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1. Introduction

KNMI needs a standard method for determining a trend, to be used routinely and in standard KNMI
publications'. A trend is a representation of the long-term change, separated from short-term
fluctuations. It is derived from a trendline (also known as “smooth”): a smooth approximation of the
time-series.

This report compares several common methods for determining a trendline according to a list of
criteria. The standard method was selected by a committee, following consultation of a group of
experts. It is a specific version of local linear regression (LOESS), tuned to match the
climatological 30-year running average. Further details on this method and its application are
provided. These include testing whether the data are consistent with no long-term change over a
certain time-interval.

Theo Brandsma, Rob van Dorland, Benadet Overbeek, Gerard van der Schrier, Peter Siegmund,
Werenfried Spit, Philippe Steeghs and Cees de Valk participated in the selection of the standard
method. Theo Brandsma kindly reviewed this report.

In addition, valuable input was provided by Jules Beersma, Henk van den Brink, Irene Garcia,
Geert Lenderink, Geert Jan van Oldenborgh, Aart Overeem, Rinus Scheele, Andreas Sterl and
Kirien Whan.

' This does not include research reports and scientific articles.



2. Strengths and weaknesses of several common methods

Below, four common candidate methods for trendline estimation are discussed. They are
compared on the basis of the following criteria:

e s it simple? A simple method is easy to explain to a broad audience, and also easy to

compute.

Can it be applied in the same way to every variable?

Is the trendline strictly local in time? In other words, is the value of the trendline for a given
year only dependent upon values within a bounded time interval? The advantage of a local
trendline is that for all years sufficiently far into the past, the trendline is fixed and will not
change in the future when new data becomes available.

e Is it flexible? That is, can it approximate any trendline shape, as long as the trendline is
smooth enough? A flexible trendline avoids the bias associated with an imposed shape.

e Is it compatible with climatological convention? If it does, then we can relate trendline
values to reports written even many years ago, and meteorologists will have little trouble
with interpretation.

Is it free from arbitrary choices, or depends only weakly on such choices?
Is it defined throughout the time-interval covered by the data?

2.1 Traditional approach

The traditional definition of a climatological normal is a 30-year running average. Averaging over a
sliding 30-year window produces a trendline which is much smoother than the original time series
of annual values. The approach has several advantages:

strengths:

e itis simple,

e it can be applied in the same way to every variable,

e the trendline is strictly localized: it only depends on the previous 15 years and the
subsequent 15 years?,
it is flexible ,
it agrees with climatological convention,
no arbitrary choices are involved (the fixed time-scale is a convention, so it is not arbitrary).

weakness:
e itis not defined throughout the interval covered by the time-series: for a time-series
covering a long period of time, the trendline is missing for the first 14 years, and can only
be determined up to 15 years before the current year.

With respect to this last bullet, we could extend the 30-year average towards either end of the
time-series by keeping the trendline constant there (so it is still based on 30 years of data), or use

2 This is true on January 1 of the 16th year at 00:00.



averages over shorter time intervals, which are less precise. In the former case, the trendline looks
rather artificial (as if a decrease or increase stops near the end of the series). In the second case,
the trendline will fluctuate wildly near the beginning and the end of the series, which is not realistic
either. So neither option is attractive.

2.2 Linear trend

Another simple way to represent a trendline is as a linear function plus an offset; the offset and
slope can be determined by least-squares regression.

strengths:
e simple,
e defined throughout the interval covered by the time-series.

weaknesses:

e not applicable in the same way to all variables: for example, for a nonnegative variable (e.g.
precipitation), the trendline might become negative (although this seems an extreme case),
not localized in time,
not flexible,
does not agree with the climatological convention.
involves an arbitrary choice (the trendline must be a linear function plus an offset).

2.3 GAM smoothing

A GAM (generalized additive model) is a flexible but smooth curve, which can follow any type of
smooth trendline, if given enough degrees of freedom. It represents a chosen invertible function of,
say, temperature (for example temperature itself, or its logarithm) as a linear combination of
smooth basis functions plus an offset (a spline). In the estimation of the coefficients (the weights of
the basis functions), the roughness of this function (its mean-square curvature) is penalized in
order to produce a smooth function, and to ensure that the solution is unique. The smoothness
depends on a parameter, which can be estimated from the data (e.g. by REML; see Wood, 2011);
this works rather well in practice. It can happen that the estimated trend reduces to a simple linear
trend, if fluctuations in the data around the linear trend cannot be distinguished from noise.

Fitting a GAM requires an assumption about the distribution function of the data; then the smooth
function above represents a (time-varying) parameter of this distribution, for example the mean
value. In advanced methods, several parameters of the distribution can be represented by smooth
functions, each with its own degree of smoothness which can be estimated. The simplest and most
frequently used version is for a normal distribution with constant variance but varying mean, so the
only smooth function to be estimated is the function representing the mean value. This version can
be seen as a least-squares estimator, even if the data are not normally distributed conditional on
the trendline. Therefore, in this aspect, it is consistent with a local average (which is also a
least-squares estimate).

Spline smoothing is roughly equivalent to the more familiar Kriging method; the estimation of the
smoothness parameters in GAM replaces the estimation of the covariance function or



semivariogram prior to computation of the Kriging estimate (the equivalence is described in
Wahba, 1990).

strengths:
e defined throughout the interval covered by the time-series,
o flexible,
e no subjective choice is involved (smoothness is self-tuned).

weaknesses:
e not simple (the lengthy explanation above is still far from complete)
e not localized in time,
e does not agree with convention.

As for linear regression, the method is in principle not applicable in the same way to all variables,
as the trendline may exceed bounds on the variable. However, because of the flexibility of a GAM
trendline, this will not often occur in practice, and can be handled by imposing the bounds.

2.4 Local polynomial regression (LOESS smoothing)

LOESS smoothers have been popular as flexible tools for estimating nonlinear trendlines, certainly
before the development of GAMs. A LOESS smoother generalizes the local average to a
(weighted) local linear or (more generally) local polynomial regression (Cleveland and Devlin,
1988). In contrast to GAM smoothing, it has the advantage of being localized in time, just like the
local average.

In fact, the trendline estimate for the midpoint of a 30-year interval obtained by unweighted local
linear regression (a LOESS smooth of order 1 with uniform weights) is identical to the local
average over the 30-year interval: in the midpoint, the local linear regression is always equal to the
average. Therefore, the local linear regression and the local average only differ near the beginning
and end of the time-series. There, the linear regression is generally less biased than a constant
trendline, and more stable (less variable) than averages over increasingly narrow intervals. So
local linear regression with uniform weights over 30-year intervals offers an effective way to extend
the 30-year averages towards the beginning and the end of the time-series.

Standard implementations of LOESS (e.g. loess in R) do not use uniform weights on the data over

an interval, but a function increasing from zero to its maximum from the boundary toward the
centre. The standard choice is the so-called tricubic function. For an interval [z, —d/2, 1, + d/2] of

width d, it is given by
S(@) =max{0, 1—Qlt—t,/d)’}’;

This function is drawn in the next figure for the case d=2, ¢, =0.
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Figure: Tricubic weight function

Using such a smooth weight function gives a trendline with a smooth appearance. However, to
obtain a trendline with the same variance as the trendline computed using a uniform weight
function, the width d of the interval needs to be increased. Away from the beginning and end of the
time-series, this width can be approximated based on eq. (2.44) in Loader (1999). For the tricubic
weight function, a window of 42 years gives the same variance as a 30-year window with uniform
weights. This is a modest increase, so the trendline estimate is still fairly localized: trendline values
for 21 or more years before the end of the time-series will not change in the future. Applied to
several datasets, the trendlines computed using the tricubic weight function appear to be close to
the 30-year averages, but small-scale wiggles in the 30-year averages are smoothed, due to the
continuity of the tricubic weight function; see the examples in Chapter 5.

Regardless of whether uniform or tricubic weights are chosen, the specific version of the linear
LOESS trendline described above has the following properties.

strengths:

e it is relatively simple (away from the beginning and end of the time-series, it is close to the
30-year average)
the trendline is localized in time
it is flexible (it can approximate any trendline shape, as long as the trendline is smooth
enough),

e it agrees exactly or approximately with climatological convention (so we can relate values to
reported 30-year averages)
no arbitrary choice is involved (the fixed time scale agrees with convention).
it is defined throughout the interval covered by the time-series, and is computed
everywhere using the same algorithm.

e it can be applied in the same way to every variable (just as the 30-year average), except
possibly near the beginning and the end of the time-series (so for bounded variables, some
measures need to be taken to ensure that bounds are respected there).

The favourable scoring on all criteria applies specifically to a time-series sampled with a uniform
time step, and is due to the fact that we can fix the degree of smoothing in order to approximate a



30-year average. Without the criterion of agreement to the convention of a 30-year average, the
degree of smoothing to be applied in the LOESS regression would have to be chosen, and GAM
(which estimates the degree of smoothing from the data) would have one advantage over LOESS.



3. Proposed method

Based on the criteria considered above, the methods considered above would be ranked as
follows (beginning with the most suitable method):

1. Linear LOESS trendline (with constant weight over 30-year intervals or tricubic weight over
42-year intervals)

2. 30-year average

3. GAM

4. Linear regression.

We have seen that the linear LOESS trendline with properly chosen settings extends the 30-year
average trendline to the beginning and the end of the time-series either exactly or approximately.
There are other options for extending the 30-year average. A combination of averages over short
intervals and GAM was investigated. It performs rather well, but not as well as the linear LOESS
trendline with tricubic weight over a 42 year window.

In Section 5.1, trendlines estimated on some time-series of daily mean, maximum and minimum
temperature are shown. These trendlines are computed using the linear LOESS trendline with
tricubic weight over a 42 year window, the 30-year average, and (for temperature data) the GAM
trendline. The following is observed:

1. The linear LOESS trendline matches the 30-year averages closely, but without the wiggles
in the latter.

2. In some cases, the GAM trendline switches rather abruptly from a linear fit to a nonlinear fit
if additional data are added. This is not the case with the LOESS trendline: it adapts
smoothly to new data.

3. Furthermore, a linear LOESS as above is much more localized in time than a GAM, so the
trendline value is eventually fixed, unlike the GAM trendline.

Furthermore, in Section 5.2, linear LOESS trendlines with tricubic weight over a 42 year window
fitted to annual maxima of daily precipitation are shown. Despite the high skewness of these data,
the LOESS trendlines are smooth but match the 30-year averages closely.

Based on the information in this document and further discussions, the locally linear
(LOESS) least-squares regression with tricubic weight over a 42 year time interval is
selected as the standard method for determining a trendline from a time-series.



4. Additional details on the linear LOESS trendline

4.1 Simple description of the trendline method

The linear LOESS trendline with tricubic weight over a 42-year time interval could be described in
simple terms to a general audience as “Smooth trendline approximating a 30-year running

average™.

Technical description: local linear least squares regression (LOESS) with tricubic weight function
over a 42-year window. Standard references are Cleveland and Devlin (1988) and Loader (1999).

4.2 Implementation

A frequently used implementation is http://www.netlib.org/a/dloess. It is made available in the R
core as the function loess.R, which calls a library function.

The standard parameter settings for loess.R are not suitable (they involve approximations which
are not needed). Given that the years are stored in a vector t and the values of the variable of
interest are stored in a vector y. Then the correct call to loess.R is:

control <- loess.control (surface = "direct", statistics= "exact")

span <- 42/length (t)

mdl <- loess(y~t, data= data.frame(t= t, y=y), span= span, degree= 1, control=
control)

pre <- predict (mdl, newdata= data.frame(t= t), se= TRUE)S$fit

Now the trendline values are found in pre$fit, and the standard deviations of the trendline values
are found in pre$se.fit. Note: the “family” argument of loess.R is set to “gaussian” by default, so it
does not need to be specified.

For the purpose of trendline computation at KNMI, a wrapper called climatrend.R is written which
takes care of the parameter settings, computes confidence limits (see Section 4.4) and optionally,
carries out a test of the trend (see Section 4.5).

4.3 Computation of the trendline near the beginning and end of the time-series

Key to the stability of the LOESS trendline near both ends of the time-series is that LOESS always
uses the same number of data points for the local regression. In our case, with a 42-year window
and annual values, this is 42. For an instant of time ¢ near the say (end) of the time-series, the

trendline is computed from data within a 42-year interval which is not centred at ¢. In that case, the
linear term in the local regression model becomes important. However, the weight function is still
centred at ¢ (it is cut-off at the end of the series and stretched to cover the 42 years). Therefore,
the trendline is approximately, but not exactly linear near the end of the time-series. In practice,
this offers a good compromise between bias and variability.

3 In Dutch, for example: “Gladde trendlijn, bij benadering het 30-jaar lopend gemiddelde”.


http://www.netlib.org/a/dloess

4.4 Confidence intervals

Confidence intervals are a way to show the effect of short-term fluctuations in the data on the
computed trendline, when these fluctuations are regarded as arbitrary (they could have been
different, in view of the chaotic nature of weather). For the computation of confidence intervals, it is
assumed that successive deviations from the trendline in the time-series are uncorrelated. This
may not be exactly true, but for the purpose of determining the precision of the local trendline of
an annually sampled meteorological variable in Europe, it seems to be adequate (spectra for time
scales below 50 years tend to be rather flat, despite phenomena like NAO).

The confidence intervals are symmetric, and based on the normal approximation of errors in the
local trendline, computed in the usual manner for weighted linear regression. Using a 42-year
window and tricubic weight function to compute the trendline at more than 21 years from either
end, the trendline is just a weighted average over 42 years (corresponding to an unweighted
average over 30 data points; see Chapter 3), so a normal approximation of the distribution of this
average is generally considered acceptable.

To check this, tests with independent standard lognormal random variables were carried out. The
trendline is flat in this case, and equal to the mean value 1.65 of the standard lognormal
distribution. The lognormal distribution is highly skewed, which tends to skew the true confidence
interval. As test data, 100,000 time-series of 100 values were simulated, from which the linear
LOESS trendlines were estimated with their confidence intervals.

The next figure shows the simulated mean of the estimated trendlines (full) and the 2.5% and
97.5% quantiles of the estimated trendlines (dashed). The latter can be regarded as the exact
2-sided 95%-confidence limits. In blue, the mean values of the 95%-confidence limits estimated
from the LOESS trendline and its standard deviation under the normal approximation (blue) are
shown.

We can see that there is an error, but it is not large (7%-8% for both limits in the central part of the
time-series). In fact, the coverage probability (the probability that the true trendline is in the
estimated confidence interval) is 93%-94% over the entire length of the time-series. Compared to
the ideal value of 95%, this is excellent.

Since the lognormal distribution is rather strongly skewed, we can conclude that the confidence
intervals computed from LOESS combined with the normal approximation are fit for purpose. As an
alternative, we could use a sophisticated bias-correcting version of bootstrapping for estimating
confidence limits. However, in view of the good coverage probability in the example and the
limitations of bootstrap methods, this is not worth the effort.

10
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Figure: Exact confidence limits (dashed) and average of estimated confidence limits (blue) for the linear LOESS trendline
with tricubic weight over a 42-year window. Confidence level is 95%. See also text.

4.5 Testing for absence of a trend

Testing for “absence of a trend” (i.e., testing of the proposition of no long-term change) is best
done based on the computed trendline values y(¢,)and y(z,) for two widely separated years ¢, and
t,. Preferably, both years are not too close to the beginning or the end of the time-series, where

the trendline is more accurate. The exact choice of these years should be made without
considering the actual data or the trendline estimate.

Then the standard deviations of the LOESS trendline estimates and the normal approximation of
errors in the trendline estimates can be used for testing the proposition that the difference between
the trendline values in these years is zero. If the gap between the years ¢ and , is wide enough,
the two trendline values y(z,)and y(t,) can be treated as independent, and their difference is
approximately normal with mean zero and variance equal to the sum of the variances of the two
trendline estimates. Therefore, we can easily compute the p-value p: the probability of obtaining a
difference y(z,) — y(t,) which is at least as large in magnitude as has been observed. It is given by

p=2{1-0(T)} with 7= 222l
\/(022 +‘512)

in which yis the trendline estimate, ®is the standard normal (cumulative) distribution function, and
c,and o, are the standard deviations of y(¢,)and y(z,), respectively.

The p-value should be regarded as a basic metric of compatibility between the data and the
proposition of no long-term change, taking fluctuations in the data into account. The trendline script
contains the option to compute this p-value for two selected years ¢ and ¢, .

11



Alternatively, we could compute a one-sided p-value, to test the proposition of no (long-term)
change against the specific alternative of a positive trend, or a negative trend (in the former case,
for example, the p-value is p, = 1 - ®(7,) with T, := {y(1,) —y(t,)}/(5,> +5,)"?) . However, to avoid
testing multiple propositions simultaneously or sequentially, which is more complicated if done
properly, it is recommended to test only the simple proposition of no change against its negation.
For the same reason, it makes little sense to compute p-values for a range of years. Therefore, the
simple two-sided test for given values of ¢, and ¢, is implemented in de code in Section 6.1.

A check of the procedure on the lognormal data of the previous paragraph, comparing values at

t, =20 and ¢, = 80, gives excellent results; the simulated p-values match the exact ones almost
perfectly. This is partly explained by the fact that bias in the confidence limits is approximately
uniform over the time-series (see previous figure), so this error is largely cancelled when taking the
difference between y(z,) and y(¢)).

To ensure independence of the trendline estimates for the years ¢, and ¢,, ¢, and ¢, should ideally
be separated by more than 42 years (the width of the LOESS window). However, in checks on
lognormal data, a spacing of 30 years (the “effective width” of the LOESS window) appears to be
sufficient in practice. This remains so even if ¢, is close to the beginning, or ¢, is close to the end
of the time-series. However, it is recommended to keep ¢, and ¢, away from the beginning and end
of the time-series, if possible, as this gives somewhat better performance of the test.

4.6 Communicating the outcome of the trend test

To communicate a p-value in publications aimed at a general audience, it is recommended to keep
the language simple and non-technical (even many scientists do not properly understand statistical
testing, and “statistical significance” is a highly questionable concept for many reasons). If the
p-value is small (e.g. < 0.05), we could say “the data indicate a long-term increase (or decrease) in
temperature of 1.2 degrees between 1950 and 2019”. If the p-value is not that small, then we could
say “the data indicate little long-term change in temperature between 1950 and 2019” (in the latter
case, the temperature difference does not need to be mentioned). For those familiar with statistical
testing, the p-value may be quoted in the form “(p= 0.013)". However, it is not advisable to try to
explain the concept of a p-value in simple terms to the general audience.

There is no “magic threshold” for the p-value which allows us to confidently reject or confirm the
hypothesis of no change. This is not really a problem as long as we use cautious language as
suggested above to communicate the result, and avoid terms like “significant” which give a false
impression of certainty. Another reason for using cautious language is that not all assumptions
underlying the test may be strictly valid.

12



5. Examples

5.1 Trendlines for temperature

To compare methods, several trendlines for the annual mean temperature at de Bilt are shown
below. The panel on the left shows 30-year averages. In the centre, we see the GAM trendline,

and on the right, the local linear (LOESS) trendline with tricubic weight function over 42-year
intervals.
30-year moving average GAM LOESS
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Trends of the annual average of daily mean temperature from data over 117 years.
Figure 1: trendlines for annual mean temperature at de Bilt: moving averages (left), GAM smooth (centre), and linear

LOESS smooth with 95% confidence interval (right).

It is important how the trendline changes when data are added at the end of the time-series. This is
shown in the next figures.
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30-year moving average GAM LOESS
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Trends of the annual average of daily mean temperature from data over 80 years.

Same, but for the first 80 years.
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30-year moving average GAM LOESS
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Trends of the annual average of daily mean temperature from data over 90 years.

Same, but for the first 90 years.

30-year moving average GAM LOESS
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Trends of the annual average of daily mean temperature from data over 95 years.

Same, but for the first 95 years.
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Trends of the annual average of daily mean temperature from data over 100 years.

Same, but for the first 100 years.
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Figure 7:

the same results are shown for the annual mean of daily minimum temperature.

30-year moving average GAM LOESS
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Trends of the annual average of daily minimum temperature from data over 117 years.

trendlines for annual mean of daily minimum temperature at de Bilt: moving averages (left), GAM smooth
and LOESS smooth with 95% confidence interval (right).
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Trends of the annual average of daily minimum temperature from data over 80 years.

Same, but for the first 80 years.
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30-year moving average GAM LOESS
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Trends of the annual average of daily minimum temperature from data over 90 years.

Same, but for the first 90 years.

30-year moving average GAM LOESS
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Trends of the annual average of daily minimum temperature from data over 95 years.

Same, but for the first 95 years.

30-year moving average GAM LOESS
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Trends of the annual average of daily minimum temperature from data over 100 years.

Figure 10: Same, but for the first 100 years.
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The following results are for_the annual mean of daily maximum temperature:

30-year moving average GAM LOESS
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Trends of the annual average of daily maximum temperature from data over 117 years.

Figure 11: annual means of daily maximum temperature at de Bilt: moving averages (left), GAM smooth (centre), and
LOESS smooth with 95% confidence interval (right).
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Trends of the annual average of daily maximum temperature from data over 80 years.

Figure 12: Same, but for the first 80 years.
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30-year moving average GAM LOESS
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Trends of the annual average of daily maximum temperature from data over 90 years.
Figure 13: Same, but for the first 90 years.
30-year moving average GAM LOESS
©o _] - -1
© - : 1} \
jJ
[
3 = 4
g -
[
Qo
€
]
© .
o .
T T T T T T T T T T T T T T T T T T T T T
1900 1920 1940 1960 1980 2000 20201900 1920 1940 1960 1980 2000 20201900 1920 1940 1960 1980 2000 2020
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Figure 14: Same, but for the first 95 years.
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Trends of the annual average of daily maximum temperature from data over 100 years.

Figure 15: Same, but for the first 100 years.
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We can see the following:

1. The linear LOESS trendline matches the 30-year averages closely without the wiggles in
the latter.

2. In some cases, GAM switches rather abruptly from a linear fit to a nonlinear fit if additional
data are added: compare Figures 3 and 4 (centre) and Figures 13 and 14 (centre).

3. This is not the case with the LOESS smoother: the trendline adapts smoothly to new data,
while up to 21 years before the last year of data used in the fit, the trendline remains fixed.
This difference in behaviour is as expected: a linear LOESS trendline is much more
localized in time than a GAM, so the trendline value is eventually fixed, unlike the GAM
trendline.

5.2 Trendlines for the annual maximum of precipitation

Finally, for annual maxima of 24-hour precipitation at several randomly chosen ECA&D stations
(see https://www.ecad.eu), trendline estimates computed using the same LOESS smoother (blue)
are shown. Also shown are the 30-year averages (black points). Note how LOESS smoothes the
wiggles in the 30-year averages.
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Figure 16: Trendlines of annual maxima of 24-hour precipitation (mm) at eight ECA&D stations: LOESS smooth with 95%
confidence interval (blue) and running 30-year average (black dots) (continued on next page).
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6. Code for standard trendline computation and testing

6.1 General

The standard trendline method is implemented in the R-function c1imatrend.R, butit can also
be run directly from the linux or Windows command line, provided that R is installed on the system.

The code is distributed in the package “TrendKNMI” at GitLab at
https://gitlab.com/cees.de.valk/trend knmi.git

You can simply use the download button (next to the blue Clone button) to download the code and
unzip it into a folder (R users: don'’t try to install it as a formal package, because it is not).

As an alternative, the version of November 2020 is printed in Section 6.4; the modules can be
copied to text files which are given the proper file names and stored together in a folder. Further
instructions follow below.

6.2 Run trendline computation in a linux terminal

R must be installed on your system. If you type R in a terminal, you should see information about
the R version etc.; you can quit R by typing g () .

To compute the trendline, you run a command of the form
Rscript runtrend.R datafile optionl option2

from the folder where de R code is stored. Detailed instructions on usage are found in the header
of the file runtrend.R which can be read using a text editor or viewer; see Section 6.4.

The input data (containing years and annual values) needs to be stored in a .csv file. The output is
in a .csv file with the same name as the input file, but with trend  attached to the front; it is
saved to the folder containing the input file. If a plot is requested, a .png image is returned with the
same name as the output .csv file.

6.3 Run trendline computation in a Windows command window

R must be installed on your system®. If installed, R should be present in the Windows start menu.

First you open a command window (by clicking on the start button and typing cmd). Then you
navigate to the folder containing the code. It contains a batch file (runtrend.bat) which needs to
be configured using a text editor in order to use it. Instructions are in the file header. Next, you run
a command of the form

* For KNMI staff: if R is not installed, SSC Campus may install it on your request.
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runtrend.bat datafile optionl option2

to compute a trendline. Detailed instructions on usage are found in the header of the file
runtrend.R which can be read using a text editor or viewer; see Section 6.4.

The input data (containing years and annual values) needs to be stored in a .csv file. The output is
in a .csv file with the same name as the input file, but with trend  attached to the front; it is
saved to the folder containing the input file. If a plot is requested, a .png image is returned with the
same name as the output .csv file.

6.4 Run in an R environment

The function climatrend.R can be used within an R environment where the data are already
present. See the header for further details of its usage.

For the application using file 1/0, see under 6.2 or 6.3 above. In fact, runtrend.R can also be
used in the R console, but it needs to be adjusted (you need to comment out the line containing
arg = commandArgs (trailingOnly= TRUE) and write the filename and options to a string
vector called arg before running runtrend.R).

6.5 Code of the version of November 2020

To use the code printed below, copy it into a text file and save itas climatrend.R.Itis
recommended to download the code from gitlab.com/cees.de.valk/trend knmi.git
instead.

#' @name climatrend

#l

#' @title climatrend

#l

#' @description Fit a trendline to an annually sampled time-series by local linear regression
(LOESS)

#l

#' @param t years, increasing by 1 (double (n))

#' @param y annual values; missing values as blanks are allowed near beginning and end
(double (n))

#' @param p (optional) confidence level for error bounds (default: 0.95)) (double)

#' @param tl (optional) first year for which trendline value is compared in test (double)
#' @param t2 (optional) second year (see tl)

#' @param ybounds (optional) lower/upper bound on value range of y (default: c(-Inf, Inf)
(double (2))

#' @param drawplot (optional): FALSE/TRUE or label on y-axis (default: FALSE) (logical or
character)

#' @param draw30 (optional): add 30-year moving averages to plot (default: FALSE) (logical).
#l

#' @usage Value <- climatrend(t, vy, p, tl, t2, ybounds, drawplot, draw30)

#l

#' Qreturn A list, with members:

#' \item{t}{years}
#! \item{trend} {trendline in y for years in t}
#' \item{p}{confidence level}
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4
4
4
4
4
#l
#l
#
#
#
#
4
4
4
4
4
4
#l
4
#
#
0
#
4
4
4
4
4
#l
#l

\item{trendubound}{lower confidence limit}

\item{trendlbound} {upper confidence limit}

\item{averaget}{central value of t in a 30-year interval}
\item{averagey}{30-year average of y}

\item{averageysd}{standard deviation of averaget}

\item{tl}{first year for which trendline value is compared in test}
\item{t2}{second year for which trendline value is compared in test}
\item{pvalue of test of no longterm change}

@details

The trendline can be regarded as an approximation of a 30-year average, which has a smooth

appearance and is extended toward the beginning and end of the time-series.

It is based on linear local regression, computed using the R-function loess.

It uses a bicubic weight function over a 42-year window. In the central part

of the time-series, the variance of the trendline estimate is approximately equal to
the variance of a 30-year average.

To test the proposition of no long-term change between the years tl and t2, these years
need to be supplied. The result is the p-value: the probability (under the proposition)

that the estimated trendline values in t2 and tl differ more than observed.

version: 26-Nov-2020

@references
KNMI Technical report TR-389 (see http://bibliotheek.knmi.nl/knmipubTR/TR389.pdf)

@author Cees de Valk \email{cees.de.valk@knmi.nl}

@export

climatrend <- function(t, vy, p, tl, t2, ybounds, drawplot, draw30)

{

# fixed parameters
width <- 42
control <- loess.control (surface = "direct", statistics= "exact",
iterations= 1)
# check input
# t and y
if (missing(t) | missing(y)) {
list ()
stop ("t or y missing.")
}
if (length(t)< 3 | length(y)!= length(t)) {
list ()
stop ("t and y arrays must have equal lengths greater than 2.")
}
# check input
if (any(is.na(t)) | sum(!is.na(y))< 3) {
list ()
stop ("t or y contain too many NA.")

#p

if (missing(p)) |
p <- NA

}

if (length(p)!= 1) {
p <- NA
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if (is.na(p) | !'(p> 0 & p< 1)) |
p <- 0.95 # default confidence level
}
# tl and t2
if (missing(tl) | missing(t2)) {
tl <= Inf; t2 <- -Inf
}
if (length(tl)!= 1 | length(t2)!= 1) {
tl <- Inf; t2 <- -Inf
}
if (is.na(tl) | is.na(t2)) {
tl <- Inf; t2 <- -Inf
}

# ybounds
ybounds0 <- c(-Inf, Inf)
if (missing(ybounds)) {

ybounds <- yboundsO
}
if (length(ybounds) != 2) {
ybounds <- ybounds0
}
id <- is.na (ybounds)
ybounds [1id] <- ybounds0[id]
ybounds <- sort (ybounds)

# drawplot

ylab= ""

if (missing(drawplot)) {
drawplot <- FALSE

}

drawplot <- drawplot[1l]

if (is.character (drawplot)) {
ylab <- drawplot

} else if (is.na(drawplot) | !is.logical (drawplot)) {
drawplot <- FALSE

# draw30

if (missing(draw30)) {
draw30 <- FALSE

}

draw30 <- draw30[1]

if (!is.logical (draw30)) {
draw30 <- FALSE

# dimensions etc.

t <- as.vector (t, mode= "double")
y <- as.vector(y, mode= "double")
dt <- diff(t[l:2])

n <- length(y)

ig <- l!is.na(y)
vg <- yligl
tg <- tlig]

ng <- sum(ig)
if (any(diff(tg)!= dt)) {
error ("NA may only occur in y only at beginning and/or end of time-series")



# check values of bounds
if (any(yg< ybounds[1l]) | any(yg> ybounds[2])) {
stop ("Stated bounds are not correct: y takes values beyond bounds.")

# averages over 30 time-steps

avt <- avy <- avysd <- NULL

if (ng> 29) {
avt <- tg+dt/2 # time (end of time-step, for 30-year averages)
avy <- filter(yg, rep(l, 30)/30, method = "convolution")
avy2 <- filter(yg"2, rep(l, 30)/30, method = "convolution")
avysd <- sqgrt(avy2-avy”"2)
ind <- 15:(ng-15)
avt <- avt[ind]
avy <- avyl[ind]
avysd <- avysd[ind]

# linear LOESS trendline computation
span <- width/ng
mdl <- loess(y ~ t, data= data.frame(t= tg, y=yg), span= span,
degree= 1, control= control)
# mdl <- loess(y ~ t, data= data.frame(t= t, y=y), span= span, degree= 1)
pre <- predict(mdl, newdata= data.frame(t= t), se= TRUE)
trend <- preS$fit # trendline
trendsd <- pre$se.fit # standard deviation of trendline

# confidence limits (normal approximation)
trendub= trend + trendsd*gnorm(l-(1l-p)/2)
trendlb= trend - trendsd*gnorm(l-(1l-p)/2)

# apply bounds

trend <- pmin(trend, ybounds[2])
trend <- pmax(trend, ybounds[1l]
trendub <- pmin (trendub, ybounds[2])
trendub <- pmax (trendub, ybounds[1l])
trendlb <- pmin(trendlb, ybounds[2])
trendlb <- pmax(trendlb, ybounds[1l])
# pvalue for trend

pvalue <- NULL

if (t2 %in% t & tl %in% t & t2>= t1+30) {

vyl <- trend[tl== t
y2 <- trend[t2== t
ylsd <- trendsd[tl== t]

y2sd <- trendsd[t2== t]

# two-sided test for absence of trend

pvalue <- (l-pnorm(abs (y2-yl)/sqrt(ylsd”2+y2sd”2)))*2
} else if (t2> -Inf & tl< Inf) {

warning ("no p-value: tl or t2 not in t, or t2 too close to tl.")
} else {

tl <- NULL

t2 <- NULL

# plotting
if (! (drawplot== FALSE)) {
par (pty= "s", cex= 1)
ylim <- c(min(pmin(y, trendlb), na.rm = TRUE), max(pmax(y, trendub), na.rm = TRUE))



ylim[2] <- ylim[1l] + (ylim[2]-ylim[1])*1.0
plot(t, y, type= "1", xlab= "", ylab= ylab, ylim= ylim)
grid()
if (draw30== TRUE) {
points(avt, avy, pch= 18, cex= 0.5, col= "black")
}
points(t, y, pch= 15, cex= 0.75)
lines (t, trend, lwd= 2)
lines(t, trendub, lwd= 1, lty= 2)
lines(t, trendlb, lwd= 1, lty= 2)
legendpos <- "topleft"
tr <- y[l!is.na(y)]
lr <- length(tr)
ir <= 1:(1r/2)
id <- which.max(c(mean(tr[ir])-ylim[1l], mean(tr[lr+l-ir])-ylim[1],
ylim[2]-mean (tr[ir]), ylim[2]-mean(tr[lr+l-ir])))
pid <- c(min(trlir])-ylim[1l], min(tr[lr+l-ir])-ylim[1],
ylim[2]-max (tr[ir]), ylim[2]-max(tr[lr+l-ir]))
id <- which.max (pid)
legendpos <- c("bottomleft", "bottomright", "topleft", "topright") [id]
if (draw30== TRUE) {
legend (legendpos, c("trendline", paste("its ", 100*p, "% confid.", sep=""), "30-yr

average"),
lwd= c(2, 1, NA), lty= c(l, 2, NA), pch= c(NA, NA, 18), cex= 0.75, bty= "o",

y.intersp= 0.8)
} else {
legend (legendpos, c("trendline", paste("its ", 100*p, "% confid.", sep="")),
lwd= c(2, 1), lty= c(l1, 2), cex= 0.75, bty= "o",
y.intersp= 0.8)

}

list(t= t, trend= trend, p= p, trendubound= trendub, trendlbound= trendlb,
averaget= avt, averagey= avy, averageysd= avysd,
tl= tl, t2= t2, pvalue= pvalue, ybounds= ybounds)
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To use the code printed below, copy it into a text file and save it as runtrend.R. ltis
recommended to download the code from gitlab.com/cees.de.valk/trend knmi.git
instead.

purpose:

usage:

output:

warning:

Compute KNMI standard trendline and optionally, test for absence of long-term change
(trend) between two specified years tl and t2 (implemented in climatrend.R), by a

call from a terminal or Windows command prompt.

Rscript runtrend.R datafile optionl option2

datafile: name of .csv file containing
- an optional line with the options: optionl option2 .... (if not provided
as arguments)
- a line with the column names for year and variable (separated by comma)
- lines containing year and annual value (separated by comma; containing at
least 3 years)

optionl, option2, etc.: parameter assignment of the form
parameter=value
(without spaces). For example: p=0.95 t1=1962 t2=2018 drawplot=TRUE.
WARNING: for options entered on the command line, if value is itself a string, then
put the entire assignment between quotes which differ from those used for the value,

as in 'drawplot="temperature (C)"' (do not do this with options in the data file).

All parameters are optional. They are (see also header of climatrend.R):

- p: confidence level for confidence interval (default: 0.95)) (double)

- tl: first year of trendline value used in testing (double) (default: no test)
- t2: second year of trendline value used in testing (double) (default: no test)
- lbound: lower bound on value range of variable (default: -Inf) (double)

- ubound: upper bound on value range of variable (default: Inf) (double)

- drawplot: FALSE/TRUE or text on y-axis (default: FALSE) (logical or character)
- draw30: add 30-year moving averages to plot (default: FALSE) (logical)

Example 1 of content of datafile: (parameter assignments in file)
p=0.95 drawplot="TG (C)"

year, TM

1990, 12.6

1991, 11.2

1992, 12.0

Example 2 of content of datafile: (no parameter assignments in file)
year, TM

1990, 12.6

1991, 11.2

1992, 12.0

A .csv file named "trend "filename, containing five columns:
year, annual value, trend, trendlowerbound, trendupperbound, 30-yr average

The trendline is in the column labelled "trend"; its 100p%-confidence interval
is bounded by trendlowerbound and trendupperbound.

The 30-year average is given AT THE LAST YEAR of the 30-year interval.

The R function climatrend.R is called. If this file is in another directory
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then the current one, then the sourcepath in the code below needs to be
changed to the path to climatrend.R.

version: 26-Nov-2020

reference: KNMI Technical report TR-389 (see http://bibliotheek.knmi.nl/knmipubTR/TR389.pdf)

author: Cees de Valk \email{cees.de.valk@knmi.nl}

H HH= = FH FH = H H H

# set here the path to the file climatrend.R

# e.g. for the current directory:

# sourcepath <- ""

sourcepath <- "" # change if needed! path to input and output file

# source code

source (paste (sourcepath, "climatrend.R", sep= ""))

# arguments
arg = commandArgs (trailingOnly= TRUE)
print (arg)

# the first argument is the name the input file (otherwise,
# a default filename is used)
la <- length(arg)
if (la> 0) |
fname <- argl[l]
} else {

stop ("No name supplied for the datafile.")

sk <- 0
if (la> 1) |
# take parameter assignments from arguments
parama <- arg[2:la]
la <- length (parama)
temp <- readLines (fname, n= 1)

if (grepl("=", temp)) {
sk <=1
}
} else {

# read parameter assignments from file
# parama <- scan(fname, nlines= 1, what= "character", sep= " ")
temp <- readLines (fname, n= 1)
temp <- gsub("'","\"", temp)
parama <- strsplit(temp, "\\s(2=(2: [ \"]*\"["\"]*\")*[~\"]*$)", perl= TRUE) [[1]]
la <- length (parama)
sk <=1
}

print (parama)

# default parameter values, overwritten if specified
p= 0.95

tl <- t2 <- NULL

ubound <- Inf

lbound <- -Inf

drawplot <- FALSE

draw30 <- FALSE

if (la> 0) |



for (i in 1:1la) {
templ <- tryCatch({eval (parse (text= parama[i]))}, error= function (err) {NA})

}

ybounds <- c(lbound, ubound)

# read data of annual values
Data <- read.csv(fname, skip= sk)
colData <- colnames (Data)

# change filename for purpose of output
s <- .Platform$file.sep
path <- strsplit(fname, s)[[1]]
lp <- length(path)
fname <- paste("trend ", path[lp], sep= "")
if (lp> 1) |
fname <- paste(paste(path[l: (lp-1)],collapse= s), fname, sep= s)

# prepare plotting to png file
if (drawplot== TRUE) {
drawplot <- colData[2] # get y-axis label for plot

# convert to plain matrix and remove NA's
Data <- data.matrix (Data)
dd <- dim(Data)
if (dd[2]!= 2) {
stop ("Data in datafile not properly formatted.")
} else if (dd[1]< 3) {
stop ("Time series is too short (must have at least 3 years).")

—

extract valid data

If Datal[j, 1] is good but Datal[j, 2] is NA,then the trend will be
extrapolated/interpolated to year Datal(j, 1]

idgood <- lapply(is.na(Data), 1, any)

idgood <- !is.na(Datal, 11])

t <- Datal[idgood, 1]

y <- Datalidgood, 2]

<- Datal[, 1]

<- Datal, 2]

PG

if (! (drawplot== FALSE)) { # open plotfile
plotfname <- sub("csv", "png", fname)
fac= 1.25
png (plotfname, units="in", width=6*fac, height=5*fac, res=200)

# trend computation/plotting
temp <- climatrend(t, y, p, tl, t2, ybounds, drawplot, draw30)
if (! (drawplot== FALSE)) { # close plotfile

dev.off ()

# prepare/format output
Data <- cbind(Data, array(NA, dim= c(dd[1l], 4)))
# Data[idgood, 2] <- tempStrend
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# Data[idgood, 3] <- temp$trendlbound

# Data[idgood, 4] <- temp$trendubound

Datal[, 3] <- tempS$trend

Datal[, 4] <- tempS$trendlbound

Datal[, 5] <- tempS$trendubound

if (length(tempS$averaget)> 0) {
endyear <- ceiling(temp$averaget)+14
id <- Datal, 1] %in% endyear
Datal[id, 6] <- tempS$Saveragey

# Datal, 3:6] <- signif(Datal, 3:6], 4)

colnames (Data) <- c(colData, "trend", "trendlowerbound", "trendupperbound", "30-yr average")

pstring <- " "
if (length (tempS$pvalue)> 0) {

pstring <- paste("In the absence of a long-term trend between ", tl, " and ", t2,

, the size of the observed difference in trend values would be exceeded",

with a probability (p-value) of:", sep= "")

}
paramstring <- "The probability of the interval between the confidence bounds is "

# output to .csv file with information in header

a <- file.create(fname, overwrite= FALSE)

cat (pstring, "\n", temp$pvalue, "\n", paramstring, paste(p), ".\n", sep= "",
file= fname, append= TRUE)

defaultW <- getOption ("warn")

options (warn = -1)

write.table (Data, file = fname, append= TRUE, row.names= FALSE, col.names= TRUE,

na= " ", sep=",")

options (warn = defaultW)
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To use the code printed below, copy it into a text file and save it as runtrend.bat. ltis
recommended to download the code from gitlab.com/cees.de.valk/trend knmi.git

instead.

rem

rem To configure this runtrend.bat for your environment, do the following.

rem

rem Look first for the path to Rscript.exe: in cmd window, go to C:\Users, and
rem type: where /r . Rscript.exe

rem

rem Then copy one of the results, and paste it between the quotes in the command
rem line at the end of this file.

rem

rem Now you can run runtrend.bat with the same arguments as used for runtrend.R
rem (see header of runtrend.R).

rem

rem version: 26-Nov-2020

rem

rem author: Cees de Valk (cees.de.valk@knmi.nl)

rem

rem reference: KNMI Technical report TR-389 (see

http://bibliotheek.knmi.nl/knmipubTR/TR389.pdf)

rem

"C:\Users\All
Users\App-V\2C43EEE5-D738-431B-80BC-A8EC97345439\BE788D1A-CBF7-4AD7-8FCD-C84F21CE2D15\Root\R-4.0.
2\bin\Rscript.exe" runtrend.R %1 %2 %3 %4 %5 %6 %7
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