 70-0
2 26 2 .
(50)2 = 2(m+1)9 if < 5T,
So that
12m2+12m+2§_’_"1'1
KE = (60)5 : (60)3 = 2n(n+l) 2
— (m+1)

For m » o (that is A 5 ), then Kz_, ;(2%_'—1-) >2/n
n-> o«
Increasing A, decreasing KA
2 2
n KA KA for m-»0 KA
3 | 2n2+12045) ¢ 12(me1)? 5/12 0.64
5 | (12m%+120+43) s 15(n+1)? 415 0.55
7 (12m2+12m+4-13-) : 18,7(m+1)2 4.33/18.7 0.48
21 | (12n®+12med.1): 44.2(me1)2 | 401 Ja4.2 0.30
w (12m2+1 2m+4,0)z o 4,0/ = 0
B. L_A_lz n=2
1 2 3
12 3 4

etc.

(612 - 1202 4 12(n-1)m + 2(2n-1)(n-1)? 52

o’n
n(n2-1)

, With m = T/8
n=3 4, 5¢e.
(ao)g = 2(m+1)%6% it © >,
Hence

£ . (52 (502 120° + 12(n=1)m + 2(2n-1)(n-1)

o’n 0’2~
2n(n2-1)(m+1)2
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For m>0 (that is A » w), K.g., ﬁ%ﬂ—) + 2/n

n- o
Increasing 4, decreasing KB
n K123 K]23 for. m -0 KB
3| (1202 24m+20) & 48(ms+1)2 5/12 0.64
5 | (12n%+48m+72) + 240(ms1)2 3/10 0.55
T | (12n®72m4156) : 672(m+1)2 156 /672 0.48
21 | (120%240m+1640) & 70560(m1)2 1640 /70560 0.30
o Lo 3 0 0

For each m and each n one obtains:
(KA)n,m > (K)n,o > (KB)n,m

Consequentlys the larger the number of equidistant measurements and
the larger the equidistance, the more accurate the zero day's value,
provided that all measurements are equally accurate, For sufficiently
large equidistance and sufficiently large number of measurements the
decrease of the accuracy of the extrapolated value is inversely

proportional with the square root of the number of measurements.
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Explanation:

Linear scales for b-a and Ty p is supposed to be known. The true points @
T, By €.8 4, By and 12, p,°, determine the true straight line p,
which cuts the vertical axis in ﬁ;a and the horizontal axis in 7 § here
Bo and t are resp. the zero day s true filteractivity and the "“age".

Since the measured values b1 and b2, furnishing the crosses in the
figure, are stochastically distributed around the true values f5 %and ﬁ
(furnishing the small circles)on the verticals T, and r2,., the stralght
line m through these two points lies stochastically around K, so that
the points of intersection with the vertical and horizontal axes lie

stochastically around the mean positions ﬁ;a and T respectively.
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PRESET TIME METHOD

B+u and u' are measured simultaneously and separately during T minutes.

Cet be p =
and N, in

correlation coefficient between the total numbers N
the period of T minutes as unit period and let be €=1-9

Example: suppose ¢=08; ¥ =1'=17 imp/min.

1) Given:
Answer:

2) Given:
Answer :

3) Given:
Answer:

f=10 (high activity): 8 =0.10. What is the value of T ?
f=10, p =08, see graph B. Then c=15, f"=fc=15

Graph A, with f=15 and §:010, gives N =117 (the one
instrument method gives N =120). T will be 117: 111 = 0.6 min.
$=05; 8§ = 0.05. What is the value of T?

f=05, p=08, see graph B. Then c=155, t"=f.c =078 Graph A,
with =078 and 8 = 0.05, gives N= 2100 (one instr. method : 3600 )
T will be 2100: 13 % = 82 min.

£=01 (low activity): 8 =005. What is the value of T?

f=01, p=0.8, see graph B. Then c= 16, "= 1tc=0.16. Graph A,
with =016 and 8 = 005, gives N:=25000 (one instr. method : 50000 )
T will be 25000:11xn=22h

Two instruments

3

n

T

u|._+NmU\¢nd+—\*t.*tu*O.*uh
VBT 2 o "
JVieanerd? 5 NNy
2782 T
1+28/¢
f—— E=1-
oz e

10
5 L 9
-
8 8
c
7— 7
6— 6
5 5
c= !
4 ~t+V12+(142€) 1+ 2€ ‘
L ©-1.0 G
~—— anticoincidence method
3 4 | 3
—
i i/ll’l
—— L s ' -
o — 09 2
= 08
0.7
06
R 05 1
0.9 04 09
- 03 -
08 0.2 5 08
07 00 ! ! 07
06 : ] 06
| —t | _
as ~ N | 05
0.1 02 03 0.4 05 06 07 08 09 1 2 3 7 9 20 -~ 30 40 50 60 70 80 90100



NUMUGRAM

for estimating the “zero day's" atmospheric radioactivity, the “age"” of the radioactivity and D

"“T’/T their accuracies, if measurements of the filteractivity on only two separate days have been
T ! made.

m q=b2/b
401133 Basic_principle 7o o190
P ! R/ AP
- t=7T+T ; 201 95 T
N Tz period (in days) from explosion day to sampling day 15
~1.35 T= period (days) from sampling day to day of counting ‘0_23_90
T-1.36 B=true pure filteract. (imp./min.) on day T g:: ’
Given: two measurements: on day T N; counts in D; min, 7T
—+-1.37 on day T,; N, counts in D, min, 6_:_—35
138 Find: estimate by of 8, on day 0 and relative accuracy 3§, . I R
g estimate T of ™ (age) and relative accuracy § T N 5 g
H-1.39 ! ' I
35114 0 -
1
§ ' —= 8 = o(b):B, % as-|
b , L
1 8.0 2 4 6 8B 0 122 14 15 18 20 o 70
52__10_2) . -
2| J
T )
. 2 . 1
/ L
l _//t. / / Z / / / 28 65
] =12 . Ve i)
* "1 ; 26
30-+15 6 / 8 /) / i
’ . / / / T
" — 10 —
V=)
177 / {
B 10 — | 22
- 12—t A 55
~16 | —1 1
[ /// %
- 14 /—74 L
4 / 20 1
~ //
25— 16 7“' /f -
—17 L — 1.9 +50
. 18 /7
- .49
*— 20 - 48
2 —
s 8,V 8 48] w
+ - .46
+19 —.45
3 17
20120 o %;s I
c 10400 1 |
_ Ve
— 16 1
Numerical example. i L 20
— Given: %= 180 i/min (backgr.); Ty =4;N,=9000; D, =80 min. :
1 T, =12;N»=9000 ; D, = 100 min.
Find: by, 8¢; %, 8.
: b N1 1ty =P1/,02525 ; by= N2 %2720 . 1,222/ 400
1513 Answer : bp, ~=944 ; t;="1/,=525 255, H:720; 1y - yARS
Graph A: (Ny,f;) =8, 20013 ; (N,,t,)+3,=0013
T Graph C: (§,,8,)~ 8, =0018 ‘
L g Graph D: q= bz/b1=0.766; G:42; m: Tz/T1 =30 ;m=15 f
. (q,m)+c=1176 ; €=114 ; '/ =0850 ; (q=0.850,c=00) » m =115
A6 "Hence bg=¢cb, =110.8 imp./min "1"'=T1 (m,_-1)=267 days|
C2 3,=¢.m.8,=003 8,2¢.3.8,-0086
Fo 104 <B,<118 imp./min. 22< 7 < 31days
-2 104 ; 118=110.8 (17 2x0.031) 22 ;31:26.7 (17 2x0.086 ) :
10—Los

95% reliability regions
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(82v)

ADDENDUM C

The reasoning on page 36 is based on the requirement that for
each instrument the accuracy O’(AA ) of the systematic error AA;j should
not exceed a pregiven value d (e.g., 0.05), this.d being the same for
all instruments. Then the expression (82) results,

It is, however, also poss1ble to require that the accuracycr(A/A\)
of the systematic error AA is at the most a pregiven fraction 1/f of
the standarddeviation of the total random error for each apparatus sepa-
rately, this fraction being the same for all instruments. Then there
results

,j -O'(AA ) 2 £, in stead of O'(AA Y d for each e

Substltutlng (74) and taklng into account g4 < 0'2 cene <0'k,we come to
2

o+ (k-2) a2,
- 1
(k—1)0“
As soon as o, = O'é =e.. 0., 88y O , We o‘btain,,vf_niE = £I{'—1- f2, as in (68).

This reasoning includes a stronger requirement than on the pages 42, 43.
Hence the values, estimated for the minimum durations, become larger.
Let us give 5 examples, in which 10 instruments have been installed
close to each other., Let the ¢ 's be unknown beforehand, although there
is some a prior; knowledge on the interrelation. Take f = 5« For the
interrelation we substitute respectively:

I. Oq % eoes 0'10‘-‘31 : 1 : ... 1. Equal ¢'s. Then n* = 22 days.

II. 0‘1 S sese 0.1021 H 1 3 eeo 1 H 100 Thenn =47.

us

III. Oy % eoes 0‘\10 1 3 1-3-: vee 5 (arithmetic series). Then n* = 76.

ug

IVe 04t .ous 10=11t21:3 ... 10 (arithmetic series).Then n¥=116.

g

V. © 1

1 eeee T 10 : 10 ... 10 Then n* = 245 days.

Conclusion: the "larger the inequality" between the 0''s, the longer the
minimum period of comparison.

Returning to. (82a) we state that there are k values of n's nf ’ n; —_—
x : B

n, o, if the requirement is k fold,

16® + (k-2) 0’§

n>k;—1f2 =j=1, Zo'ook
2
k-1) o
(k1) o3
Since o <o’2..._< 1 We have n1 >n2)... )nk We could agree to choose

the mean value n* = X Z nj 9y 80 that n w:ll depend less strongly on one or

more extremely small or large o's than n1.



ADDENDUM D

In case the proportionality constant C (see pg.1, 3, 5) is not
constant in time (e.g. because of the fact that the daily filters are
not strictly identical), but varies day by day, in such a way that it
is composed of a constant part, say CJ, and a random part C .y then

the reasoning is as follows. Let be 4 —ij j —ij for apparatus J on
day i. Then we have

22
J

N

. ° 2
Define &, = d,./¢, , withé_'gi. = 0 and 05 0°(t;,) =

Hence

Z;. = u; exp [Aj+§ij], with E

2 £ ; = ‘e‘ij + t.. in stead of

-]-3'1:1 =1iJ

Eij=255* 8,
An additive random variable t Ly has appeared, which refers to the
random part of Cj (at least under the assumption that the not constant

part of C behaves as a random variable). Then the variance of the total

error Ei;j is

o° 02( ;j)+ 0’2( )+ 0'2(3”)

In general: if there are m independent sources of random errors in

total (sampling error, counting error, filter error etc.) then

0'2(t0tal)v = I 0‘2.

m



CORRIGENDA “ -

Remark with respect to 5.2.1.2

The author knows that the attack in 5.2.1.2 as to the question
of the definition of "sufficiently high" is not correct in a strictly
statistical sense, but it is more illustrative in a visual way (see
the sketch).

When analyzing the results of the simultaneous measurements pro-
posed by Dr. Grandjean, we could do it better, if desirable, e.g. in
the follomng way: the variance of the corrected value y » defined by

y +AA 5 is 0'2 + -E-;i 2 and the difference between the uncorrected

yJ and the corrected y‘j may be calléd significant if

oag| > [ B 2ol L 2)

line
P8 from top (t)/ delete insert
from bottom (b)]
6 ) 19 t Cia‘ij C,jc‘ij
| 0 %
25 L | o
C C.
J J
1y 2 142 2
12 8 L L O -g)0);
16 3 b | only
k k
1 2 1 2
10 7| » -z e 4z ) Ly o)
k m;éj m k2 m=1 L‘m
| e
2 A2
19 1,2,3 I AN B0 B
2l 2 b | 28 2
'
25 7 t 28 24




CORRIGENDA i,
line
DPEo from top (t) / delete insert
from bottom (b)
30 9 b accuracy systematic error
33 19 t accuracy systematic error
34 | sketch, . b 'bJI
in the
lower 4o
interval
2 2
t s
36 6 o, O'J
2
37 12 % .lti_k_ Py
d 2
d
45 3 t 0'2::0.,:0 0’2=0.10
L6 9 qunatities quantities
10 k K
2}-7 5 b 60 = %’;ﬁo‘ o = ‘b’o‘iﬁc.&.
9 b 2,58 34
2,k t k
109 11 9 1 2’ b k1 K1
ky “2
53 18 b sp-values for & B) sB-values) fora
56 2 t Sg Se
o L3 10 t estimated, estimated.Since f= G/4,
see (82), the require-
ment =5 implies that
the period of comparison




CORRIGENDA -3-

line
P8« | from top (t) / delete insert
from bottom (b)

43 10 t ' is chosen so long,that
all accuracies of the
systematic errors
should not exceed cer-
tain value,which is at
leaat 5 times as small
as the mean value of
the standard deviations
of total random errors
of the participating
instruments.
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18 t | on the on an
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16A 13 t B is B (note: «' and «'' are
replaced by ¥ and k' )is

|
i
4B 3 : t stochastrical stochastical
8B 3 t day say
18 t b, (1 +281 ) b,(1+28,)

11B 3 t The Then

15B 1 t Using Use

21B 8 t be can 'be‘

23B 10 t Although Although the ratio of
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