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Some statistical aspects on accuracy requirements

arising from a non-routine use of climatoloe' cal datsa

Summary

It is obvious that climatological purposes and accuracy of
measurements and methods must be interdependent. This accuracy plays
a role in climatological problems of significance, minimum values ’
densities of network, relationships, associations and representativity.

In this short and not exhausting study the author éives the
statistical reasoning with respect to only four typical, partly
numerical, examples. The desirability is stressed strongly that these be

- analogized as much as possible by the reader himself.

The paper ends with tentative definitions of some well known con-

cepts as accuracy, precision, reliability, random and persistent errors s

reproducibility and repeatability.

0. Introduction

The 'interdependence between climatological purposes, especially
with a non-routine use of data in scientific research,and accuracy of
measurements or methods may be read in at least two ways:

a) given the accuracies of measurement (method), one may ask
which purposes of a climatological nature can be fulfilled
and which not

b) given a set of different types of climatological purposes,
one may ask which accuracies of measurement (method) will be
required to achieve such purposes

A careful analysis of the problem seems to lead to the conclusion
that the main effects of the ihaccuracy of measurements (methods) refer
to the statistical parameters standard deviation (o), correlation coef-
ficient (p) and regressioncoefficient (a).




Requirements of accuracy are met > we think, in fiv{ classes of climato-
logical probléms:
1. significance (as in example 1.1)
2. minimum values (as in example 1.2)
3. densities of network (spatial and time correlation coefficients)
4. relationships or associations (as in example 1.3)
5. representativity (as in example 1.4)

. Four typical examples, which illustrate the statistical: reason:ugg
These examples should be analogized as much as possible.

1.1. Significant differences

Suppose somebody makes at one and the same moment at each of
two different points A and B only one temperature measurement (x
and y). For some reason he likes to know whether the true tempera-
ture o at A is higher than the true temperature B at B for at
least 1°C (the actual question may look unrealistic, but only the
principle is pointed out). The question arises: what must be the
minimum value of the difference d = x - y, and what is the influ-
ence of the errors of measurement, for which a conclusion such as
desired above is Justified except for, say, 5 per cent of being
false?

Suppose the true temperatures a and P are defined sufficiently
well, then q may be measured as x = a + e and Basy =8 + f. The
e and f are errors of measurement, which are distributed, say, nor-
mally (systematlc errors being absent) around zero.

The standard deviations of these normal distributions are 9
and ¢, Op; Suppose O, = Op, say 0. Even if o = B there is a'probablh-
ty 0.05 that only due to errors of cbservation |d| = Ix - y| > 20V3.
Here 1.96 (= 2) is the value which is exceeded with a probability
0.025 in the so-called standardized normal distribution.

The interpretation is: when measuring lx - yl < 20V2 (o being

~ known), then the conclusion "a= P" is right in 95 out of 100 cases.
~ Suppose, however, that it is known a priori that o > B, but the
difference 0 = a - P is unknown. When measuring the same values o
and P again (suppose that would be possible), the difference d =



would follow a normal distribution around a mean value § = g - B,

with a standard deviation oVZ2. There is a chance 0.05 that

d> 8 +2.58 . oV2, Now 2.58 is the value exceeded with a proba-

bility of 0.05 in the standard normal distribution.

Interpretation: when measuring d >1 + 2.5 . oV? (again o being
known), then the conclusion & >1 is wrong in only 5 out of 100
cases,

For instance: with o = 0.1°, then the requirement is 4 > 1.4°C

and with o = 1°, then the requirement is d > 4.6°C

Hence it is necessary that x - y > 1% in order to be allowed to
conclude that a - B > 1° (with a 0.05 probability that the con-
clusion is false). This condition, however, is not sufficient, be-
cause x - y should also exceed this 1°-level sufficiently much and
this "sufficiemtly much" depends on the errors of measurement. The
greater the measuring error the higher the level which should be
surpassed by 4.

N.B. In this case the best part of the measuring error comnsists of
the reading error, but generally the reading error is only
one of several components of the total measuring error. Then
a careful investigation into the error components will be
needed. Moreover the way in which these error components are
distributed should be studied. It is unlikely that all distri-
butiohs will be exactly normal. For instance, the reading error
usually satisfies a rectangular distribution.

This example can be analogized easily in many ways. We think,
for instance, of the establishment of two automatic weather stations
at two different points in certain inhospitable regions. Suppose
these stations can work during no more than four years. Nevertheless
we want to know (on the hasis of data received by radiograph)
whether, for instance, the mean values of daily minimum temperatures
differ more than 10°C, What is the upper limit of the standard devia-
tion of measuring errors (now consisting of many components), pro-
vided this question is to be answered in the affirmative with a pro-
bability of, say, 0.05 of being wrong?



1.2. Minimum values

Suppose in some country a large lake will be reclaimed, causing
probably a little change of the climate in the neighbouring region.
Suppose the absolute minimum temperatures in each of several winters
have already been measured. Now the question may arise: what is the
smallest number of years (winters) after the completion of the re-
claim on the basis of which the conclusion would be justified that
there is a large probability that the change in the mean value of
this element exceeds a given amount? It is also possible to read
the question in the opposite direction. When the number of such
measurements is given (by, for instance, financial restrictions),
which changes in the element examined can be proved sufficiently
sure and which not?

Since the problem refers to several parameters it can be for-
mulated in several ways.

We prefer here a purely symbolic statistical formulation. Let
be given a normal population (I), characterized fully by the mean
value 1 and standard deviation Oy This is the so-called null
hypothesis Ho‘ Next this population is affected in some way or an-
other. Suppose, if there is any change, this change will be a
"shifting" (only the mean value alters), but it is questionable
whether this can be measured in a'stafistically significant way;
we write: p.. = Wp oty ( 2); 017 = 97+ This is called the alterna-
tive hypothesis Ha'

Suppose a random sample of m elements Xgy Xgy oee x is drawn
from population I and also a random sample of n elements y,, yo....
¥, from II. Generally ¥ £ ¥ and 8 £ s1y5 X and 8, are resp. mean
value and standard deviation of the x-sample; y and 8;q the same
in the y-sample. Even if y = O the resultc =5 - X > O is possible
(¢ = 0 wuld be very improbable), only due to sample effects. There-

fore a measurement ¥ > X does not necessary imply HrT > Hye
Let be:

@ = probsbility of an "error of the first kind" (e.g. 0.05), that is
the probability of rejecting Ho whereas Ho is correct
P = probability of an "error of the second kind" (e.g. 0.1 0), that

is the probability of non-re jecting Ho whereas Ha. is true

¥



T, (or Ti“ﬁ\) = value of 4, which is exceeded with a probability o
(or 4 = £); this ¢ follows the standard normal dis-
tribution. For instance a= 0,05 .. T, = 1.645;
B =0.90 ., T:t"ﬁ = 4,282
T = Tg * T:."ﬁ5 e.g. a = 0,05 B =0.90 . © = 2,93
Then the following relation can be derived:

4 = Z.T |m+n
- n.n

Y

where o° = crw"’ + o*ez, with

Oy = standard deviation of the true values of the meteoroclogical
element in question (for instance the standard deviation of
the true absolute minimum temperatures of'n + « winters).
These deviations may be termed "errors of nature". Each winter
nature may be supposed to make a shot at the average value of
the true absolute winterminima, but she always misses by a
variable amount.

Oy = standard deviation of the measuring errors s defined as follows.

Suppose the true value of the absolute minimum temperature in
winter i is E,, but the measurement gives X, =g +e (ei % 0);
i=1,2, ... m. The deviations e may be called "errors of measure-
ment". Then suppose é’ 2 = O.’) The standard deviation of the symmetric
e-distribution is called O This e is considered as independent of
g ; moreover, systematic errors are absent.

The relation mentioned above, may be read as follows:

1) for given m, n, a, Bs o only y values > Jo ave measurable. The
larger the m, the lower the level Yor .
2) for given m, o, a, B the level Y, is higher (lower), the smaller

(larger) the n.

3) 1f Y, 1s prescribed and m, n, a, P are given, then y's >y can
be "measured" in a sense as described above s> if o is smaller than
& specified upper limit e
' ‘,': m_+ 1]

‘Y'o ‘.:G‘u m.n

N

/ -
) 8, stands for lim %(;e for n =<oe



Here the accuracy enters into the computation, because, as said
already, o = 46;7_1_3;7. There are two cases:

a) If o, <0, then for given m, n, a, B (and whatever these
values may be) a shifting of the universe can never be proved.

b) If 06:> o, then, for given o, the o, should not exceed a well
defined value: 45:’_:'3;?. One reads: the larger the o (that
is the larger the natural variation of the phenomenon), the
lower the O, (that is: the more difficult the measurement,
since the "construction" of instruments or methods with a
smaller o is much more difficuilt).

N.B, Here the change of the population was supposed to be a "shifting".
There may be circumstances in which it is obvious that only the
standard deviation changes. Then a different statistical reason-
ing should be made and again the question of measuring errors
enters into the computation.

1.3. Correlation

Suppose the measurements of two climatological quantities £ and
N are subject to errors d and e and that these errors are random,
hence 51 = ée = 0. The n pairs of values Ei s T]i are measured as
x; = Ei + di; y; = ¢+ e.; i=1,2...n

E.g. the rainfall totals in many months of April at two neigh-
bouring stations S, and S, are measured; or else E = total sunshine
duration in the growing season and n = the yield of some crop. .

In both examples we want to know the universe correlation coef-
ficient p between & and n (the p may measure the association between
the populations). The sample of n pairs X5 ¥y gives the value r
between x and y. If d and e are indzpendent of each other and of &
and 1, then it can be shown that

- ° _ - . - . on
P(x,y)—%})gzor-f. p (& ), with £ = Sk —l

where o*(x) = 6*(g) + ¢(d); o®(y) = 0®(n) + o®(e); hence £ <1
if o(d) 2 0, ofe) > 0.

The correlation coefficient between the &, m values turns out



to be larger than the computed cne, r, not only in the sample but
also if the sample size increases infinitely. In other words: the

-existence of measuring errors diminishes the correlation coeffi-

cient. As scon as o(g), o(n), o(d), o(e) are known, the r(g, ) is
readily computed, when r(x, ¥) is measured. If now g and n follow
a binormal population, special formulse or nomographs enable us to
find the so-called 95 per cent confidence (reliability) interval
for p(€, ). Let the lowsr and upper limits or boundaries of this
interval be P, and p . These are functions of n and p. If it is
required that the relative width (pu - pl) : %(pu + pl) of the
confidence interval should not exceed a prescribed value, it is
possible to compute the minimum number n of pairs of measurements
for which this is the case. But it is also possible tb give n and,
provided that o(g) and o(n) are known, to compute those upper
limits of o(d) and o(e) for which the relative broadth of the 0.95
reliability region of p remains beneath a prescribed value.
Without working out fully mathematically this aspect, we easi-

ly feel that the measuring accuracy may be important in such sta-
tistical computations.

Remark:

Sometimes £ and 7 are not directly measured, but are derived
by formulae from the original measurements (e.g. evaporation;
bumidity computed on the basis of wet and drybulb temperatures,
etc.). Then the errors d and € will not always be independent of
each other and of £ and m. In such caseé correlations may enter
into the formulae for o(x) and o(y). The relations become less
simple mathematically. However, notwithstanding such a mathemati-
cal-statistical complication, the principle remains the same.

Répresentativity

There exist many definitions of the concept "representativity".
One of these is the following one: with regard to an unknown, but
well defined, true mean value u, a sample mean X may be called
"representative", if there is a prescribed large probébility P
that the absolute difference IZ - p| between the true and measured



mean value does not surpass a prescribed amount A > 0. Again the
accuracy of measurements plays a role.

Mathematically: let the variable x follow a normal distri-
bution with unknown mean value u and unknown variance o”. let be
drawn a random sample of n elements. The sample mean value X and
variance s? are estimates of resp. p and o°. let t be the value,
which is exceeded with a probability P in the so-called Student-
or t-distribution with n - 1 degrees of freedom (for n - w this

distribution changes into the standard normal one). It can be
shown that

2
tAnSds or n> (.JF—-'A_S) ; t is a function of n.

Usually this relation is used to compute the minimum number of
measurements for which the mean value has a prescribed "degree of
representativity" (especially in normal period - considerations).
Theﬁ, for the sake of simplicity, s is supposed equal to o ; more-
over, the standard normal distribution is used instead of the
Student one and, for given A, the unknown n can be solved.

Here I propose a ‘different use » explained numerically as fol-
lows (the example may look unrealistic; however, only thé principle
is stressed).

let be x = total duration of sunshine in summer, at station A,
as measured, for instance, with the Ca.mpbell Stokes sunshine recor-
der. The true summer mean value u = :1 4 & is unknown. In summer
i the true value (suppose this value 'Ts defined sufficiently well)
may be E‘i but x; = E_‘,i + e, is measured; e N is called the random
error of measurement and therefore satisfies a distribution with
mean gero; let the standard deviation be % (systematic errors are
absent). Let the true value & follow a normal distribution, cha.rac—

terized by u and O’E. If e, and E,l are 1ndependent then 0' =
2

O’E + 0' in the population and 5, 2= sg + 8, ®in the sample.
Def:.m.tlon. X is called representatlve for p if 7— <A or
s S 4 vn.

For instance: with A =10 h; n = 5; P = 0.05 . (t = 2.78), then
s < 8.04 h, but what about c’x?



Now s, is an estimate of o, - The value s is subject to sample
effects, in particular if n is small. There is a probability

* = 0.95 that the unknown o” is situated in the following confi-
dence interval

-iri-g 82 < 0'2<—)&5 52;%,° and y,* are functions of n.
Here x,%(X5®) is the value of x® which is exceeded with s pro-
bability 0.025 (0.975) in the so-called X*-distribution with n - 1
degrees of freedom. For instance: with n = 5, then x,_ =11.0;
X2 = 0.46 and 0.67 8 <0 <3.28 s. But also s, <8.04 h. Hence
o® = 0'52 + 0, ? <700 h. The o characterizes the natural variation
of the element here the true total sunshine duration per summer.
This inequality learns: if o > V700 = 26.4 h then the inequality
can never be satisfied, even not for errorless measurements. If
however O’E <26.4 h, then the measuring errors should possess a
standard deviation smaller than 1/_7—50—-_0"? (0’ should be known).
Substituting, for instance, O’E. = 26 h, then the result is % <4 h;
with, for instance, p = 200 h, then o e/p. <2 %. This very small per-
centual accuracy cannot be reached generally with the Campbell
Stokes autograph Suppose we double the number of megsurements; n
becomes 10. Then, again for A = 10, P = 0.05 and P* = 0. 95, the
result is o® < 960. Now, for Oy = 26, it is necessary that a, <16.7;
hence o e/ﬁ <8.4 % and now, probably, ‘this requirement can be satis-
fied, provided that the measurements are carried out as carefully
as possible. Here the inaccuracies chiefly refer to difficulties of
analyzing the cards of the Campbell Stokes sunshine recorder, depen-
ding on quality of paper, quality of burning glass, sharpness of
analyzing instruction and so on.

2. Appendix .
Tentative definitions of the concepts accuracy, precision and re-
producibility.

Accuracy Let be given a well defined, unknown, value . Let be
made n independent measurements of &: X1s X3 ee0 X o



Precision

Reproducibi-
lity or

repeatability

-10 -

The error (deviation of the truth) e, of the ith measure-
ment is defined by e, =Xj - & (1 =14, 2...n).

1 n P 1 n . - 3 .
IEtbe‘i:-ﬁ 2 x.,e:; 21 el,&t:llm.izmp,*
e = lim . 3 6>O and hence y = Z+ $oad €= L -E

. oy

This 5 is called the systematic error (persistence error

or bias), which persists during a series of the same or
8imilar measurements and which is therefore not eliminated

by any process of averaging.

2 _ __1 2 _ _1 n  =\a
Letbesx_n_12 ( ),se =77 I, (ei e)
2.1 ¢n _ 2, s 3, _2 _ 2
and a _n21 e:.L,f'ur‘t:hero’x -hm.sx,ae ..lim.se
and o® = lim a°; then s_=8 ;o' =g, and q = ch’ + 0=,

This o, measures the ecis:.on, whereas 0 or o measures the
accuracy; a.>cr if 8] 2 o.

The error e is called random if €e = O, that is if §= O,
Then €x = &; such an error is individually unpredictable,
but its average tends to zero in the long run. :
Measurements may be highly precise (then o_ is very small),
but at the same time extremely inaccurate or unreliable
(large o because of large §).

The accuracy is sometimes called the reliability.

When, although the true value remains the same, the total
series of measurements shows separate groups the mean
value of which differ significantly or (and) the standard
deviations of which differ significantly (0'x or, and, &
are not constant in time), then the measurements (method)
is called not reproducible. A measure of reproducibility
may be based on the variation in time of & or (and) 6"
Measurements (or a method) may be highly reproducible

and extremely precise and at the same time very little
accurate.

Literature: "The design and analysis of industrial experiments"
O.L. Davies; London 1954.



