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Abstract

The weather generator (WG) as currently used in GRADE1 shows several methodical
imperfections, potentially leading to either under- or overestimation of large precipitation
extremes. This is caused by the relatively short lengths of the observational records
used as source data for the weather generator. A potential solution is to replace the
presently used observational dataset with much longer datasets, generated by weather
and/or climate models like RACMO and SEAS5. The goal of this study is to remove
the bias from the RACMO and SEAS5 datasets and compare them with the current
source dataset and the timeseries calculated by the WG either using the current source
dataset as input or RACMO and SEAS5 datasets respectively,, with special attention on
their performance to describe meteorological (high) extremes. The dataset comparison
is executed for the Rhine, Meuse and Vecht basins, which differ in size and consequently
in hydrological response time.

A qualitative comparison of the datasets based on several climate variables shows
good similarities for all basins. Quantitative differences have been corrected by means
of quantile mapping, leading to comparable results in all catchments and enabling use of
RACMO and SEAS5 data in quantitative analysis as well.

Comparison of extreme multi-day precipitation conditions between the datasets shows
excellent climatological agreement up to return periods of 65 years (i.e. within the length
of the available observations). An important finding is that, for larger return periods,
multi-day precipitation extremes are higher in the RACMO and SEAS5 dataset com-
pared to the WG associated to the observational dataset (except the 10-day precipitation
extremes in the Rhine basin). This strongly hints on underestimation by WG based on
observational records. The underestimation decreases for sums over more days and in-
creases for larger return periods. The effect is visible in all basins, but is more pronounced
in smaller basins (like the Vecht). If this underestimation is passed on to the hydrological
results, the current GRADE procedure may lead to a false sense of security regarding
flood hazard.

Comparison of summer and winter extremes between the dataset shows considerably
larger summer precipitation extremes in RACMO and SEAS5 compared to the WG asso-
ciated to the observational dataset for all basins, particularly in the Vecht basin. Annual
extremes in RACMO and SEAS5 consist of a larger fraction of summer events than the
WG associated to the observational dataset indicates. This implies that the assumption
that extreme precipitation events mainly occur during winter has to be reconsidered.

Spatial and temporal comparison of the datasets shows that RACMO is able to gen-
erate intense precipitation events in summer. Methodically the WG is not capable of
simulating the extreme daily peaks that characterise these events, as the concept limits
the extreme 1-day extremes to the observational events. This implies that the effect of
extreme summer events (which seems to be essential in smaller basins) on hydrology can
better be analysed using the RACMO dataset than the WG. Additionally, the RACMO
(and SEAS5) dataset allow for spatial analysis of extreme events, which is impossible
using the WG dataset.

1Generator of Rainfall And Discharge Extremes.



A preliminary analysis of the hydrological discharges of RACMO and SEAS5 in the
Meuse basin shows that the WG results associated to the observational dataset also
underestimate hydrological high extremes. A first visual inspection shows over an order
in magnitude difference in return period between RACMO and the WG result slightly
smaller difference between SEAS5 and the WG. Based on the meteorological results, the
differences are expected to be even larger in the Vecht basin. This shows the importance
of further investigation of the hydrological results of RACMO and SEAS5 in all basins.

Regarding the results of this study, extra attention is required for the magnitude of
summer events, both in hydrological and meteorological perspective.
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Chapter 1

Introduction

The geographic location of the Netherlands stresses the importance of the nation’s ever-
lasting flood protection challenge. Being located in the delta of multiple rivers such as the
Rhine, Meuse and Vecht and containing multiple largely populated areas of high economic
value, prevention against flooding is one of the countries key tasks. The Dutch Ministry
of Infrastructure and Water Management and its executive body Rijkswaterstaat are re-
sponsible for protection of the Dutch hinterland. For assessment of the existing protection
system, probabilities of exceedance have been defined in the Waterwet. These maximum
acceptable flood probabilities are directly related to discharge extremes, which for this
report and for convenience are called design discharges. Correct coupling of design dis-
charges to flood probability (or corresponding return periods) is therefore essential for
the Dutch flood protection.

1.1 State of the art

Historically, estimation of design discharges was performed by fitting different types of
probability distributions to historical data and performing statistical extrapolation (Heg-
nauer et al., 2014). These historical records originate from the start of the 20th century
and are therefore limited to a length of order 100 years for the main rivers, and less than
40 years for the Dutch-German Vecht river. As a result, extrapolations based on different
probability distributions vary, whereas the choice of such a distribution is ambiguous.
Furthermore, this statistical method is not capable of describing physical behaviour such
as the effects of upstream flooding on a flood wave, changes of river geometry over time,
changes in the river basin (e.g. land use) over time and climate change.

In order to generate a more reliable and physically-based approach for estimating
design discharges, a consortium consisting of Deltares and the Royal Netherlands Me-
teorological Institute (KNMI), commissioned by Rijkswaterstaat, designed the GRADE
(Generator of Rainfall And Discharge Extremes) instrument (Hegnauer et al., 2014).
GRADE consists of three components, which are presented in Figure 1.1. Initially, a
weather generator (WG) is used to generate 50,000 years of daily precipitation, temper-
ature and potential evaporation by nearest-neighbour resampling from historic weather
observations (see section 2.2.1 for more details). The result of the weather generator is

1



Figure 1.1: Schematisation of the GRADE components (Hegnauer et al., 2014)

then used as input for a rainfall runoff model (e.g. HBV1) in order to create a timeseries
of 50,000 years of discharges. Annual extremes from this dataset are subsequently routed
through the river stretches by using the SOBEK2 hydrodynamic model, resulting in a
time series of yearly flood peaks and associated hydrographs with their corresponding
return periods.

Due to the largely increased length of the resulting discharge timeseries, statistical
extrapolation is no longer necessary. Besides, multiple physical effects are accounted for.
The rainfall-runoff model incorporates catchment characteristic effects such as land-use,
elevation etc. (e.g. Mirus and Loague, 2013; Desta et al., 2019). Furthermore, use of a
hydrodynamic model provides opportunity for including the physical characteristics of
(planned) hydraulic infrastructure and the flooding of the area behind the dikes along
the main river.

The WG is an essential element of GRADE, because it stochastically creates a syn-
thetic timeseries that is much longer than the historical weather datasets that exist of
approximately 70 years (e.g. Cornes et al., 2018b). Therefore, without the WG, genera-
tion of physically-based design discharges in GRADE would not be possible. A realistic
description of extreme weather events up to return periods of 50,0000 years is thus fun-
damental for generating reliable discharge extremes.

As depicted in Figure 1.2, the WG is not capable of providing different daily rainfall
amounts than those that are available in the input dataset. However, due to the creation
of new temporal patterns by resampling, multi-day precipitation amounts in the synthetic
dataset can and will exceed those in historic observations. According to e.g. Buishand
(2007) and Beersma and Buishand (2007), this resampling procedure leads to a more
accurate estimation of multi-day precipitation extremes and cumulative rainfall deficits.

1https://en.wikipedia.org/wiki/HBV_hydrology_model
2https://www.deltares.nl/en/software-solutions/sobek-and-delft3d/
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Figure 1.2: Explanation of the resampling methodology in the weather generator (Heg-
nauer et al., 2014)

A more detailed description of the WG, including its incorporation of the spatial patterns
and seasonal variation, is provided in Hegnauer et al. (2014).

1.2 Problem statement

The major strength of the GRADE instrument is its ability to generate a synthetic daily
discharge timeseries of 50,000 years3, which is long enough for analysis of extremes. As
the WG provides the input for the hydrologic and hydrodynamic models, it has a crucial
position in the generation of reliable results. However, the current operational setup has
several limitations. In sections 1.2.1, 1.2.2 and 1.2.3 these limitations will be explained
in detail.

1.2.1 Problem 1: Underestimation of precipitation extremes

The first limitation of the GRADE WG is the risk of underestimation of extreme values
due to the probable absence of high extremes in the relatively short historical observation
timeseries. This is illustrated in Figure 1.3, where yearly extremes and their corresponding
return periods are shown for different multi-day precipitation sums (ascending from 1 to
10 days). Note that both the historical and observation-based so-called observation-
based passive dataset (see Section 2.2 for more information) and its WG equivalent are
presented for the Rhine and Vecht basin4.

All lines considering a multi-day sum are rising approximately linearly for return
periods up to approximately 100 years. However, for larger return periods, the graphs
of the short-period multi-day precipitation sums flatten out and will eventually even cap
off. The flattening effect is most pronounced for 1- and 2-day sums.

3Note that this timeseries is stationary, and resembles the climate of the source data
4In this figure, the extremes are represented as a so-called Gumbel plot, which will be explained later.
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Figure 1.3: Gumbel plot for Rhine and Vecht, for the observation-based passive dataset
(see Section 2.2.1) and the WG, considering a 1,2,3,4,5 and 10-day precipitation sum (in
ascending order). Note that the horizontal axis has a logarithmic scale.

The effect displayed in Figure 1.3 is caused by the fact that the multi-day sum of the
WG can never exceed the corresponding multitude of the maximum event in the original
observation-based passive dataset. For example, the maximum 2-day sum generated with
the recorded rainfall series in Figure 1.3 will never exceed 80 mm (twice the maximum
observed event of 40 mm). In general, the n-day sum of the WG can never exceed n
times the maximum daily precipitation in the historical record. As such, for large return
periods and for short-period multi-day sums, the WG is unable to generate larger events,
resulting in flattening of the curves in the Figure. Precipitation events linked to high
return periods are therefore expected to be underestimated for the WG, particularly for
short-period multi-day sums. This means that the synthetic dataset created with the
WG is expected to consist of underestimated extremes, which could potentially influence
the hydrological response of the GRADE instrument.

The main cause of the problem is the size of the historical observation datasets. A
large observational dataset is more likely to contain high extremes, which enables the WG
to resample higher extremes compared to a smaller observational dataset. With increasing
size of the observational datset, the WG will therefore perform better. Unfortunately,
accurate precipitation observations have only been performed for approximately 70 years
with an adequate measurement network density, making this problem difficult to solve.

Note that for longer-period multi-day precipitation sums, the underestimation effect
diminishes. This makes sense, because a longer-period multi-day sum has more possible
resampling combinations and a higher maximum value. Besides, for a long-period multi-
day sum, individual days do not require to be very extreme to still lead to a multi-day
extreme, which means there is a larger possible variation in the resampling process.
However, for what multi-day sum the underestimation is negligible is uncertain: for very
large return periods the effect may still be present.

It is important to note that the response time of a river on extreme precipitation
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depends on the size of the basin. The discharge of the Rhine at Lobith will therefore
correlate to 6-10 day precipitation sums, whereas the smaller Meuse basin will respond
to 2-4 day precipitation sums, as visualised in Figure 1.4. The effect of the WG problem
described in this section on discharge output will therefore also differ per basin: it is more
likely to happen for the Vecht than for the Rhine basin (which is 50 times larger).

1.2.2 Problem 2: Overestimation of precipitation extremes

The second limitation of the WG is the risk of overestimation of extremes due to the
occasional occurrence of a statistical outlier in the recorded precipitation timeseries. This
is graphically depicted in Figure 1.5, where the annual maximum 4-day precipitation over
the Meuse basin (Calendar-year, abbreviated as CY) is plotted versus its corresponding
return period.

The figure shows a very large difference between two versions of the WG, respectively
excluding and including an extreme event that occurred in July 2021 in the Meuse river
basin. Inclusion of the July 2021 event leads to a doubling of the 4-day sums for large
return periods, which illustrates the large sensitivity of the WG to statistical outliers.

Due to the relatively short observational series, the extreme event of July 2021 is
plotted at a return period of approximately 100 years, as determined by the length of the
dataset. However, it is more likely to actually have a return period of approximately 1000
years or more. Arguably, due to the absence of other extremes of the same magnitude,
the WG struggles to generate different events, which leads to overpresence of this event
in the resulting timeseries. The result is unrealistic behaviour of the WG and large
overestimation, as well as an irregular frequency distribution, as clearly depicted in Figure
1.5. Consequently, the precipitation extremes in the synthetic timeseries created by the
WG are also largely overestimated, which will likely be passed on in the runoff output of
the discharge models.

Although this figure shows an extreme case, it is clear that also a less extreme outlier
will lead to overestimation.

1.2.3 Problem 3: Taking climate change into account

Thirdly, the operational version of the WG uses historical observations. Consequently, in
the resampling process only historical events are considered, which limits the application
of the WG to the current climate. The influence of climate change on precipitation
extremes is therefore a relevant process to be considered in flood protection, but is not
captured by the current WG.

To summarise, it is clear that the relatively short length of observational series may
cause the WG to provide an unrealistic projection of rainfall extremes, which may -
paradoxically - be either an over- or an underestimation. Generally, the shortness of the
input dataset may cause underestimation of extreme multi-day sums, whereas outliers
lead to overestimation. As these contradicting effects depend on the extremity of the
outlier, on the length of the input record, on the number of consecutive days that is
considered, etc., it is impossible to know the bias of the WG in advance - not only its
amplitude but even its sign (except for exceptional cases like the July 2021 event).
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Figure 1.4: Indication of the runtimes of the Meuse and the Rhine at the Dutch border
to upstream rainfall events. The response times will be larger than the runtimes.
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Figure 1.5: Annual precipitation extremes in the Meuse for a 4-day precipitation sum, in
which the rainfall generator is shown with and without the extreme event of July 2021.
The horizontal axis has a logarithmic scale.

Additionally, it is difficult to account for all features of climate change and their
impact on precipitation extremes when using the current WG.

1.3 Research goal

The overarching cause of the potential unrealistic projection of rainfall extremes by the
WG corresponding to the observed data as described in Section 1.2 is the limited length
of the observation series and the presence or absence of outliers. This can be strongly
mitigated by using a longer dataset as input of the WG. Unfortunately, daily observation
data are only available over approximately 70 years, which is not enough to solve the
problems. Instead, the possibility of using simulated weather from the SEAS5 dataset
(ECMWF) and the RACMO dataset, which exceed the size of the observation record
with order(s) of magnitude, in the GRADE procedure is analysed in this report. It is
expected that by using these larger datasets as meteorological input of the WG or for
the hydrological model of the GRADE model chain directly, the statistics of discharge
extremes will improve.

The main goal of this report is to compare the synthetical datasets RACMO and
SEAS5 datasets and their corresponding timeseries derived from the WG with the his-
torical observations and the corresponding WG-timeseries, particularly in order to look
at their performance to describe meteorological extremes. Beforehand the RACMO and
SEAS5 datasets had to be bias-corrected.
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Chapter 2

Methodology

In this chapter, the methodology used for the research is explained. Firstly, the different
study areas are presented, after which the utilised datasets and their origins are being
explained. Subsequently, these datasets are compared on their climatological similarity.
After this comparison, a description of the bias corrections of the RACMO and SEAS5-
datasets that have been performed is provided, followed up by a climatological comparison
of the corrected datasets. Finally, theories used in order to obtain and present extremes
are shortly explained.

2.1 Study areas

Three study areas that are relevant for flood protection in the Netherlands are used in
this research. The Rhine, Meuse and Vecht, entering the Netherlands at respectively
Lobith, Eijsden and Dalfsen1 are three important rivers that are considered in Dutch
flood protection. Their river basins, which capture precipitation and discharge a large
part of this precipitation using the river, are the main study areas of this research.

2.1.1 Rhine basin

The Rhine basin, as presented in Figure 2.1, is a relatively large river basin of 185,000
km2. In its entirety it covers parts of 9 countries, being Italy, Switzerland, Austria,
Liechtenstein, Germany, France, Luxembourg, Belgium, and The Netherlands. Due to
its large spatial extent, the Rhine basin contains large differences in topography, ranging
from the high Alps in the South, to a flat topography in the Dutch Delta. Due to the
size and differences in topography, there are large differences in annual precipitation
within the basin, ranging from more than 2000 mm/year in the Alps to approximately
500 mm/year in the centre of the basin. Although the upper part of the river’s discharge
is dominated by snow melt from the Alpine region, the part of the river entering the
Netherlands at Lobith is also strongly dependent on precipitation of the entire basin. In
HBV the Rhine basin is divided into 134 sub-catchments, as shown in Figure 2.1.

1The Meuse and Vecht enter respectively at Borgharen and Gramsbergen, but the reference discharges
hold for Borgharen/StPieter and Dalfsen.
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Figure 2.1: Overview of the Rhine basin. Annual average precipitation according to the
observation-based passive dataset is presented per catchment. Catchment numbers are
indicated in every catchment.
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2.1.2 Meuse basin

The Meuse river has its origin in France and then flows through Belgium and the Nether-
lands. The river basin, as presented in Figure 2.2, also covers small parts of Luxembourg
and Germany. The entire basin is approximately 36,000 km2 and is therefore significantly
smaller than the Rhine basin. There are considerable elevation differences in the Meuse
basin, as it contains both a part of the Ardennes region as well as the Lorraine region.
The topography of these two areas is very different however, which leads to a different
response time of hydrological events to rainfall in these areas (the runoff generated in the
Ardennes has a very direct response, contrary to the Lorraine region). Potential differ-
ences in rainfall due to relatively large spatial extent and topographical effects as well as
differences in response time make the analysis of this rainfall-dominated river interesting
in this research. In HBV the Meuse basin is divided into 15 sub-catchments.

2.1.3 Vecht basin

The Vecht basin, presented in Figure 2.3, is a relatively small river basin covering up parts
of The Netherlands and Germany. The basin area is 3780 km2, which is 10 times smaller
than the Meuse basin and 50 times smaller than the Rhine basin. The Vecht basin does
not have a large elevation difference and due to the small spatial extent, rainfall statistics
(like the mean rainfall as presented in Figure 2.3) do not vary largely throughout the
basin. Due to the low elevation of the basin, the river is largely dominated by rainfall.
In HBV the entire Vecht basin is divided into 36 sub-catchments.

There are some differences between the basins that may influence the results of this
research. Firstly, the large difference in spatial extent between the rivers may influence
their hydrological response time, as well as the dominant type of precipitation extremes
in the basins. Secondly, the size and topographical differences between the basins leads
to large differences in rainfall variability within the basins. To account for potential
differences between the basins, all three basins will be thoroughly investigated in the
subsequent chapters of this research.

2.2 Data

As already stated in the Introduction, the goal of this study is to compare several different
precipitation datasets and particularly their high extremes. The two reference datasets
are the so-called passive dataset, which consists of observations, and the WG based on this
dataset. The two synthetic datasets RACMO and SEAS5, and the corresponding results
of the calculations of the WG using these synthetic datasets, will be intercompared as well
as with the reference datasets. This section provides a small overview of all considered
datasets.
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Figure 2.2: Overview of the Meuse basin. Annual average precipitation according to the
observation-based passive dataset is presented per catchment. Catchment numbers are
indicated in every catchment.
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Figure 2.3: Overview of the Vecht basin. Annual average precipitation according to the
observation-based passive dataset is presented per catchment. Catchment numbers are
indicated in every catchment.
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2.2.1 observation-based passive dataset and Weather Generator

The observational dataset used in this report is the so-called passive dataset2. For the
Rhine and Vecht basin, precipitation of the observation-based passive dataset consists of
the HYRAS precipitation dataset, constructed by the German Weather Service (Rauthe
et al., 2013). The HYRAS dataset comprises around 6000 rain gauges that cover up the
entire Rhine and Vecht basin, as shown in Figure 2.4. Gridded daily precipitation and
temperature observations have been produced with a spatial resolution of 5x5 km2. The
observation-based passive dataset provides daily HYRAS precipitation data from 1950
onwards. Temperature and potential evaporation data of the observation-based passive
dataset are derived from the EOBSv21e dataset (Cornes et al., 2018a).

Figure 2.4: The stations used for the HYRAS dataset (left) and the EOBSv21e dataset
(right). Green colour indicates public availability. Red stations are not publically avail-
able (Hegnauer et al., 2014).

Figure 2.4 shows that the HYRAS dataset does not cover the full Meuse basin. There-
fore, for the Meuse a compound of different datasets in time is used. The precipitation
dataset consists of EOBSv21e (Cornes et al., 2018a) data for the period of 1950-1960.
Like HYRAS, EOBSv21e is a gridded dataset which contains precipitation, temperature
and potential evaporation data. From 1961-2007 the observation-based passive dataset
uses a dataset constructed by Buishand and Leander (2011), which contains daily precipi-
tation for all 15 catchments of the Meuse and which were constructed from measured sta-
tion data. Bouaziz et al. (2017) created high-resolution gridded observation-based daily

2The name ’passive’ originates from earlier work (see e.g. Schmeits et al., 2014) where the data in
the resampling step (the so-called active data) is not necessarily identical to the data that is used to
transform the timeseries of historical dates back to meteorological data (the so-called passive data).
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precipitation for the period 2008-2017, which is used for the last years of the observation-
based passive precipitation dataset. Note that for the entire Meuse basin, EOBSv21e
temperature and potential evaporation is used.

A more detailed description of all data sources used for the observation-based passive
dataset for the Vecht and Rhine is found in Schmeits et al. (2014), for the Meuse basin,
the individual sources can be consulted.

2.2.2 RACMO and WG-RACMO

RACMO (van Meijgaard et al., 2008) is a numerical weather prediction model developed
by the KNMI and the Danish Meteorological Institute. Driven by EC-EARTH2.33 for
its boundary conditions, the RACMO model generated 16 members with each member
starting with a different initial state, resulting in different climate simulations. These
weather data are available at a 12x12 km2 resolution. All members are available for
1950-21004. Many meteorological parameters are available at daily resolution; some (e.g.
temperature and radiation) at 3-hourly, and precipitation is archived at hourly resolution.

Combination of the (independent) members from 1950 - 2021 results in a dataset of
1152 years that is representative for the same climate as the observation-based passive
dataset, which will be used in this report.

Based on this RACMO dataset also a 50000-year timeseries is calculated using the
WG finally called WG-RACMO.

2.2.3 SEAS5 and WG-SEAS5

SEAS5 (Johnson et al., 2019) is the most recent European Centre for Medium-Range
Weather Forecasts (ECMWF) forecast system. Since 2017, it runs real-time seasonal,
long-range forecasts, which consist of 51 members of 7 months of weather data consisting
of amongst others precipitation, temperature and potential evaporation with a grid point
resolution of 36x36 km2. After several weeks, these forecasts are independent of their
initial conditions5. For the period of 1981-2021, hindcasts have been made. For the
months February, May, August and November 51 members of 7 months were generated
and for the remaining months 25 members were generated. With adequate coupling of
months (as described below), a large dataset of 8496 years of synthetic weather data has
be constructed. To avoid dependency of initial conditions, during the coupling process,
the first month of every member is not included in the generated dataset.

Coupling of all forecast members in order to create the large SEAS5 dataset is done
by combining forecasts that differ half a calendar year in starting date. The coupling
procedure is visualised in Table 2.2.3. After the coupling process, a dataset with almost
8500 years of synthetic weather remains, which is the SEAS5 dataset that is used in this
report.

3These runs were done for the construction of the KNMI’14 climate scenario’s. New runs (again 16
members) will be run in 2023 for the construction of the KNMI’23 climate scenario’s.

4The RCP8.5 greenhouse gas concentration pathway was used from 2006 onwards.
5This holds for our latitudes; not for the tropical region, where the forecast skill is strongly determined

by El-Nino.

14



Table 2.1: Combination of the individual SEAS5 ensemble members to construct a 8496
year timeseries.

First half year Second half year
jan 1981-0 + jul 1981-0
jan 1982-0 + jul 1982-0
...
jan 2021-0 + jul 2021-0
jan 1981-1 + jul 1981 -1
...
jan 2021-24 + jul 2021-24
feb 1981-0 + aug 1981-0
...
jun 2021-50 + dec 2021-50

An advantage of this dataset compared to the observation-based passive dataset is
the fact that it is available with a 6 hourly interval. For a detailed description of the
SEAS5 forecast system is referred to Johnson et al. (2019).

Based on this SEAS5 dataset also a 50000-year timeseries is calculated using the WG
finally called WG-SEAS5.

2.3 Climatological dataset comparison

In order to be applicable for GRADE, RACMO and SEAS5 must be climatologically
comparable to the observation-based passive dataset. This section provides a dataset
comparison for mean precipitation amounts and yearly average precipitation extreme for
all catchments in the different basins.

2.3.1 Mean daily precipitation

In panels a of Figures 2.5 - 2.8, mean precipitation of RACMO, SEAS5 and the observation-
based passive dataset are compared in a bar plot for all catchments in the different basins.
RACMO and SEAS5 have been separated in the Figures for the Rhine basin for clearer
visualisation. Daily average precipitation is plotted on the vertical axis, whereas the hor-
izontal axis represents the catchment number for which the datasets are being compared
(the location of the catchments is provided in Figure 2.1 - 2.3).

In general, for almost all catchments, the three datasets have comparable daily average
precipitation amounts. This means that the synthetic datasets are capable of describing
the mean precipitation in all different areas of the basins. As such, this climatological
aspect is well covered in the synthetic datasets.

Looking into more detail, it should be noted that particularly the SEAS5 dataset
has slightly more similar mean precipitation amounts to the observation-based passive
dataset compared to the RACMO dataset. In the Meuse basin (Figure 2.7 a), RACMO
overestimates precipitation in some catchments, whereas in the Vecht basin (Figure 2.8
a), a slight underestimation of daily average precipitation can be noticed. In the Rhine

15



Figure 2.5: Comparison of a) mean daily precipitation and b) average annual precipitation
maxima in the Rhine basin for the observation-based passive dataset (blue) and RACMO
(orange).
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Figure 2.6: Comparison of a) mean daily precipitation and b) average annual precipitation
maxima in the Rhine basin for the observation-based passive dataset (blue) and SEAS5
(orange).

17



Figure 2.7: Comparison of a) mean daily precipitation and b) average annual precipitation
maxima in the Meuse basin for the observation-based passive dataset (blue), SEAS5
(orange) and RACMO (green).
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Figure 2.8: Comparison of a) mean daily precipitation and b) average annual precipita-
tion maxima in the Vecht basin for the observation-based passive dataset (blue), SEAS5
(orange) and RACMO (green).

19



basin (Figure 2.5 a and 2.6 a), both the SEAS5 and the RACMO dataset show over- and
underestimation in different catchments.

Recapitulating, the general behaviour of all datasets regarding daily average precipita-
tion is comparable and the differences between geographical regions are clearly projected
by all datasets, which shows all datasets are able to describe this climatological aspect.
However, the actual magnitude of mean precipitation may vary between the different
datasets for different catchments.

2.3.2 Mean annual maximum precipitation

In order for the synthetic datasets to be reliable, the average of annual extremes for
all catchments must be approximately equal for RACMO, SEAS5 and the observation-
based passive dataset. This has been tested in panels b of Figures 2.5 - 2.8, where
mean annual maximum precipitation is plotted on the vertical axis and the horizontal
axis again represents the catchment number. Note that the multi-day sum differs for
every basin. Due to amongst (others basin) size, the Rhine is expected to have a larger
hydrological response time than the Meuse and Vecht. From experience, the basins are
likely to respond to a sum of 10, 5 and 4 days for respectively the Rhine, Meuse and
Vecht. However, the analysis has been performed for all multi-day sums in a range of
1-10 days, with similar conclusions as described below.

Similar to the precipitation means, the annual maxima of the synthetic datasets are
comparable with the observation-based passive dataset for most catchments. This shows
that although precipitation extremes clearly vary between catchments depending on their
geographical location (e.g. the Alps compared to lower areas), the synthetic datasets are
capable of describing these differences approximately equally well as the observation-
based passive dataset. This shows the climatology of both synthetic datasets match that
of the observation-based passive dataset.

It should be noted that although the general behaviour of the synthetic datasets
and the observational dataset are comparable, their magnitudes may differ a bit. In
other words, the climatic difference between different regions of the basins is described
fairly well, but there is some difference in the actual precipitation amounts. In most
catchments, there is a slight underestimation in annual maximum precipitation for both
the SEAS5 and the RACMO dataset compared to the observation-based passive dataset.
This behaviour is particularly clear in the Vecht basin. In some extraordinary cases (e.g.
the RACMO dataset in the Alpine catchments in the Rhine basin), the synthetic datasets
have larger annual maxima compared to the observation-based passive dataset.

Zooming in, the average annual maximum precipitation in the Vecht basin behaves
approximately equal to the mean daily precipitation, with RACMO and SEAS5 both
underestimating for all catchments. Note that the Vecht is a small basin and therefore
the differences between each catchment are relatively small. In the Meuse basin, the
largest outliers occur in the catchments that also showed the largest offset for mean daily
precipitation. Note that in both basins the over- or underestimation is relatively small.

In the Rhine basin, catchments with a relatively large mean precipitation offset are
also the biggest outliers for average annual maximum precipitation. Particularly the
RACMO dataset has several large overestimations, which mostly occur in the Alpine
region of the basin.
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In general it is clear that the climatological differences in the basins, portrayed by the
observation-based passive dataset, are well captured by both RACMO and SEAS5. How-
ever, the exact magnitude of both mean daily precipitation and average annual extreme
precipitation may differ between different catchments. In other words, the datasets com-
pare well qualitatively, but have some slight quantitative differences. In order to make the
synthetic datasets even more reliable and useful for quantitative analysis, a simple bias
correction is performed, which is common practice for model results such as the SEAS5
and RACMO dataset. An ideal bias correction would lead to even more comparable mean
precipitation and average annual extremes. Because the magnitude differences only occur
in few catchments, the correction is performed for every individual catchment.

2.4 Bias correction

Although all datasets are comparable regarding climatology, the absolute magnitude of
several climate variables may differ per catchment. Although the number of catchments
with a large offset is limited, a bias correction of both the SEAS5 and RACMO dataset
could improve these synthetical datasets and make it useful for quantitative analysis. The
bias correction used in this report is explained in this section.

To obtain an optimal bias correction, several aspects must be taken into account.
Firstly, as different catchments require a different extent of scaling, the bias correction
is performed on catchment level. Secondly, it is important to capture the difference in
precipitation type between summer and winter in the bias correction. Generally, winter
precipitation is dominated by large-scale precipitation, whereas higher temperatures in
summer cause convective precipitation to occur. In order to capture these weather type
varieties and be able to differentiate between summer and winter events in succeeding
chapters of this report, the bias correction will be performed separately for all 12 calendar
months.

The bias correction performed in this research is based on quantile mapping, i.e. every
value is transformed to the value of observation-based passive dataset that has the same
(cumulative) probability. For the temperature and potential evapotranspiration (pet) a
normal distribution is fit to all days per calendar month, both for the observation-based
passive data and the synthetic data.

For the precipitation, a 3-parameter distribution is fitted, given by:

R = max[0, (1− ec log (1−p))(a log (1− p) + b)] (2.1)

With R the precipitation amount, p the probability of exceedance and a, b and c fitting
parameters. For small precipitation amounts, this function deviates from an exponential
distribution, which leads to more accurate low precipitation amounts and therefore better
corrected precipitation means.

Note that this correction is also performed for every catchment and for every individual
month. The original datasets and corrections are shown in Figure 2.9 for the Rhine, with
the upper panel for RACMO and the lower panel for SEAS5 (the correction of the other
basins are given in Appendix A).

21



Figure 2.9: An overview of the bias correction for the Rhine basin for RACMO (upper)
and SEAS5 (lower). 22



When looking at Figure 2.9, it is clear that the corrections work well. A comparison of
climatological aspects of the corrected datasets and the observation-based passive dataset
is provided in section 2.5.

Because the main focus of this report is the comparison of precipitation of RACMO,
SEAS5 and passive (and corresponding WG), only the bias correction of precipitation
data is explained in this Section. However, similar to precipitation, temperature and pet
data have also been corrected. Both temperature (tas) and potential evapotranspiration
(pet) have been corrected using a normal distribution. The results of these corrections
are presented in Appendix A.

2.5 Corrected datasets

The results of the corrected RACMO and SEAS5 datasets are compared with the observation-
based passive data in Figure 2.10 - 2.13, which represent respectively the Rhine, Meuse
and Vecht basin. Panel a of all figures compares the mean daily precipitation in all catch-
ments, whereas panel b shows a comparison of average annual maximum precipitation of
the once-a-year multi-day sums. For the Rhine basin, RACMO and SEAS5 have been
separated in the Figures to improve visualisation.

For all basins and for both the mean daily precipitation and the average annual
maximum precipitation, the datasets are comparable to a very large extent.

To quantify the bias correction, the bias of the original and bias-corrected SEAS5 and
RACMO compared to the observation-based passive dataset are presented in Table 2.5.
Shown are the annual mean values as well as the 10-day, 5-day and 4-day annual maxima
for the Rhine, Meuse and Vecht respectively, with the relative biases in the original and
the bias-corrected datasets.

The table shows that in all three basins, for both datasets, the bias correction leads
to a considerably better agreement with the observation-based passive dataset6.

Table 2.2: Overview of the bias of the daily-mean and annual-maximum precipitation
in the RACMO and SEAS5 datasets compared to the observation-based passive dataset
before and after correction.

Rhine Meuse Vecht
RACMO SEAS5 RACMO SEAS5 RACMO SEAS5

Mean passive 2.62 mm/day 2.56 mm/day 2.19 mm/day
bias original 2.12% 3.18% 8.28% -2.80% -4.81% 1.83%

bias corrected 1.42% 1.00% 1.36% 0.72% 1.59% 0.87%
Max passive 80.28 mm/10days 62.32 mm/5days 51.91 mm/4days

bias original -0.46% -3.35% -2.63% -10.23% -16.09% -12.62%
bias corrected 1.43% 2.31% -0.89% -0.03% 2.80% 1.41%

Lastly, the annual cycle of all datasets are compared with the observation-based pas-
sive dataset, in order to see if the seasonal influence of all datasets is comparable. In

6The absolute value of the bias only increases for the 10-day Rhine annual maxima, but this change
is not significant.
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Figure 2.10: Comparison of a) mean daily precipitation and b) average annual precipita-
tion maxima in the Rhine basin for the observation-based passive dataset and corrected
RACMO.
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Figure 2.11: Comparison of a) mean daily precipitation and b) average annual precipita-
tion maxima in the Rhine basin for the observation-based passive dataset and corrected
SEAS5.
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Figure 2.12: Comparison of a) mean daily precipitation and b) average annual precipi-
tation maxima in the Meuse basin for the observation-based passive dataset, corrected
SEAS5 and corrected RACMO.
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Figure 2.13: Comparison of a) mean daily precipitation and b) average annual precip-
itation maxima in the Vecht basin for the observation-based passive dataset, corrected
SEAS5 and corrected RACMO.

27



Figure 2.14, the basin-averaged daily average precipitation of every day in the year is
plotted for RACMO, SEAS5 and the observation-based passive dataset. The resulting
graph is a good indication of the seasonal behaviour of mean precipitation in the basins.
All panels show that the correction of SEAS5 and RACMO is largely congruent to the
observation-based passive dataset considering seasonal behaviour. This indicates that
the bias correction, which is based on monthly corrections, can account for seasonal ef-
fects as well. It should be noted that original RACMO compares a lot better to the
observation-based passive dataset than original SEAS5.

Figure 2.15 shows the average of the monthly 1-day maximum precipitation in all
basins and all datasets, both uncorrected and bias-corrected. It shows that the annual
cycle of the extremes is strongly improved by the bias correction.

2.6 Theory and formulas

The main goal of this research is to analyse and compare the high extremes of RACMO
and SEAS5 to the observation-based passive dataset and their corresponding results of
the WG. To do this, a so called extreme value analysis is required. One method is to
couple annual maxima to a return period (T), which is directly related to a probability
of exceedance (P) according to Equation 2.2.

T =
1

P
(2.2)

Note that the probability of exceedance and the non-exceedance (Q) probability are
also related according to Equation 2.3.

P = 1−Q (2.3)

Extremes from a dataset can be coupled to the probability of Exceedance by ranking.
With extremes ranked in ascending order, the probability of exceedance follows from the
ranked extremes according to Equation 2.4.

P =
m− 0.3

n+ 0.4
(2.4)

with n being the total number of extreme events and m being the rank of a certain
event. Using Equation 2.4, all events can be coupled to an exceedance probability and
thereafter Equation 2.2 can be used to identify a corresponding return period7. In this
report, extreme analysis is mainly performed by plotting the extremes and their corre-
sponding return periods in so-called Gumbel plots, for which the Gumbel distribution
is transformed into a straight line. For a detailed overview of the statistics of extreme
analysis please consider Coles et al. (2001).

7Equation 2.4 implies that the largest event in n-year timeseries is plotted at a return period of
T≈ 1.43n, which means that RACMO extends to return periods of 1650 years, and SEAS5 to 12,000
years.
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Figure 2.14: Annual cycle of the average basin-averaged daily precipitation for the Rhine,
Meuse and Vecht.
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Figure 2.15: Annual cycle of average monthly-maximum daily precipitation for the Rhine,
Meuse and Vecht.
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Chapter 3

Results

This chapter provides an analysis of all datasets and their ability to describe extreme
precipitation events. Firstly, dataset extremes are compared in an extreme value analysis.
Subsequently, the ability of all datasets to describe spatial and temporal extent of summer
extremes is described. In this chapter, the corrected RACMO and SEAS5 are considered
for comparison, unless stated otherwise.

3.1 Extreme value analysis

In this section, precipitation extremes will be analysed with an extreme value analysis.
More information on the method used is described in Section 2.6. Extreme values in
this chapter are presented by plotting yearly maximum precipitation values against their
corresponding return period. This is done for all considered basins and a variety of
multi-day precipitation sums.

3.1.1 Rhine frequency analysis

Although runoff response to rainfall in catchments and basins is considered to be non-
linear (e.g. Fortesa et al., 2020), it makes sense that discharge extremes of larger basins
originate from high multi-day rainfall events. Based on earlier experience in GRADE
(e.g. J. Beersma, personal communication, October 4, 2021), the expected hydrological
response time of the Rhine basin is approximately 10 days. Since GRADE is particularly
used for analysis of discharge extremes, the analysis of the 10-day rainfall sum there-
fore makes the most sense. In the following subsections, extreme rainfall of respectively
RACMO and SEAS5 are therefore compared with the observation-based passive dataset
and the WG in the Rhine basin for a 10-day sum. However, equivalent figures for a
multi-day sum ranging from 1 to 10 days are presented in Appendix B.

RACMO

Figure 3.1 shows a frequency distribution for 5 different datasets, being original and
corrected RACMO, the observation-based passive dataset and two sets of the WG based
on the observation-based passive dataset and corrected RACMO for a 10-day sum. In all
panels of the Figure, annual maximum 10-day sums of precipitation are plotted against
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their statistical return period. From left to right, the maxima are determined for the
entire calendar year (CY), the summer half year (SHY, April till September) and the
winter half year (WHY, October till March). The latter two can therefore be used to
identify how summer and winter events behave for the different datasets.

Figure 3.1: Precipitation extremes in the Rhine basin for a 10-day sum, for RACMO
(corrected and uncorrected), the observation-based passive dataset, and the RACMO
and passive-based WG. The vertical axis shows the 10-day precipitation magnitude in
mm, the horizontal axis shows the corresponding return period to the extreme events.
From left to right, the panels represent calendar year, summer half year and winter half
year.

Extremes of all datasets look much alike for a 10-day precipitation sum in the Rhine
basin as can be deduced from the CY panel (left). This firstly implies that the bias correc-
tion of the Rhine basin does have hardly any influence on the results of the precipitation
extremes.

Secondly, the fact that all graphs in the CY panel are similar means that both RACMO
and the WG likely provide realistic descriptions of the climatology of extreme 10-day
precipitation. On the one hand it shows that the WG simulates long-duration multi-
day sums (10-day in this example) well in the Rhine basin and the underestimation
problem due to resampling as described in Section 1.2.1 has no significant impact. As
described earlier, the flattening effect due to resampling is a lot less significant for longer-
duration multi-day sums. On the other hand, the similarity between RACMO and the
WG increases confidence both in the WG as in the RACMO results.

For large extremes (and high return periods) there is a slight difference between the
datasets, with slightly higher WG extremes compared to RACMO. However, this could
be the result of the low number of datapoints in this part of the graph (large return
periods have few datapoints). The representation of the tail of the graph is thus a lot
noisier, which may explain the differences between the datasets.

In Appendix B, figures equivalent to Figure 3.1 are depicted for short-period multi-
day sums. With shorter-period multi-day sum, the differences between the CY maxima
of all datasets increase. For the WG, the downward curving effect is clearly visible from a
5-day sum and shorter and is increasingly profoundly present for short-period multi-day
precipitation sums. RACMO and SEAS5 on the other hand do not show this behaviour
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and remain approximately linear (exponential considering the graph has a logarithmic
scale). Although discharge extremes of the entire Rhine basin are likely to respond to
large rainfall sums, exceptional events, or events in part of the basin, may respond to
shorter-period multi-day precipitation sums, where the difference between RACMO and
the WG is a lot more substantial. As such, potential underestimation of the WG for
small multi-day sums must be considered.

The middle and right panel of Figure 3.1 show extremes based on SHY and WHY.
As opposed to CY, particularly for SHY, the RACMO dataset does not resemble the
observations and their corresponding WG result. Particularly the larger extremes of the
RACMO dataset exceed the WG. Furthermore, the observation-based passive dataset
curves down for large extremes, leading to lower corresponding WG values.

There is a large difference in extremity between SHY and WHY for the passive dataset
and WG, whereas winter and summer events are approximately equally extreme for the
datasets based on RACMO. This indicates that summer events are a lot more dominant
in the RACMO dataset than in the WG and the observations. Potentially, this indicates
that CY extremes involve a lot more summer events for RACMO compared to the WG.
This contradicts the assumption that extreme precipitation events only occur in winter.

SEAS5

Figure 3.2 is similar to Figure 3.1, for SEAS5 instead of RACMO. Again, extremes are
considered for different datasets and for respectively CY, SHY and WHY. Again, equiv-
alent figures for a multi-day sum ranging from 1 to 10 days are presented in Appendix
C. The results of the SEAS5 dataset are largely comparable to the RACMO dataset
(Figure 3.1). This hints for the reliability of both datasets and strengthens presumptions
of the previous paragraph. Both RACMO and SEAS5 show summer dominance, which
increases the likeliness of an underestimation of summer extremes in the WG. Further-
more, the SEAS5 dataset also largely coincides with the WG for CY maxima with a
10-day sum, enforcing the argument that the WG works decently for these long-period
multi-day sums.

Considering the short-period multi-day sums depicted in Appendix C, the SEAS5
dataset evidently does not curve down in Figures C.1-C.3, which emphasises the difference
with the WG that does curve down. This difference is even more pronounced for SEAS5
than for RACMO due to its larger size. Consequently, particularly for short-period
multi-day sums, SEAS5 and its corresponding WG result consist of higher precipitation
extremes than the WG dataset based on the observation-based passive dataset. The
latter may therefore likely underestimates precipitation amounts for larger extremes.

To summarise, the WG, RACMO and SEAS5 do not differ a lot in the Rhine basin
considering a 10-day precipitation sum. On the one hand this means that for large multi-
day sums in the Rhine basin, the WG does not seem to reach its methodical limits in
the range of the return periods considered. On the other hand it speaks in favour of the
usefulness of the RACMO and SEAS5 dataset. When considering shorter-period multi-
day sums, the WG curves down for larger return periods, whereas the RACMO and
SEAS5 dataset do not. Consequently, for shorter multi-day sums in the Rhine basin (5
days for RACMO, 8 days for SEAS5), the RACMO and SEAS5 dataset contain rainfall
events of higher extremity than the WG, which hints on underestimation by the WG
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Figure 3.2: Precipitation extremes in the Rhine basin for a 10-day sum, for SEAS5
(corrected and uncorrected), the observation-based passive dataset and the SEAS5 and
passive-based WG datasets. The vertical axis shows the 10-day precipitation magnitude
in mm, the horizontal axis shows the corresponding return period to the extreme events.
From left to right, the panels represent calendar year (CY), summer half year (SHY) and
winter half year (WHY).

extremes in these cases. Additionally, the RACMO and SEAS5 datasets contain larger
summer events than the WG. This could potentially mean that more extreme events
happen in summer in these datasets, which contradicts the assumption that extreme
precipitation mainly occurs during winter.

3.1.2 Meuse frequency analysis

This subsection provides an analysis of precipitation extremes in the Meuse basin for
all considered datasets. Since the Meuse basin is considerably smaller than the Rhine
basin, a shorter hydrological response time of 5 days is assumed in this report. As such,
the main frequency analysis performed in this section is based on a 5-day precipitation
sum. Equivalent figures for different multi-day sums are presented in Appendix B and
Appendix C].

RACMO

Figure 3.3 shows a frequency distribution for all 5 datasets considered in this report.
The Figure is typically equal to Figure 3.1 in Section 3.1.1, which can be considered
for an extensive Figure description (note that instead of a 10-day sum, a 5-day sum is
considered).

Similar to the results in the Rhine basin, the datasets considered in the CY panel
of Figure 3.3 behave quite similar. As such, for a 5-day precipitation sum, RACMO
and the WG likely contain fairly realistic 5-day extremes. However, note that for return
periods around 102 years and larger, the WG starts to curve down and the difference
with RACMO and corresponding WG increases. For very large extremes, the RACMO
based WG contains higher 5-day precipitation events than the original WG, presumably
due to underestimation of the WG based on the short observation-based passive dataset.
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Figure 3.3: Precipitation extremes in the Meuse basin for a 5-day sum, for RACMO
(corrected and uncorrected), the observation-based passive dataset and the RACMO and
the passive-based WG. The vertical axis shows the 5-day precipitation magnitude in mm,
the horizontal axis shows the corresponding return period to the extreme events. From
left to right, the panels represent calendar year (CY), summer half year (SHY) and winter
half year (WHY).

Although of smaller magnitude compared to the Rhine basin, there is a difference
between RACMO (and corresponding WG) and the observation-based passive dataset
and corresponding WG for SHY. Also, summer extremes in the Meuse basin are more
dominant in RACMO (and its corresponding WG) than for the original WG.

Although having an approximately equal maximum event, WHY extremes of the WG
are generally larger than SHY WG extremes. This difference between SHY and WHY is
less distinctive for the RACMO dataset. Therefore, it is more likely that the CY extremes
in the RACMO dataset consist of relatively more summer extremes than the WG.

In appendix B, an overview of all multi-day sums ranging from 1-10 is provided.
Additionally, the results of a 2-day precipitation events are highlighted in Figure 3.4.
Although the response time of the Meuse basin to precipitation events is generally around
5 days, an extreme event in July 2021 (Kreienkamp et al., 2021) has demonstrated that
2-day extremes may also lead to extreme water levels and consequently to flood hazard.

There is a substantial difference between the RACMO datasets and the original WG
for large extremes as distinctly shown in all panels in Figure 3.4. As expected, the WG
seems more prone to methodical artefacts for small multi-day precipitation sums. As such,
RACMO contains a lot higher 2-day extremes than the WG, which likely underestimates
2-day precipitation extremes. The relative difference between the precipitation extremes
of the datasets is considerably larger for 2-day events compared to 5-day events.

RACMO (and corresponding WG) has larger extremes than the WG for both SHY
and WHY. However, the difference between the two datasets is larger for summer events.
It therefore appears that particularly 2-day summer extremes are larger than primarily
expected based on the WG data. This may also explain why the July 2021 event in the
Meuse basin came as such a surprise.

Low representation of small multi-day summer extremes, or extremes in general, could
potentially lead to problems in the Meuse basin. Although not yet hydrologically deter-
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Figure 3.4: Precipitation extremes in the Meuse basin for a 2-day sum, for SEAS5 (cor-
rected and uncorrected), the observation-based passive dataset and the SEAS5 and the
passive-based WG. The vertical axis shows the 2-day precipitation magnitude in mm, the
horizontal axis shows the corresponding return period to the extreme events. From left
to right, the panels represent calendar year (CY), summer half year (SHY) and winter
half year (WHY).

mined, higher precipitation extremes likely lead to higher runoff magnitudes and water
levels. Based on the RACMO dataset, these hydrological extremes may (depending on
the hydrological model) occur with higher probability compared to the WG dataset, on
which current decision-making is based. Considering the apparent underestimation of
short-period events by the current WG, this could lead to a false sense of security.

SEAS5

Figure 3.5 is similar to Figure 3.3, but instead of RACMO, SEAS5 is compared to the
observational dataset and the WG.

The behaviour of the RACMO dataset and the SEAS5 dataset is much alike. However,
given that the original SEAS5 dataset is longer, its difference with the WG is more
distinctly visible for extremes with a return period larger than 1000 years. The increasing
difference between the WG and SEAS5 strengthens the presumption that for large return
periods, the WG may underestimate 5-day precipitation events for the Meuse.

Like the RACMO dataset, the SEAS5 dataset provides larger summer extremes than
the WG for high return periods. Analysis of summer events of SEAS5 therefore leads to
the same conclusions as for RACMO.

The 2-day precipitation extremes of SEAS5 are plotted in Figure C.1 of Appendix C.
Although the main conclusions of the RACMO dataset also apply for the SEAS5 dataset,
it is noteworthy that the difference between the WG and SEAS5 (and its corresponding
WG) are considerably larger than for RACMO. Besides, the graphs (CY, SHY and WHY)
all have an upwards bending tail, which causes the difference between the WG to increase
even more for larger exceedance probabilities. Therefore, based on both RACMO and
SEAS5, the WG likely underestimates 2-day precipitation events in the Meuse basin.

To summarise, in the Meuse basin all datasets are relatively comparable for events
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Figure 3.5: Precipitation extremes in the Meuse basin for a 5-day sum, for SEAS5 (cor-
rected and uncorrected), the observation-based passive dataset and the SEAS5 and the
passive-based WG. The vertical axis shows the 5-day precipitation magnitude in mm, the
horizontal axis shows the corresponding return period to the extreme events. From left
to right, the panels represent calendar year, summer half year and winter half year.

with a return period lower than 100 years. The original WG seems to underestimate
larger precipitation extremes (for a 5-day sum and more extremely for a 2-day sum), with
SEAS5 (and corresponding WG) containing considerably larger extremes than RACMO
(and corresponding WG). The large difference between the original WG and those of
RACMO and SEAS5 is predominantly visible for the SHY. It is therefore expected that
the CY extremes consist of more summer events for RACMO and SEAS5 compared
to the WG and that summer events may be more important in flood generation than
suspected before, but more research on the hydrological response of the RACMO and
SEAS5 dataset is therefore required.

3.1.3 Vecht frequency analysis

The Vecht is a relatively small basin and is therefore expected to have a shorter hydrolog-
ical response time than the Meuse. However, the most likely hydrological response time is
still unknown. As an indication, extremes of 4-day precipitation sums for all datasets are
presented. However, an overview of extremes with other precipitation sums is provided
in Appendix B and Appendix C.

RACMO

In Figure 3.6, extremes of RACMO are compared with extremes of the WG and the
observation-based passive dataset. The Figure is typically equal to Figure 3.1 in Section
3.1.1, which can be considered for a more extensive Figure description (note that a 4-day
precipitation sum is considered).

In the Rhine and Meuse basin, the RACMO dataset shows quite some similarities
with the original WG and the observation-based passive dataset. Only for relatively
large return periods, differences are visible. In the Vecht basin, these differences already
occur for return periods of 102 years (the observation-based passive dataset that is used
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Figure 3.6: Precipitation extremes in the Vecht basin for a 4-day sum, for RACMO
(corrected and uncorrected), the observation-based passive dataset and the RACMO and
the passive-based WG. The vertical axis shows the 4-day precipitation magnitude in mm,
the horizontal axis shows the corresponding return period to the extreme events. From
left to right, the panels represent calendar year, summer half year and winter half year.

for the Vecht is 65 years in length). Again, the WG curves down, whereas the RACMO
dataset (and corresponding WG) even show a slightly upwards curving bend. For a 4-
day sum, the precipitation extremes in the WG are thus considerably lower compared to
RACMO and its corresponding WG.

When comparing the CY panel to the SHY and WHY panel it is clear that the annual
maxima of the RACMO dataset are largely dominated by summer events. Such domi-
nance is not clear for the WG, where summer events and winter events are comparable.
It is likely that the RACMO dataset is better at describing convective storms that often
occur in summer, which can be very important extremes in small basins like the Vecht.
This is further evaluated in Section 3.3 and 3.2. Depending on the hydrological result of
the datasets, the difference between RACMO and the WG and potential underestimation
of the WG, particularly for summer events, may as well cause a false sense of security
regarding flood hazard to occur. Further investigation of the hydrological result of all
datasets is therefore highly recommended.

In Appendix B, the Vecht basin extremes are presented for all other multi-day sums
ranging from 1 to 10 days. Note that also for the Vecht basin, the relative difference
between the WG and the RACMO datasets increases for shorter-period multi-day sums.

SEAS5

Figure 3.7 is similar to Figure 3.6, but instead of RACMO, SEAS5 is compared to the
observational dataset and the WG.

The results of the SEAS5 dataset are largely comparable to those of the RACMO
dataset. Since this dataset is larger, it contains even larger extremes, which makes the
difference with the WG for very large return periods even more sizeable. The SEAS5
dataset also shows the importance of summer events in the Vecht basin, which strengthens
the conclusions done based on the RACMO analysis.
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Figure 3.7: Precipitation extremes in the Vecht basin for a 4-day sum, for SEAS5 (cor-
rected and uncorrected), the observation-based passive dataset and the SEAS5 and the
passive-based WG. The vertical axis shows the 4-day precipitation magnitude in mm, the
horizontal axis shows the corresponding return period to the extreme events. From left
to right, the panels represent calendar year, summer half year and winter half year.

To summarise, the RACMO and SEAS5 datasets contain considerably higher extremes
compared to the WG for the Vecht basin. Compared to these synthetic datasets, the WG
largely underestimates summer dominance, which could potentially lead to underestima-
tion of hydrological extremes and a potential false sense of security. Further research on
the hydrological response of all datasets is therefore highly recommended. Note that WG
underestimation and summer dominance is even clearer in the Vecht basin compared to
the Rhine and Meuse basin.

3.2 Spatial distribution of precipitation

A significant advantage of particularly RACMO and to a lesser extent SEAS5 compared
to the WG is the fact that spatial and temporal patterns are well described. In this
section, several spatial visualisations of RACMO are presented.

In its resampling processs, the WG couples data by searching for similar events in
the entire dataset. One of the disadvantages of this procedure is that different original
precipitation events may be coupled. This may work well for basin average precipitation,
but the problem is that spatial patterns become largely ambiguous using this method. As
such, hydrological events that originate from certain precipitation events in the GRADE
procedure can not be traced back to a valid individual event.

When not adjusted by the WG, the RACMO and SEAS5 datasets are largely continu-
ous datasets (of considerable length). Although the coupling process of the datasets may
lead to several jumps in the timeseries, in general, spatial patterns in these two datasets
make great sense. In Figure 3.8, the spatial patterns of the largest summer events of
the RACMO dataset are presented. Again, the 10, 5 and 4-day precipitation sums are
used for respectively the Rhine, Meuse and Vecht basin. Summer events are used in
this Figure, because spatial patterns are more explicit for convective events that occur in
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this season. Note that only the RACMO dataset is considered in this section, but that
the SEAS5 dataset is expected to show the same kind of results. Bear in mind that if
RACMO and SEAS5 are resampled by the WG, these datasets would also provide a more
random spatial pattern.

Figure 3.8 shows the spatial distribution of precipitation over the Rhine (a,b), Meuse
(c,d) and Vecht (e,f). The spatial extent is presented as precipitation sum, but also as
return period of the extreme event in every catchment. Particularly in the Rhine basin,
where precipitation events may vary largely with geographic location in the catchment,
this method of presenting precipitation allows for relative comparison between the catch-
ments. Note that the three basins differ largely in size (see Section 2.1).

In all three basins, it is clear that the maximum summer event of the dataset only
covers part of the entire basin. The extreme summer events are likely to be convective,
covering only a small spatial extent and are therefore a lot more location specific. This
is particularly clear in the Meuse and Vecht basin, where a large gradient is visible over
the basins. This is important, because different parts of a basin may have a different
influence on its hydrological response. In the Meuse basin for example, the Southern part
of the basin has a slow response time to precipitation events, whereas in the Northern
Ardennes, quick peak flows occur due to large precipitation events. The event type that is
visualised in Figure 3.8 c and d, would thus lead to a rapid hydrological response, whereas
an opposite precipitation distribution would lead to a much slower, more spread out
hydrological response. This indicates the importance of capability of a dataset to describe
the spatial extent of precipitation events. Such an improved spatio-temporal description
is also expected to allow for a more accurate description of the (non-)coincidence of
discharge peaks from the main river trunk and its tributaries in The Netherlands.

In general, in contrast to the WG, RACMO is capable of portraying the spatial dis-
tribution of precipitation events. This enables analysis of more location-specific precip-
itation events on the hydrological response in a catchment, for example, evaluation of
precipitation event types that lead to flooding.

An important detail of RACMO and to lesser extent SEAS5, is the fact that these
two datasets are available at respectively hourly and 6-hourly frequency. This means that
certain extreme events can be studied with even higher detail. For example Figure 3.9
shows a link to an animation of the most extreme event of the Vecht, which shows large
similarities with the events that occurred in the Meuse basin in July 2021. If multiple of
these events are present in RACMO, this could potentially mean that such events may
occur more frequently than we expect. The RACMO dataset provides the opportunity
of detailed analysis of such events and their hydrological response.

Another striking element of the RACMO animation of the Vecht is the short duration
of this most extreme event. Although a 4-day precipitation sum is currently considered
the most relevant for floods for this basin, most of the precipitation seems to fall in
36 hours. Similar patterns are visible for the Meuse basin. In the next section, more
elaboration on the temporal evolution of these summer events is provided.
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Figure 3.8: Spatial distribution of the largest RACMO multi-day basin-averaged pre-
cipitation summer events per basin. Figures a, c and e present absolute precipitation
amounts of the event, Figures b,d and e represent the corresponding return period to
enable intercomparison between catchments independent of climatic differences between
these catchments.
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Figure 3.9: Link to animation of the most extreme event in the Vecht. The Vecht basin
is outlined in red. The event occurs on 7 September, at the end of the animation.

3.3 Temporal distribution of precipitation

In general, there is a difference between summer and winter precipitation. Where ex-
treme winter events generally occur in large-scale depressions, summer events can also
include weather systems with significant contributions of high-intensive convective (thun-
der)storms. This difference is visible both spatially and temporally.

The animation of Figure 3.9 showed that the maximum 4-day precipitation event in
the Vecht basin seemed to fall in approximately 36 hours. Particularly in such a small
sized basin, short extreme events may be important for the hydrological response of the
catchment. Therefore, it is important to test whether datasets are capable of describing
such events.

In this section, the temporal distributions of the most extreme summer events of the
three basins are shown for the RACMO dataset with an hourly timescale. Besides, the
RACMO dataset summer extremes are compared to the maximum summer event of 2000
years of WG (for simplicity of computation, the first 2000 years of the WG are used).
Figure 3.10 a, b and c show the two largest multi-day summer events for respectively
Rhine, Meuse and Vecht. To depict the characteristics of these events, they are portrayed
with an hourly timescale. Since the bias correction has not been performed on hourly
timescale, the uncorrected dataset is used in this Figure.

In the Rhine basin, the largest 10-day sum is represented by one or several relatively
low precipitation peaks, which generally spread out over a few days. Due to the size of
the basin, very extreme short and small-sized events are not dominant in the maximum
10-day sum summer events. Instead, events that spread out over a larger part of the
basin and last a little longer, are more likely to result in basin extremes. However, for
catchment-scale, these short convective events may be more important. In studies where
catchment scale is required, the Rhine basin needs a dataset that can describe convective
events well.

For the Meuse and particularly the Vecht basin, which are significantly smaller in size
than the Rhine basin, summer events seem to be more dominated by extremes of 1 or
2 days with extreme precipitation amounts. Compared to the basin size, short extreme
events can spread out over a relatively large part of the basin and can therefore become
dominant summer events. This illustrates the importance of a dataset that describes
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Figure 3.10: Visualisation of the two highest multi-day summer events in every considered
basin. The green line represents the maximum event and the red line the second largest
event. The horizontal axis shows the day of the multi-day sum corresponding to the
event. The vertical axis shows precipitation amounts in mm/h. Note that all graphs are
uncorrected RACMO data.
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such convective events well.

Figure 3.11: Comparison of the largest summer extremes of RACMO (green) and the
WG (red). The vertical black lines show the start and end of the multi-day period that
is considered in every catchment. The vertical axis shows precipitation in mm/day.

In Figure 3.11 a,b and c, RACMO’s most extreme summer event is compared with the
WG for all basins. Note that the corrected RACMO dataset is used here, with a daily
timescale. Particularly for the Vecht and the Meuse basin, the peaks of the RACMO
dataset are more than 30 percent higher than the WG peaks. In general, peak magnitude
of the WG is limited to the largest peak in the source data. Since this dataset only
consists of 65 years, it is likely that it does not contain very extreme (convective) peaks.
This way, particularly for the Vecht and Meuse basin, the WG is therefore not able to
capture the nature of the summer extremes, which consist of shorter events with large
peaks. The RACMO dataset (and also the SEAS5 dataset) is able to simulate such type
of convective events, as shown by the green line in Figure 3.11 b and c. This is another
advantage of using RACMO (and SEAS5) over the WG1.

1Note that we do not explore the capability of RACMO and/or SEAS5 in representing strong con-
vective situations. It is likely that - although RACMO has a resolution of 12km - these models are too
coarse to simulate convective situations adequately. A possible solution might be to use non-hydrostatic
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To summarise, the short, extreme characteristics of summer events seem to be well
described by RACMO (and expectedly also SEAS5). As the WG is based on resam-
pling of the the observation-based passive dataset, it does not contain these convective
extremes. The WG can not describe short events of extreme magnitude, which may
lead to inaccurate weather descriptions, particularly in the Vecht and Meuse basin. This
meteorological differences between RACMO and WG could potentially lead to different
hydrological responses as well.

3.4 Dry spells

Besides extreme precipitation amounts, also dry spells are important. Here we present a
preliminary investigation of long dry periods. We use the minimum 60-day precipitation
over the whole basin as a measure for the extremity of dry periods. Figure 3.12 shows
that RACMO shows a good representation of dry spells, which even improves further
after bias correction.

models (e.g. HARMONIE) to downscale RACMO events.
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Figure 3.12: Gumbel plots of the minimum 60-day cumulative precipitation over the whole
basin for RACMO (left) and SEAS5 (right) for the Rhine, Meuse and Vecht, compared
with the observation-based passive dataset (black). The logarithmic vertical axis shows
precipitation in mm/day.
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Chapter 4

Discussion

This chapter provides a short overview of the uncertainties of the methodology used in
this study, as well as the basic uncertainties of the extreme analysis. Furthermore, the
first hydrological results are presented.

4.1 Uncertainties

There are several uncertainties that may influence the results of this study. In this section,
the uncertainties of the datasets as well as the correction are briefly addressed. Besides,
comments are made about the general uncertainties of extreme analysis.

4.1.1 Data

As described in Section 2.2, there are several datasets used in this study. A detailed
overview of their accuracy is provided in their source documents. However, in this sub-
section, several general comments about data uncertainty are made.

The observation-based passive dataset is used as reference dataset in this study and
is also used for correction of RACMO and SEAS5. Reliability of this dataset is therefore
essential. In general, the reliability of data depends on the density of stations used as
source of the gridded data product. In case of the observation-based passive dataset,
HYRAS stations are used, which are densely available over the Rhine and Vecht basin to
provide a reliable dataset. Note that the observation-based passive dataset in the Meuse
basin has several different sources. Theoretically this means that for the Meuse basin,
there is a difference in data accuracy for different time periods. However, all three source
datasets consist of a large number of weather stations, implying that the passive dataset
is reliable for the Meuse basin as well.

For a detailed overview of the reliability of RACMO and SEAS5, their source docu-
ments can be considered (van Meijgaard et al., 2008; Johnson et al., 2019). It should be
noted here that the resolution of both datasets is considerably smaller than the resolu-
tion of the observation-based passive dataset. This could be one of the reasons why the
difference in precipitation magnitude between RACMO and SEAS5 and the observation-
based passive dataset is largest in the Alpine regions, as elevation effects may be better
captured by the latter dataset. However, both RACMO and SEAS5 have been corrected
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for bias using the observation-based passive dataset, which likely filters some of these
uncertainties.

Furthermore, coupling of half years in the SEAS5 dataset may have led to several
discontinuities in the entire timeseries. Regarding the fact that SEAS5 is a very long
timeseries, chances are non-negligible that several of the CY, SHY or WHY multi-day
maxima are found within the coupling range, allthough the probability of having a max-
imum in both ranges to be combined will be much smaller1. However, due to the relative
size of every SEAS5 member (6 months) compared to the maximum multi-day sum (10
days), it is expected that this effect is limited. Note that due to the resampling process,
the WG may have a discontinuity on every day and therefore the SEAS5 alternative is
a lot more continuous. Furthermore, the results have shown that RACMO and SEAS5
look a lot alike. Since RACMO is a lot more continuous than SEAS5 and the conclusions
of the two datasets are similar, it seems that the coupling process is not of large influence
on the study results.

4.1.2 Correction

Both RACMO and SEAS5 have been corrected in this study. This is common procedure
in many climate studies. The bias correction influences RACMO and SEAS5 in several
ways. Both averages and extremes are altered, as well as the timing of precipitation.
However, in the vast majority of catchments, the correction affects the statistics with less
than 20 percent.

The choice of making a monthly bias correction is justified by the importance of sea-
sonal influence in this study. The type of precipitation events may differ largely between
winter and summer. A monthly bias correction accounts for these differences. This study
has shown the importance of distinguishing between summer and winter events, which
explains the use of a monthly bias correction.

Furthermore, the choice was made to provide a separate bias correction for every
sub-catchment of the Rhine, Meuse and Vecht, rather than for the whole basins.

We emphasize that the bias correction leaves the meteorological situations that lead
to (extreme) precipitation unaltered, both in space and time. The fact that correction
of daily data leads to a correct climatology of multi-day extremes as well underlines the
quality of both RACMO and SEAS5 in reproducing the temporal and spatial correlations
of (extreme) meteorological events.

In Figures 3.1 - 3.7, both the original and corrected RACMO and SEAS5 have been
plotted. In many graphs, there is no large difference between the two, showing the bias
correction does not have a large influence on extreme representation in many cases. In
some other cases, the uncorrected SEAS5 and RACMO extremes are slightly lower in
magnitude than the corrected extremes. However, the climatological behaviour (linear
line, no down-curving, same relationship between summer and winter, that is shown in
Figures 3.1 - 3.7) is also visible for the uncorrected datasets. Consequently, the main

1A 10-day extreme has a probability of 10/182=6% to contain a concatenation-point. The probability
that the concatenation leads to an extra 10-day-extreme is much smaller, as the extremes are only a small
fraction of the whole dataset. Multi-day extremes may be slightly under-estimated as a small part will be
cut by the end/start of the 182-day period, and will be combined with less extreme days and consequently
is no longer extreme.
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qualitative conclusions of this report are not affected by the bias correction.

4.1.3 Extreme analysis

One of the major complications in extreme analysis is the lack of reference. Like stated
before, decent observation data only exist for approximately 70 years, meaning none of the
return periods larger than 100 years can be verified. Outside this range, it is impossible
to say with certainty which of the datasets considered in this study approaches reality
the best.

Although neither RACMO, nor SEAS5 can be verified as realistic, the comparison with
the WG in this study is still very useful. Methodically, the WG does not provide realistic
results for large return periods (particularly for smaller multi-day sums). Underestimation
of large extremes as often presented in Figures 3.1 - 3.7, is therefore evident. RACMO and
SEAS5 show more linear behaviour in these plots and are independent of the methodical
underestimation as for the WG. Besides, these datasets can be used as proxy for the
magnitude of underestimation of the WG. Added to this, the fact that RACMO and
SEAS5 are largely similar to the observation-based passive dataset for its range adds
to the reliability of these datasets. In short, RACMO and SEAS5 seem more likely to
approach reality than the WG, particularly for large return periods and small multi-day
sums.

Lastly, whenever the WG is used to elongate the RACMO and SEAS5 timeseries,
the methodical shortcomings of the WG also apply. Overestimation of the SEAS5 WG
(section 1.2.2) is clearly represented in Figure 3.7 for WHY. The WG result of SEAS5 is
considerably higher than the original SEAS5 dataset. In the resampling process, the ex-
treme daily event (see WHY in Figure C.7 in Appendix C) is resampled too often, leading
to the large 4-day precipitation amounts of Figure 3.7. A clear example of methodical
underestimation (downwards curving of the graph) is visible for the RACMO based WG
in Figure 3.4. Do note, however that these problems now occur for return periods of much
lower frequency due to the length of the source datasets RACMO and SEAS5. As such,
use of the WG based on RACMO and SEAS5 expectedly leads to a dataset less prone to
the methodical shortcomings of the WG. Note, that if the WG of RACMO and SEAS5
is used, climate change effects and spatial or temporal patterns are more ambiguous due
to the resampling process. Therefore, depending on the goal of a study, it must be well
considered whether the original RACMO and SEAS5 or their corresponding WG results
are used.

4.2 Preliminary hydrological results

The main focus of this research is the comparison of precipitation of the WG with
RACMO and SEAS5 alternatives. For further evaluation in how far the results shown
above are relevant for the final results in GRADE, it is very important that the meteo-
rological results are converted to hydrological results (i.e. discharges). During the time
scope of this research, there was no time to perform a detailed hydrological analysis.
However, some preliminary results of the Meuse basin are provided here.

The hydrological results presented in this report are the results of the HBV model
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of the Meuse, run by Deltares (Hegnauer, 2022). In Figure 4.1, discharge extremes at
Borgharen are presented, with annual maximum discharges on the vertical axis and their
corresponding return period on the horizontal axis. The observations of the Meuse are
presented in black, whereas the observation-based WG, the RACMO and the SEAS5
results are presented in respectively orange, blue and green.

Figure 4.1: Discharge extremes in the Meuse basin, in which RACMO, SEAS5 and the
WG are compared with observed discharges (Hegnauer, 2022).

For small extremes with low return periods, all datasets compare well and fit well to
the observations. However, in the regime where observations lack, the discharge results
differ per source dataset. Like for the precipitation statistics, the WG discharge result is
bending downwards for large return periods. The results of both RACMO and SEAS5 do
not bend downwards, which means these discharge datasets contain higher extremes than
the WG-based discharge dataset. A first visual inspection shows a factor 50 difference in
return period between RACMO and the WG result and a factor 5 between SEAS5 and
the WG. As such, the difference between the datasets for precipitation is therefore also
reflected in the discharge result in the Meuse basin.

These preliminary results of discharge extremes indicate the importance of further
research on the hydrological response of SEAS5 and RACMO. This should include Figures
like Figure 4.1 for the Rhine and Meuse basin, as well as a thorough analysis of the nature
of the extreme events that occur and their timing.

4.3 Further research

There are several different studies that could potentially follow up this exploratory re-
search. Several of them are briefly addressed in this section.
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The most important follow-up research, particularly for Rijkswaterstaat, would be
an analysis of the hydrological result of RACMO and SEAS5 in the Rhine, Vecht and
Meuse. The results from this study suggest that particularly for the smaller basins, where
small multi-day precipitation sums can be important in flood generation, precipitation
extremes are likely underestimated. This implies that water levels and runoff will likely
have higher extremes as well. The non-linearity of a catchment makes the exact influence
of precipitation on streamflow hard to predict, which means thorough analysis of the
hydrological results of RACMO and SEAS5 essential. It is particularly interesting to test
the hydrological response on summer precipitation events, to see whether summer events
are more likely to occur than currently expected. A potential way to study this is to
compare hydrological results of summer events from RACMO and SEAS5 to the events
that occurred in the Meuse basin in 2021.

Furthermore, an interesting follow-up research is to test other synthetic weather
datasets to check the reliability of RACMO and SEAS5. One way to do this is by co-
operating with various other countries and comparing their seasonal forecasting systems
or climate models with RACMO, SEAS5 and the observation-based passive dataset, pro-
vided that these datasets are long enough. Another possibility is to extend the RACMO
dataset by the new runs that are delivered in 2023. In theory, RACMO runs have been
provided up to 2100, enabling creation of a larger precipitation dataset. This dataset
can be used to verify conclusions and analyse the influence of climate change on extreme
precipitation and potentially extreme discharges.

Lastly, this research has shown that summer events are more dominant in the RACMO
and SEAS5 dataset compared to the WG and the observation-based passive dataset. An
interesting starting point is to see whether the choice of the dataset affects the relative
contributions to the annual precipitation maxima of summer and winter extremes re-
spectively. This could potentially change the current perception of extreme precipitation
events (and corresponding flood hazards) mainly occurring during winter. Furthermore,
extra investigation of the hydrological result of precipitation extremes and particularly
whether they occur in summer or winter may give insight in whether future flood events
can also be caused by summer convective events. This could also provide a change of
perception.

51



Chapter 5

Conclusion

The weather generator as currently used in GRADE shows several methodical imper-
fections, potentially leading to either under- or overestimation of large precipitation ex-
tremes. A potential solution is to replace the presently used source dataset (passive)
with longer, synthetical datasets like RACMO and SEAS5. The goal of this study is
to compare these synthetical datasets and their corresponding timeseries derived from
the weather generator with the current source dataset and its corresponding timeseries
derived from the weather generator (WG) in order to look on their performance to de-
scribe meteorological extremes. Beforehand the RACMO and SEAS5 datasets had to be
bias-corrected .

Comparison of RACMO, SEAS5 and passive for several main climate parameters
showed that climatological differences in the Rhine, Meuse and Vecht basin are well
captured by RACMO and SEAS5. A quantile-mapping bias correction has been executed,
in which RACMO and SEAS5 were translated towards the climatology of the passive
dataset. The correction was performed per calendar month and for every individual
catchment, leading to even better climatological similarities without overfitting.

Extreme value analyses show comparable extreme precipitation and return periods for
10-day precipitation sums of RACMO, SEAS5, passive and the WG in the Rhine basin.
For multi-day sums smaller than 5 days, RACMO and SEAS5 (and their corresponding
WG) contain higher precipitation events than the original WG, which hints on under-
estimation of the WG for such events. Similar underestimation might occur in the WG
for the Meuse basin for a 5-day precipitation sum, for events with a return period larger
than 100 years. Analysis of 2-day extremes, which can cause flood hazard as proven in
July 2021, shows even larger differences between the WG and RACMO and SEAS5, as
well as their corresponding WG result. Accordingly, the Vecht basins shows large under-
estimation of the WG for precipitation extremes compared to RACMO and SEAS5 and
their corresponding WG result. In general, RACMO and SEAS5 and their corresponding
WG either provide equal or higher magnitude precipitation extremes compared to the
WG based on passive.

A comparison between the summer events of all datasets showed considerably larger
summer precipitation in RACMO and SEAS5 compared to passive and corresponding
WG for all basins, with the Vecht in particular. Comparing summer and winter showed
increased summer dominance regarding calendar year maxima. This indicates that the
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assumption of extreme precipitation events mainly occurring during winter may have to
be reconsidered.

Analysis of the temporal and spatial spread of summer precipitation extremes in
the RACMO dataset shows the ability of RACMO to describe intensive summer events.
Contrary to RACMO and SEAS5, the WG is not capable of simulating the extreme
daily peaks that characterise these events. RACMO and SEAS5 therefore provide a
better description of short, intensive precipitation events and allow for spatial analysis of
precipitation extremes.
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Appendix A

Bias corrections

In this section, the figures of bias corrections that are not presented in the main part of
this report will be presented. First, the correction of the precipitation for the Meuse and
Vecht basin are presented, followed up by a bias correction for temperature and potential
evaporation for all three basins (Rhine, Meuse, Vecht).
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Figure A.1: Correction of precipitation in the Meuse basin.
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Figure A.2: Correction of precipitation in the Vecht basin.
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Figure A.3: Correction of temperature in the Rhine basin.
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Figure A.4: Correction of temperature in the Meuse basin.
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Figure A.5: Correction of temperature in the Vecht basin.
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Figure A.6: Correction of potential evaporation in the Rhine basin.
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Figure A.7: Correction of potential evaporation in the Meuse basin.
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Figure A.8: Correction of potential evaporation in the Vecht basin.
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Appendix B

RACMO extremes

This appendix will provide an overview of all annual maximum multi-day precipitation
sums of precipitation ranging from 1 to 10 days, in respectively the Rhine, Meuse and
Vecht basin. Like in section 3.1, three panels are presented in every figure, which, from left
to right, show results based on timeseries of calendar year (CY), summer half year (SHY)
and winter half year (WHY). In these figures RACMO (both corrected and uncorrected)
and the WG based on the corrected RACMO timeseries are compared to the observation-
based passive dataset (and its corresponding timeseries derived from the WG).
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Figure B.1: Rhine 1-4 day precipitation sums.
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Figure B.2: Rhine 5-8 day precipitation sums.
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Figure B.3: Rhine 9 and 10 day precipitation sums.
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Figure B.4: Meuse 1-4 day precipitation sums.
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Figure B.5: Meuse 5-8 day precipitation sum
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Figure B.6: Meuse 9 and 10 day precipitation sum
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Figure B.7: Vecht 1-4 day precipitation sums.
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Figure B.8: Vecht 5-8 day precipitation sums.
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Figure B.9: Vecht 9 and 10 day precipitation sums.
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Appendix C

SEAS5 extremes

This appendix will provide an overview of all annual maximum multi-day precipitation
sums of precipitation ranging from 1 to 10 days, in respectively the Rhine, Meuse and
Vecht basin. Like in section 3.1, three panels are presented in every figure, which, from left
to right, show results based on timeseries of calendar year (CY), summer half year (SHY)
and winter half year (WHY). In these figures SEAS5 (both corrected and uncorrected)
and the WG based on the corrected SEAS5 timeseries are compared to the observation-
based passive dataset (and its corresponding timeseries derived from the WG).
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Figure C.1: Rhine 1-4 day precipitation sums.
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Figure C.2: Rhine 5-8 day precipitation sums.
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Figure C.3: Rhine 9 and 10 day precipitation sums.

79



Figure C.4: Meuse 1-4 day precipitation sums.
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Figure C.5: Meuse 5-8 day precipitation sums.
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Figure C.6: Meuse 9 and 10 day precipitation sums.
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Figure C.7: Vecht 1-4 day precipitation sums.
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Figure C.8: Vecht 5-8 day precipitation sums.
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Figure C.9: Vecht 9 and 10 day precipitation sums.
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