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Preface  
 
This report presents the KNMI-results of work package 6.1 of the DOWA project 
(https://www.dutchoffshorewindatlas.nl/about-the-atlas) carried out by ECN part 
of TNO, KNMI and Whiffle, and funded by the Rijksdienst voor Ondernemend 
Nederland (RVO).  
 
 

Abstract 
 
We use statistical methods to assess the uncertainty of the DOWA climatological 
parameters, and compare it to the uncertainty in the KNW atlas. In particular, 
the following aspects are studied: 
 

 The precision of the DOWA and KNW wind data. Precision of a data 
source refers to the random (non-systematic, non-predictable) error. Bias 
can be corrected for, but a lack of precision introduces an uncertainty that 
cannot be avoided. We use triple collocation and quadruple collocation 
analysis to assess the precision.  
 

 The relative bias (compared to Meetmast IJmuiden mast and lidar 
measurements) of the DOWA and KNW atlas data. The bias in wind speed 
is assessed by means of quantile-quantile (QQ) plots that provide the 
relationship between the sorted values from one data source and the 
sorted values from another data source.  Also, the bias in wind shear is 
assessed using QQ-plots. 

 
 The uncertainty in wind resource assessments based on 10 years 

of wind data. To assess this uncertainty, we use a bootstrap method, 
both with and without accounting for multi-year dependence.  
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1. Sources of data and information 
 
1.1 Wind atlases 

 
The Dutch Offshore Wind Atlas (DOWA) is a wind reanalysis dataset for the 
North Sea covering the 10-year period 2008-2017. The regional numerical 
weather model HARMONIE-AROME was used to downscale the ERA5 global 
weather re-analysis to hourly weather data on a 2.5 by 2.5 km grid spacing for 
heights up to 600 m. More information on the models and methods employed 
can be found under "Innovations in the DOWA project" on the DOWA-website1. 
 
The KNMI North Sea Wind (KNW) atlas is based on the ERA-Interim reanalysis 
(the predecessor of ERA5), and an earlier version of HARMONIE. More 
information on the KNW-atlas can be found on the KNW-website2.  
 
 
KNMI North Sea Wind (KNW) atlas Dutch Offshore Wind Atlas (DOWA) 

 1979-2019 (40+ years)   2008-2018 (11 years) 

 Captures the variability of the North 
Sea wind climate (40+ years long 
enough) 

 Does not capture the variability of the 
North Sea wind climate (11 years not 
long enough) 

 
 Based on re-analysis ERA-Interim and 

mesoscale weather model HARMONIE 
Version 37h1.1 (1979-2013) and 
Version 37h1.2.bugfix (2013-2019), 
the latter tested and adapted to 
guarantee a homogeneous dataset 
(similar results Version 37h1.1 and 
37h1.2.bugfix).  
 

 
 Based on re-analysis ERA5 (follow-up 

of ERA-Interim with higher spatial and 
temporal resolution) and mesoscale 
weather model HARMONIE Version 
40h1.2.tg2 (improved wind 
information because turbulence is 
better modelled) 

 HARMONIE used as downscaling-tool 
only (data-assimilation of 
measurements in ERA-Interim only) 

 Additional measurements assimilated 
in HARMONIE (ASCAT-satellite surface 
wind measurements and MODE-S-EHS 
aircraft wind profile measurements) 

 Climatological information up to and 
including a height of to 200 m  

 Climatological information up to and 
including a height of 600 m  

 Lacks the information required for 
further LES-downscaling 

 Information required for further LES-
downscaling included 

 Cold starts: limited quality of hourly 
correlation with measurements (e.g. 
diurnal cycle) 

 No cold starts: better hourly 
correlation with measurements  and 
representation of the diurnal cycle 

 Uniform wind shear correction applied  No wind shear correction required 

 
 
                                                 
1 https://www.dutchoffshorewindatlas.nl/  
2 http://projects.knmi.nl/knw/index.html 
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The table above summarizes the differences between the DOWA and the KNW-
atlas. Where DOWA covers 10 years, the KNW-atlas covers more than 40 years 
(1979-2019) and therefore gives a better representation of the inter-annual 
variability (IAV) of the wind. The DOWA, however, is based on better models: 
ERA5 is better than ERA-Interim and in the new version of the HARMONIE-
model, a better turbulence-scheme and additional assimilation of aircraft and 
satellite measurements have improved the wind information significantly. 
Furthermore, the method to produce the DOWA is improved compared to how 
the KNW-atlas was produced: e.g. no more 6-hourly restarts from the ERA-
Interim re-analysis but instead, 3-hourly assimilation of measurements, and 
ERA5 reanalysis data are only fed at the boundaries. 

1.2 Wind measurements  
 
Wind speed and direction of the DOWA re-analysis have been compared to 
measurements from floating lidars, meteorological masts and scatterometer. The 
results are described in the validation reports Duncan et al (2019a, 2019b) and 
Knoop et al (2019). The comparisons cover several sites located offshore and 
on-shore and focus on the mean and standard-deviation of instantaneous 
differences between measurements and corresponding values from DOWA. To 
assess the uncertainty in the DOWA climatology, some other types of statistics 
are useful, which are discussed in this report.   
 
The assessment of the uncertainty in the DOWA climatology is primarily based 
on the measurements at Meetmast IJmuiden (MMIJ) 75 km west of IJmuiden. 
There was no wind farm in the neighbourhood of the Meetmast IJmuiden that 
could disturb the measurements. Measurement data at the MMIJ-site include: 
 

 Mast-mounted anemometer and wind vane measurements covering the 
period 2/11/2011 – 11/3/2016 

 platform-mounted lidar measurements covering 1/11/2011- 9/3/2016.  
 

The availability of simultaneous mast, lidar and DOWA data offers substantial 
benefits for quality assessment of the data from all three sources; in particular, 
it allows for triple collocation analysis (see Section 2.3).   
 
At each of three levels on the MMIJ mast (27, 58 and 87 m), three booms were 
mounted, each supporting a cup anemometer and a wind vane. In addition, 
there was an anemometer at the top (92 m), and a LIDAR device was installed 
for measurements above 90 m. The fact that the wind is measured at three 
positions at each height makes it possible to select the sensor where the 
measurements are least disturbed by the mast, or to combine measurements in 
such a way that mast effects are minimalized. The wind speed that is derived 
from the raw measurements is often referred to as the “true wind speed” (or 
“derived wind speed”). The MMIJ measurements used in this study are the true 
wind speed and directions supplied by ECN part of TNO. 
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Figure 1: The top left panel shows Meteo Mast IJmuiden and the top right panel shows 
the mast construction and booms (source: BLIX Consultancy BV). The location of the 
mast is given in the panel below (source: ECN part of TNO).  
 
In WP6 of the DOWA project, Windpark Egmond aan Zee (OWEZ) is considered 
as a pilot site for which a wind resource uncertainty assessment is provided for 
demonstration purposes. For this site, only one year of wind measurements 
undisturbed by turbine wakes is available: July 2005 - June 2006. After that, the 
wind from 135o-315o  is disturbed and cannot be used for validation of the DOWA 
data. Therefore, we have focused on the data from Meetmast IJmuiden instead. 
However, the power curve for the 3MW V90 turbine deployed at OWEZ was used 
to assess the uncertainty in the reference yield in Chapter 3 of this report.  
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2. Bias and precision of DOWA wind speed and direction 
 

2.1 Measurement  errors and quality control 
 
For the assessment of errors in model data it is important to realize that there 
are uncertainties in the measurements that are used to validate these model 
data. These measurement errors include e.g. instrument errors: 
 
• instrument uncertainty assessed in laboratory calibration (e.g. for cup 

anemometers at Cabauw:1% or 0.1 m/s; see Knoop et al (2019) for further 
information), 

• calibration errors,  
• drift/malfunction (instrument errors may change with time!). 
 
In the period 02-11-2011 to 09-03-2016, simultaneous mast and lidar 
measurements were performed at MMIJ. The lidar measurements cover 90 m 
and higher, and mast measurements were performed up to a height of 86 m, so 
the lowest lidar measurement height and the highest mast measurement height 
almost coincide. DOWA wind data for the nearest grid point were interpolated 
linearly in the vertical from the model output levels to the measurement heights.   
 
To check the quality of these data, a principal component analysis (also known 
as empirical orthogonal function analysis; see Chapter 13 of von Storch and 
Zwiers (2003)) was performed on the matrix formed  by the three data records 
from mast, lidar and DOWA. From the two minor principal components, two 
periods with anomalous measurements were detected: errors in mast 
measurement data (apparently a scale error) in the period 02-11-2011 to 25-
12-2011, and errors in lidar measurements in the period 04-10-2013 to 11-12-
2013. Data of these periods were excluded from further analysis. 

2.2 Comparing measurements and model data 
 
In order to be able to compare data sources, representation errors should be 
taken into account as well. Even an ideal instrument may provide measurements 
that cannot be used for validation unless the representation errors are known. 
Representation errors can be due to: 
 
• Obstacles affecting the measurement (e.g. flow disturbance by the wind mast, 

e.g. JCGM, 2008).  
• Location mismatch: even a small location mismatch may make a comparison 

between measurement and model invalid, especially in a non-uniform 
environment.  

• Scale mismatch: a scale mismatch can show up as an added fluctuation (if 
sampled too frequently) or smoothing of the signal (if sampled not frequently 
enough). 

 
In a non-uniform environment, scale and location mismatch are often hard to 
disentangle. Both instrumental data and model predictions are affected by scale 
and location mismatches. 
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Only differences between model and measurement that are larger than the 
measurement uncertainty can be attributed to model error. 
 
Model data are generally grid box average values at one point in time (e.g. valid 
at the whole hour), whereas measurements are often recorded and presented as 
temporal averages (e.g. 10 min or hourly averages). It is not trivial how to 
properly compare the time-averages at one point in space with space-averages 
at one instant of time; how measurements are averaged in time affects their 
statistical relationship to model data (in particular the standard deviation of the 
differences).  
 
In the following two sections, we will study bias and precision of the DOWA and 
KNW atlas data as well as of the measurements at MMIJ collocated with the 
DOWA/KNW data.  
 
Bias is the systematic error in a data source. In a broad sense, it can refer to the 
deviation of the probability distribution of a prediction or measurement from the 
true probability distribution, possibly as a function of certain other variables. In 
a narrow sense, it may refer to an error in the mean value only. What is 
considered bias therefore depends on how detailed and complete errors in the 
data are described, i.e., on the “error model” considered (we will see examples 
in the following sections). It is not possible to assess the absolute bias of a data 
source by comparing it to another data source (measurements by different 
instruments and/or model predictions): it is only possible to say how bias in one 
data source compares to bias in the other data source (relative bias). The 
absolute bias of a data source needs to be determined in some other way 
(calibration checks, physical reasoning, etc.).  
 
 
 

 
 
 
Figure 2: illustration of bias (in the mean) and precision.  
 
 



8 
 

 
 
 
Precision is the “smallness” of the non-systematic (non-predictable, random) 
error. The size of this error is usually given by a standard deviation (or its 
square, the variance); the smaller the estimated standard deviation of the 
random error, the more precise the data source.  
 
A bias can be corrected for, but a lack of precision introduces an uncertainty that 
cannot be avoided. A simple picture of the distinction between precision and bias 
(in the mean value, in this case) is given in Figure 2.  
 
Unlike the bias, the standard deviation can be determined by comparing 
datasets: with more than two data sources, it is possible to estimate the 
standard deviation of the random error of each source; see Section 2.3. 
 
Normally, estimates of bias and precision cannot be easily traced back to 
particular error sources (representation error, calibration error, disturbances, 
etc.), but they may be compared to overall error estimates obtained by other 
means, providing a check on the latter. For cup anemometer and lidar 
measurements,  Section 2.2.1 of Duncan et al (2019a) provides an overview of 
estimates of errors in measurements by mast-mounted cup anemometer and 
fixed and floating lidar. 

2.3 Assessment of precision 
 
Duncan et al (2019a) and Knoop et al (2019) focus on assessing the relative 
bias in the mean of the DOWA wind data and the standard deviations of the 
differences between DOWA and measurement data. In this section, we discuss 
estimates of the precisions of mast measurements, lidar measurements and 
DOWA and KNW re-analysis data of wind. These estimates provide information 
about data quality complementary to the information in these validation reports 
which compare data from different sources without explicitly assigning observed 
deviations to individual data sources.  Furthermore, when using bias-corrected 
DOWA or KNW data for wind resource assessment (as in measure-correlate-
predict procedures, see e.g. Carta et al (2013)), the accuracy of the bias 
correction may depend on the precisions of the DOWA or KNW data and of the 
measurements used for correcting the bias. For bias correction based on 
quantile-quantile plots, this is explained later in Section 2.4. 
 
For the DOWA wind data at MMIJ, precision was assessed by a triple collocation 
analysis of wind speed data from mast, lidar and DOWA. The basic form of triple 
collocation of wind speed data ,  and  from three different sources is based 
on the following error model (e.g. McColl et al, 2014):  
 = + +  = + +       (1) = + + , 
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with  representing the true wind speed, and ,  and  mutually uncorrelated 
random error terms, uncorrelated with , and having mean zero and standard 
deviations ,  and , respectively. The bias (systematic error) in  in (1) is 
equal to + ( 1)  for  = 1, 2 or 3.  

 
As we can only measure the bias relative to a particular data source, we may 
declare that one of the data sources is unbiased, by setting  =0 and  = 1 in 
(1) for that data source. From the model thus obtained, the following estimator 
of the standard deviations ,  and  of the random error (i.e. the precision) 
can be derived (McColl et al, 2014): 
 = ( / ) = ( / )       (2) = ( / ), 
 
in which =  ( ) ( ) denotes the covariance of  and  (with   the 
expectation), which is readily estimated from the data.  
 
Note that in (2), the estimates of the standard deviations depend only on the 
covariances of the data, so they do not depend on the choice of which data 
source is unbiased. From the covariances, using the model (1), we can also 
derive estimates of the bias parameters  and  which have not been fixed 
(these estimates represent a relative bias). These bias estimates are not 
reported here, as we will consider relative bias in more detail in the next section.     
 
To summarize the basic triple collocation method described above: 
 

 you take collocated data from three different sources, 
 assume that the relative bias takes the form of a linear term plus a 

constant, 
 assume that the random errors have zero mean values and are mutually 

uncorrelated, and  
 use the covariance matrix of the observations to determine the standard 

deviations of the random errors (the precisions) of the data sources.   
 
The triple collocation analysis was performed for the full range of wind speed 
values (“all” in the tables), but also separately for three intervals of the mean 
wind speed from all three sources: below 7.5 m/s, between 7.5 and 11.8 m/s 
and above 11.8 m/s. The intervals were chosen in such a way that all intervals 
contain a third of the data.  The precisions (i.e., the estimates of the standard 
deviations of the random wind speed errors) are shown in Table 1, where the 
first number in each cell refers to the triple collocation analysis with mast, lidar 
and DOWA-data and the second number in the cell refers to the triple collocation 
analysis with mast, lidar and KNW-data. For example: the precision in the 
DOWA-dataset is 1.24 m/s and of the KNW-dataset 1.48 m/s (all measurements 
included).  
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Wind speed 

range 
mast lidar DOWA/KNW 

All 0.21/0.20 0.36/0.36 1.24/1.48 

Below 7.5 0.16/? 0.43/0.48 1.22/1.44 

7.5-11.8 0.10/? 0.36/0.38 1.24/1.40 

Above 11.8 0.23/0.24 0.31/0.31 1.16/1.41 

Table 1: Estimates of precision (standard deviations of the random wind speed errors in  
formula 1) at MMIJ (in m/s) for mast, lidar and DOWA (left number in each cell) and for 
mast, lidar and KNW data (right number in each cell). The standard deviations of the 
wind speed error  have been calculated for all wind speeds (1st  row) and for three wind 
speed classes (rows 2-4). “?” indicates that precision cannot be estimated because the 
covariance matrix is inconsistent with the model (1); this may happen if the data source 
is much more precise than the other sources.  
 
Table 1 indicates that 

1. DOWA wind speed are more precise than KNW wind speed 
2. Wind speed measurements from mast-mounted anemometer and lidar 

are considerably more precise than DOWA or KNW wind speeds 
3. Mast measurements are more precise than lidar measurements.  

 
In fact, the random errors in the measurements are almost negligible in 
comparison to the random errors in DOWA and KNW data. This implies that the 
DOWA-validation against mast and lidar measurements (Duncan et al, 2019a) 
provides a reliable picture of the error statistics of DOWA data.  
 
It should be stressed here that even though the DOWA data are less precise 
than the measurements, their precision may be quite acceptable for many 
purposes. For example, for wind resource assessment, Weibull fits of the 
direction-dependent probability distribution of wind speed are estimated. Such 
estimates are not likely to be affected much by the random error of the data 
source, as they represent averages over a considerable time interval (say, 10 
years). The impact of the random error on such statistics can be assessed by 
simulation. However, in the analysis of the uncertainty of  a wind resource 
assessment, often the random error in the data source does not need to be 
addressed explicitly, as is the case when using a bootstrap method as in Ch. 3.  
 
In Table 1, the estimates of precision for the three wind speed classes are likely 
to be less reliable than the estimates for the full range of wind speed, since the 
absence of values above or below some threshold violates the error model (1). 
To some extent, even the estimates for the full wind speed range suffer from 
this problem, as wind speed cannot be negative. This problem does not occur if 
wind components are analysed as in Stoffelen (1998), or if the wind vector 
represented as a complex number is analyzed in this manner (see below).  
 
The estimated standard deviations of random errors in the mast measurements 
in the low and medium wind speed could not be estimated from the combination 
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of mast, lidar and KNW data, as the covariance matrices are inconsistent with 
the model (1) in these cases. This appears to happen when a data source  
(mast data in this case) is much more precise than the other data sources, 
making the expression of the form /  in eq. (2) almost zero (so its 
sign can easily become negative). This means that we should be cautious in 
interpreting differences between estimates of standard deviations for the mast 
data for different wind speed ranges in Table 1.  
 
For mast measurements of wind speed above 7.5 m/s, the standard deviations 
estimated from collocated mast, lidar and DOWA data in Table 1 are consistent 
with the (supposedly RMS) error cited in Section 2.2.1 of Duncan et al (2019a): 
0.1 m/s and 1-2% for higher wind speeds. For wind speeds below 7.5 m/s, the 
value in Table 1 is higher. Furthermore, the standard deviations in Table 1 do 
not appear to increase with wind speed (indicated by the wind speed class). This 
is somewhat curious, as for mast and lidar measurements, instrument error is 
usually reported in terms of relative error; see e.g. Section 2.2.1 of Duncan et al 
(2019a). On the other hand, the representation error due to turbulence is 
quantified by an absolute error size and is normally larger than the instrument 
error (Stoffelen, personal communication). Also, we should be cautious in 
interpreting the wind-speed dependence of these numbers, in view of the issues 
mentioned in the previous paragraphs. 
  
The same triple collocation analysis was performed with the wind vector 
(represented as a complex number) instead of wind speed. Using the model (1) 
in this context then presumes that errors in the wind vector are isotropic (errors 
in the wind components are uncorrelated with identical standard deviations). In 
this case, the reported standard deviation applies to the magnitude of the 
random error in the wind vector, which implicitly incorporates the error in wind 
direction. The precisions of the wind vector error are given in Table 2. 
 

Table 2: As Table 1, but for the precision of the wind vector (standard deviation of the 
magnitude of the random error in the wind vector in m/s). 
 
Comparing these results with those for wind speed in Table 1 indicates that the 
error in lidar wind direction is rather large, even though the error in wind speed 
is small. Something similar is seen with DOWA and KNW data, but the relative 
increase in standard deviation is somewhat smaller in this case. For the mast 
measurements, the standard deviation is about the same for wind speed and 
wind vector, indicating that mast measurements of wind direction are precise.  
 

Wind speed 
range 

mast lidar DOWA/KNW 

All 0.21/0.18 0.89/0.89 1.96/2.16 

Below 7.5 0.16/0.23 1.01/1.12 2.02/2.26 

7.5-11.8 0.10/0.10 0.87/0.73 1.95/2.12 

Above 11.8 0.23/0.22 0.78/0.79 1.86/2.02 
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Possibly more reliable estimates of the error in wind direction from the different 
data sources could be obtained by analyzing the components aligned with and 
perpendicular to the dominant wind direction separately, but this was not 
undertaken in the present study. 
   
The average wind speed at 90 m at MMIJ equals 10.0 m/s. This number can be 
used to normalize the standard deviation of the random error to a coefficient of 
variation (CV). This results in a CV of 4% for lidar wind speed and a CV of 9% 
for lidar wind vector difference.  
  
A potential limitation of the basic triple collocation model eq. (1) is that it cannot 
represent scale mismatch (see Section 2.2). One might suspect that model 
reanalysis data, lidar and mast measurements do not resolve wind variations at 
the same spatial and temporal scales. The collocated data at the MMIJ site do 
not provide information about spatial scale mismatch, but as we have time 
series, we may obtain information about a possible temporal scale mismatch. 
For this purpose, the approach of Stoffelen (1998) was adapted to time-series 
data. It is based on the idea that if a weather prediction model does not resolve 
the finer scales, then the spectral density of the model output will be lower than 
the spectral density of measurements at these scales.  
 
But this is not observed at the time scales considered in this study; see Figure 
A1 in Appendix A. Fluctuations on all time scales from 2 hours to 3 years in the 
DOWA and KNW data have very similar magnitudes as fluctuations in the 
measurement data on the same scales. So there is no evidence of a temporal 
scale mismatch between DOWA, KNW and the measurements.  
 
However, the coherence3 between DOWA or KNW reanalysis and mast 
measurements in Figure A2 of Appendix A decays much more rapidly with 
increasing frequency than the coherence between mast and lidar measurements. 
In other words: the fluctuations in DOWA and KNW data are realistic, but 
different from those in the measurements (see also the explanation in appendix 
A). These fluctuations are well represented by a noise term as in eq. (1). 
However, the high-frequency fluctuations in the mast and lidar measurements 
(not present in the DOWA and KNW data) are strongly correlated with each 
other (see their coherence function in Appendix A), implying that the model in 
eq. (1) should be replaced by a model of the form  
 = + ( + ) +  = + ( + ) +        (3a) = + +   
 
with the labels 1, 2 and 3 corresponding to mast, lidar, and DOWA or KNW, 
respectively,  

 representing the common wind component present in all data sources,  
 a wind fluctuation not present in the re-analysis data, and the 
 are mutually uncorrelated zero-mean noise terms. 

                                                 
3 Also known as “coherency squared”; it can be regarded as the square of a correlation coefficient 
between the components of the two signals lying within a narrow frequency band. Phase shifts do 
not reduce the coherence. 
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This triple collocation model is equivalent to the model of Stoffelen (1998), 
containing a term (  in eq. (3c)) representing a wind component not predicted 
by the models. However,  in eq. (3) is not due to scale mismatch, but to lack of 
coherence between model reanalysis and measurements.  
 
To estimate the parameters of model (3a) (in particular, the standard deviations 
of , ,  and ), it could be converted to a model similar to eq. (1) by defining = + : 
 = + +  = + +         (3b) = + + (  ). 
 
This looks again like model (1), with  replaced by   as the noise term for 
the reanalysis data. However, unlike model (1), this noise is now correlated with 
 in (3b). Therefore, (3b) cannot be estimated from the covariances of the data 

in the same way that model (1) was estimated. This shows that we cannot 
estimate the parameters of the model (3a) as we did with (1).  
 
However, we can estimate a model of the form (3a) if we use both reanalysis 
datasets simultaneously. A straightforward extension of the model (3a) is the 
quadruple collocation model 
 = + ( + ) +  = + ( + ) +       (3c) 

 = + +  = + + , 
 
with the labels 1, 2, 3, and 4 corresponding to mast, lidar, DOWA and KNW, 
respectively. As before, the “noise terms” , ,  and  are assumed to be 
mutually uncorrelated with mean zero. This model is appropriate in view of the 
coherence functions in Figure A2 in Appendix A: the measurement data are 
strongly correlated on short time scales less then say 10 hours (represented by 
the common fluctuation ), but not with the DOWA and the KNW data, and the 
DOWA and KNW data are not strongly correlated with each other either.  
 
For measurement data ( = 1,2), the deviation from the local wind +  equals 
(see 3c) + ( 1)( + ) + , which has a bias component + ( 1)( + ) and 
a random component . Therefore, the mean square error MSE, defined as the 
mean square difference between a measurement and the local wind + , is the 
sum of the bias MSE + ( 1) ( + ) and the noise MSE . For mast and 
lidar measurements, the precision is therefore given by the noise standard 
deviation . 
 
For reanalysis data ( = 3,4), the deviation from the local wind +  equals (see 
3c) + ( 1) + , which has a bias component  + ( 1)  and a random 
component . In this case, the MSE is therefore the sum of the bias MSE +( 1)  and the random MSE + . For DOWA and KNW data, the precision 
is therefore given by the non-bias root mean square error (RMSE) ( + ) . 
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In the estimation of the parameters of the quadruple collocation model, there is 
some redundancy (more data covariance values than unknowns); this allows 
averaging of the estimates of certain parameters. The result of the quadruple 
collocation analyses is summarized in table 3 (wind speed data) and 4 (wind 
vector data).  
 
For all data sources, the results of the quadruple collocation analysis agree with 
the results of the triple collocation analysis in Tables 1 and 2. This is not entirely 
trivial, because in the triple collocation analysis, we have estimated the model 
(3b) as if it were (1) (i.e., as if   is not correlated with ). Apparently, this 
does not affect the outcomes much in this case, otherwise the estimates would 
not agree with the quadruple collocation analysis. 
 

Table 3: Estimated precision (non-bias RMSE) in wind speed for mast, lidar, DOWA and 
KNW data from a quadruple collocation analysis. Rows: for all data, and for data in three 
classes of wind speed (mean from all three sources). Unit: m/s. 
 

Table 4: As Table 3, but for wind vector errors.  
 
  

Wind speed 
range 

mast lidar DOWA KNW 

All 0.21 0.36 1.23 1.48 

0.0-7.5 0.04 0.46 1.26 1.51 

7.5-11.8 0.10 0.32 1.27 1.53 

11.8- 0.24 0.34 1.13 1.39 

Wind speed 
range 

mast lidar DOWA KNW 

All 0.19 0.89 1.95 2.16 

0.0-7.5 0.23 0.73 1.91 2.16 

7.5-11.8 0.07 0.66 2.03 2.23 

11.8- 0.20 1.19 1.89 2.06 
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2.4 Assessment of relative bias 
 
Relative bias of the three data sources was assessed by means of quantile-
quantile (QQ) plots, which give the relationship between the sorted values from 
one data source and the sorted values from another data source. An example is 
shown in Figure 1. Such a QQ plot provides much more insight than a simple 
mean difference: it provides a relationship between two variables, determined 
through their distribution functions. This relationship is a non-decreasing graph 
which may be nonlinear.  

Figure 1: Quantile-quantile plots of wind speed data from two sources: mast vs. DOWA 
(black thick), and mast versus KNW (blue thick).  Thin lines indicate the 90% 
compatibility interval. Text in plot gives slope estimates with their standard deviations. 
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Figure 2: As Figure 1, for lidar vs. DOWA (black), and lidar versus KNW (blue) (top), and 
for lidar vs. mast (bottom). 
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In wind resource assessment, regression is often used to establish a relationship 
between two sets of measurements: usually a long time-series from a weather 
prediction model or from measurements at a location in the vicinity, and a 
shorter time-series of measurements at the site of a projected wind farm. This 
relationship is then used to correct bias in the long time-series, so it can be used 
to assess the wind resource at the wind farm site.  
 
However, instead of regression, one might use the relationship from a QQ plot 
for bias correction. This may be a better choice for several reasons: it ensures 
that the probability distribution of the bias-corrected time-series is correct 
(which is all that is needed for the purpose), it avoids the estimation bias which 
tends to plague regression (e.g., different regressions are obtained if “x” and “y” 
are swapped), and the QQ plot is quite precise, as illustrated below. If 
appropriate, the raw QQ plot may be further simplified by fitting a line or other 
function, or by smoothing. In this report, we will only consider linear 
approximation of QQ plots. 
 
Figure 1 shows the QQ plots for mast measurements versus DOWA reanalysis 
(black) and for mast measurements versus KNW reanalysis (blue) and Figure 2 
shows the QQ plots for lidar measurements versus DOWA/KNW reanalysis and 
for lidar measurements versus mast measurements. The slopes of the QQ plots 
in Figures 1 and 2 (computed by total least squares) are all within 1% of the 
unit slope, which indicates that the distributions of the datasets compared are 
very similar. All QQ plots are very well approximated by lines through the origin. 
The anomalies in the tails of the QQ plot in Figure 2 appear to be due to an 
outlier in the lidar data. Figure 1 and 2 show that the DOWA slightly 
overestimates high wind speeds.  
 
The QQ plots are very precise, as can be seen in the narrow 90% compatibility 
intervals4 shown by thin lines in the plots; these lines are barely visible as they 
often coincide with the QQ plot. The intervals were estimated by generating 
1000 synthetic datasets having similar characteristics as the original dataset, 
and computing the QQ plot for each of them. From these, we can derive 
compatibility intervals of the QQ plots, as well as estimates of the standard 
deviation of the slope, listed in Table 5.  The synthetic data were generated by 
resampling of the time-series by a moving block bootstrap (see Figure 3): time-
intervals of 62.5 days are drawn randomly with replacement, and new time-
series are created by stringing the data within these blocks together; see e.g. 
Künsch (1989). Resampling here has the same function as Monte-Carlo 
simulation, but where the latter requires an explicit probabilistic model, 
resampling does not; it just needs the data. The resampling represents 
variability in wind speed values encountered due to using a finite sample of 
(correlated) data. Random, zero-mean errors in the data may affect the QQ plot 
in different ways: they may cause bias (which was verified to be small by Monte 
Carlo simulation), as well as increased variability. However, the increased 
variability is already represented by the bootstrap ensemble: in the absence of 
errors in the data, the QQ plots from all bootstrap samples would be on a single 
graph. Therefore, when using the bootstrap method to assess the uncertainty of 
                                                 
4 “Compatibility interval” is just a better name for a confidence interval, as it indicates 
the range of values compatible with the data; see e.g. Amrhein et al (2019). 
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a QQ plot, there is no need to address the precision of the data explicitly. 
Seasonality was not preserved in the resampling; this may lead to some 
overestimation of variability, as the lengths of the seasons in the resampled data 
are more variable than in the original data. The bootstrap method only works if 
values in different blocks are weakly dependent, so the block length should be 
long enough. The chosen block length of 62.5 days is the time over which wind 
speed effectively de-correlates. A related technique is the jack-knife, based on 
estimates with part of the sample left out. Jack-knife and bootstrap techniques 
are recommended for uncertainty assessment in DNV (2011).  

The high precision of QQ plots makes them suitable as an alternative to 
regression-based measure-correlate-predict (MCP) methods (Carta et al., 2013), 
which are prone to large uncertainty (both bias and variance) if the data are 
imprecise and/or correlation is low. Indeed, several MCP methods based on 
fitting relationships to sorted data from two different sources exist; see King and 
Hurley (2005) (somewhat inappropriately listed under the header “methods 
based on first-order linear regressions” in Carta et al., (2013)) 

 
Figure 3: Illustration of the block bootstrap method applied in this study.  

QQ plots for 30 degree wind direction bins in DOWA were also computed by (a) 
selecting all data with direction in a given bin, and (b) applying the block 
bootstrap to this data sequence, using a block length equal to 62.5 days times 
the fraction of data having a wind direction in that bin. The direction-dependent 
slope estimates and their standard deviations are given in Table 5. 
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Although based on smaller datasets, even the directional QQ plots appear to be 
very precise, with slope standard deviation within 1%. Bias of lidar wind speed 
relative to mast wind speed is very small (within 1%). Relative bias in KNW wind 
speed is also small (only for the bins of 0 and 210 degrees, it reaches 3%). 
Overall, the KNW data appear to be compatible with a unit slope. For the 90 and 
120 degree bins,  DOWA wind speed underestimates mast and lidar wind speed 
by 3-5%, where KNW data are closer to the measurements. For the 270 and 330 
degree bins, DOWA is somewhat higher than the measurements, and KNW 
somewhat lower. Except for this, we can conclude that the bias in DOWA and 
KNW wind speeds is very similar.  
 

x DOWA KNW DOWA KNW Mast 

y Mast Mast Lidar Lidar Lidar 

Omni 0.99±0.00 0.99±0.00 0.99±0.00 1.00±0.00 1.01±0.00 

0 0.99±0.01 1.03±0.01 0.98±0.01 1.02±0.01 0.99±0.00 

30 1.00±0.01 1.01±0.01 0.99±0.01 1.01±0.01 0.99±0.00 

60 1.01±0.01 1.00±0.01 1.02±0.01 1.01±0.01 1.02±0.00 

90 1.04±0.01 0.99±0.01 1.05±0.01 1.01±0.01 1.01±0.01 

120 1.03±0.01 0.99±0.01 1.03±0.01 0.99±0.01 0.99±0.00 

150 1.02±0.01 1.01±0.01 1.01±0.01 1.00±0.01 0.99±0.00 

180 0.98±0.00 0.99±0.00 0.99±0.00 1.00±0.00 1.01±0.00 

210 0.97±0.00 0.97±0.01 0.98±0.00 0.98±0.01 1.01±0.00 

240 0.98±0.00 0.98±0.00 0.99±0.00 0.98±0.00 1.01±0.00 

270 0.99±0.00 1.01±0.00 0.99±0.00 1.01±0.00 1.00±0.00 

300 0.98±0.00 1.01±0.01 0.99±0.00 1.02±0.01 1.00±0.00 

330 0.97±0.00 1.02±0.01 0.98±0.01 1.02±0.01 1.01±0.00 

Table 5: Estimates of slopes (y/x) of QQ plots in bold red  ± their standard deviations 
independent of direction (“omni”) and for 30 degree bins of wind direction; the first 
column lists the centre of each bin.   
 
To assess the bias in the wind shear, it is not enough to rely on bias in mean 
wind speeds at different heights as presented in the validation reports by 
Duncan et al (2019a) and Knoop et al (2019). Instead, the QQ plot of DOWA 
wind speed at two heights was compared to the same plot from either mast or 
lidar measurements.  For the comparison to mast measurements, we took the 
heights 27 m and 86 m; for the comparison to lidar measurements, we took the 
heights 90 m and 290 m. Such a QQ plot provides information about the mean 
wind speed profile as a function of wind speed; differences between the QQ plots 
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for different data sources indicate differences in the mean wind speed profiles 
from these sources. This may be relevant information in wind resource 
assessment if the wind climate at some height above the mean sea level is to be 
extrapolated to another height.  
 
The results are plotted in Figure 4. The QQ plots for wind at 27 m and 86 m  
from DOWA and mast data are almost linear. The QQ plots for wind at 90 m and 
290 m from DOWA and lidar data are nonlinear: at wind speeds below 10 m/s, 
the speeds at 90 m and at 290 m are on average equal, but they differ by about 
20% at wind speeds around 25 m/s.  
 
The curves for mast and DOWA data agree closely; the same applies to lidar and 
DOWA data except at wind speeds exceeding 25 m/s, where the difference is 
somewhat larger. Therefore, overall, bias in DOWA wind shear appears to be 
quite low, possibly with the exception of high wind speeds above an altitude of 
90 m.  
 
Another way to look at differences in wind profiles is to examine the QQ plot of 
wind (speed) shear derived from different data sources. This provides a 
relationship between the probability distributions of the shear from these 
sources, but the connection to wind speed is lost. 
 
These QQ plots are shown in Figure 5 for the wind speed at 86 m minus the wind 
speed at 27 m from mast and DOWA data, and for the wind speed at 290 m 
minus the wind speed at 90 m from lidar and DOWA data. For small positive 
wind speed differences, DOWA matches the measurements well. However, 
negative and large positive differences are smaller in magnitude for DOWA than 
for the measurements, so the spread in the wind speed difference is reduced in 
the DOWA data, compared to the measurements.  
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Figure 4: Quantile-quantile plots of wind speed data at two different heights for mast 
and DOWA data (top) and for lidar and DOWA data (bottom). Unit: m/s. 
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Figure 5: Quantile-quantile plots of the wind speed difference between 86 and 27 m from  
mast and DOWA data (top) and the wind speed difference between 290 and 90 m from 
lidar and DOWA data (bottom). Unit: m/s. 
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3. Uncertainty in wind climatology at hub height 
 
3.1 Introduction 
 
For wind resource assessment, the wind energy sector needs estimates of the 
directionally dependent distribution functions of wind speed; the directional 
information is needed for the modelling of wake effects and (on land) spatial 
variation of wind speed within a wind farm (e.g. due to orography)  
 
To obtain these estimates, typically a 10 year record of wind from a weather 
prediction model or from measurements at a nearby site is used. The 
directionally dependent wind speed distributions are commonly approximated by 
Weibull distributions, estimated from the data.  
 
In the present analysis, we establish the uncertainty of these statistics as 
derived from 10 years of DOWA data for the case of wind at a height of 90 m at 
the location of MMIJ. The uncertainty is represented by a an ensemble of such 
estimates, obtained from the data by a bootstrapping scheme. Bootstrapping 
means generating synthetic datasets having similar characteristics as the 
original dataset by (a) drawing random subsets from the original data with 
replacement, and (b) stringing these subsets together to obtain a synthetic 
sample; see Section 2.4. 
 
We apply two different bootstrap schemes. The first scheme is based on the 
simplifying assumption that averages of wind statistics in different years are 
independent. This makes it possible to derive the uncertainty in a 10-year 
average from the observed variability in 1-year averages. The second scheme 
does not make this assumption: it derives an estimate of the uncertainty in a 
10-year average from the variability of such averages based on a longer 
dataset; in this case, the 40 year long KNW-dataset.  
 
 
3.2 Bootstrap without accounting for multi-year dependence 
 
A total of 500 bootstrap samples of 10-year DOWA wind at a height of 90 m at 
MMIJ were generated. Each sample was obtained by randomly drawing ten 1-
year records of DOWA wind from the 10-year record. From each bootstrap 
sample, Weibull directional wind speed distributions were estimated for each of 
the twelve 30-degree bins. These estimates were based on the left-censored 
maximum likelihood method using a censoring threshold of 2 m/s, which is 
below the typical cut-in speed. Censoring ensures that irrelevant low values of 
wind speed do not affect the Weibull estimates.  
 
The resulting ensemble of bootstrap samples of  
 
• probability of exceedance of the threshold 
• scale parameter 
• shape parameter 
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for each of the twelve directional bins represent the estimated uncertainty in the 
climatology. The data and code used to generate such data can be obtained from 
the author for experimentation.  
 
To evaluate the uncertainty in the wind climatology, the median W50 of the 10-
year average wind speed was compared to the W90, the 10-year average wind 
speed exceeded with a probability of 90% (W50 and W90 are comparable to the 
parameters P50 and P90 well-known in wind energy, where P refers to 
production and W to wind). The ratio W90/W50 was found to be 0.99, so this 
bootstrap experiment produces a narrow distribution of 10-year average wind 
speeds from the 500 bootstrap samples. Adopting a value of 1% for the bias 
error of the DOWA wind speed as inferred from Section 2.2, the total uncertainty 
in the 10-year average wind speed would not change much if bias is taken into 
account as well (as the standard deviation and bias of the 10-year average wind 
speed are both close to 1%).  
 
To evaluate the uncertainty in reference yield (energy yield without accounting 
for wake effects and technical losses; see e.g. Mortensen et al (2015)), the 
ensemble of estimated Weibull parameters was converted to an ensemble of 
energy production of a single 3MW V90 turbine as deployed at OWEZ over a 10 
year period. The power curve for this turbine was linearly interpolated between 
the tabulated values.  

Neglecting other sources of uncertainty, we obtained P90/P50= 0.98, with P50 
the median energy production and P90 the energy production exceeded with a 
probability of 90%.  
 
This value is based on the assumptions that  
 
(1) the variation of annual mean wind speeds over the decade 2008-2017 is 
representative of the climatology, and  
 
(2) annual averages of wind statistics are independent.  
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Figure 6: Annual mean wind speed and 1-year rolling mean wind speed at 100 m from 
KNW data at  the location of offshore platform K13 (from 
http://projects.knmi.nl/knw/IAV_12062017_IW8.pdf). 

 
 
Both assumptions are highly questionable. For example, Figure 6 shows that at 
K13 at a height of 100 m, the annual average wind speed varies considerably on 
multi-year time scales (in fact, more than would be the case if the consecutive 
annual mean wind speed values were independent). On the other hand, the 
variation of the 10-year average wind speed in Figure 6 does not seem large. 
However, this may be a coincidence, as we have only four disjoint 10-year 
intervals in the 40-years covered by the KNW dataset (and so the sequence of 
10-year averages has at most 4 degrees of freedom). In the following section, 
we try to relax these assumptions.  

 
3.3 Bootstrap accounting for multi-year dependence 
 
From the 40-year KNW data at MMIJ, 500 bootstrap samples of 10 years of wind 
speed data at a height of 90 m were generated by:  
 
• randomly choosing a starting year of the 10 year period within the first 30 

years of KNW data 
• resampling the years within this 10 year period as in the previous method. 
 
This procedure is a rough approach to account for interannual variability, in 
particular because there are only four disjoint 10-year intervals in the 40 years 
of KNW. We would draw from data over a longer interval if such data were 
available. Resampling years within 10-year blocks as if annual averages are 
independent is also a simplification. 
  
The estimate of W90/W50 accounting for multi-year dependence is 0.99, the 
same value as obtained in Section 3.2 without accounting for multi-year 
dependence or for the possibility that variability of annual wind speed within the 
DOWA decade 2008-2017 may not be representative. The estimate of P90/P50 
for a single 3MW V90 turbine is 0.98, also the same value as obtained from 10 
years of data without accounting for multi-year dependence.   
 
These values of W90/W50 and P90/P50 are highly uncertain, as the block size of 
10 years is rather large in comparison to the 40 year length of the data record. 
However, they indicate that wind variability on multi-year time scales does not 
contribute a great deal to the uncertainty in reference yield over a 10 year 
period.  
 
For completeness, we also investigated how the uncertainty would change when 
using a 4-year dataset instead of a 10-year dataset. So from the 40-year KNW 
data at MMIJ, 500 bootstrap samples of 4 years of wind data at a height of 90 m 
were generated. Four years is by approximation the length of the measurement 
record at Meetmast IJmuiden, so this exercise illustrates the uncertainty due to 
inter-annual wind variability when using the measurement data from MMIJ 
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instead of the DOWA data. In this case, W90/W50 reduces slightly to 0.98 and 
P90/P50 to 0.97.  
 
With a long wind dataset covering a much longer period than 40 years, we might 
obtain a much more reliable estimate of the effect of multi-annual dependence 
on the uncertainty in wind climatology from 10 years of data. There are no 
observational or reanalysis data covering such a long period. Data simulated by 
a climate model could be used as a surrogate. However, there is no way to 
verify whether the multi-annual dependence in the climate simulation is realistic, 
as this too would require a long measurement record.    
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4. Conclusions 
 
The relative bias of DOWA wind speed is very low (of the order of 1%) in 
comparison to mast measurements and platform-mounted lidar measurements 
at Meetmast IJmuiden. For some 30o wind directional bins, this is somewhat 
larger. For KNW, bias is similar, although slightly lower for some directional bins. 
Bias in the relation between wind speeds at different altitudes in the DOWA data 
appears to be very low as well, possibly with the exception of high wind speeds 
at high altitude (90 - 290 m). The spread in wind shear is lower in DOWA than in 
the measurements.  
 
These conclusions were derived from QQ (quantile-quantile) plots. The QQ plot 
has proven to be an accurate method to assess bias, resilient against low 
precision of the data and low correlation. Therefore, it is recommended as an 
alternative to regression-based MCP (measure, correlate, predict) methods for 
correction of bias in reference wind records in wind resource assessment. 
 
The standard deviation (more precisely: the root-mean square non-bias error) of 
DOWA wind speed is estimated to be 1.23 m/s, as compared to 0.36 m/s for the 
platform-mounted lidar wind speed and 0.21 m/s for mast-mounted 
anemometer wind speed. For KNW, the value is 1.48 m/s, so DOWA is more 
precise.  
 
The uncertainty due to variability of the 10-year average wind climate appears 
to be small: the ratio P90/P50 for the reference yield over 10 years is estimated 
to be 0.98, both from 10 years of DOWA data by assuming that annual averages 
of wind statistics are mutually independent, and from 40 years of KNW data by a 
method accounting for multi-annual dependence. However, being based on at 
most 40 years of data, these assessments are highly uncertain. 
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Appendix A: Spectral analysis of wind speed data 

Figure A1 shows the frequency spectra of collocated wind speed data from mast 
(black), lidar (blue), DOWA (red) and KNW (magenta). It shows that DOWA can 
reproduce the sizes of wind fluctuations at all periods from 3 years (frequency 
almost 0.0) to 2 hours (frequency is 0.5/hour). The KNW spectrum is only 
slightly lower than the DOWA spectrum5. This means that the wind fluctuations 
in DOWA and KNW on these time-scales  are realistic. However, they are not 
necessarily real (that is, matching the measured fluctuations). 

Figure A1: Frequency spectra of collocated wind speed data from mast (black), lidar 
(blue), DOWA (red) and KNW (magenta). Note that spectra are plotted on a logarithmic 
scale. 

How real the wind fluctuations of DOWA and KNW are is shown by Figure A2. 
The coherence function6 between mast and lidar measurements is high over the 
entire frequency range (black lines). The lowest coherence between mast and 
lidar measurements is 0.6 for frequency 0.45 (a period of 2.2 hours). The 
coherence between DOWA and the mast measurements (blue) is much lower. If 
we assume that a coherence of 0.6 or higher is good (which is approximately the 
minimal value of the mast/lidar coherence), then we conclude that the 
coherence between DOWA and mast measurements is good for frequencies 
below 0.1/hour. So based on this, the DOWA values are real for averaging times 

5 The narrow peaks at about 2, 3 and 6 hours (frequencies of 0.5, 0.33 and 0.17/hour) in the KNW 
spectrum are most likely related to the 6-hourly restarts. 
6 Also know as “coherency squared”; it can be regarded as the square of a correlation coefficient 
between the components of the two signals lying within a narrow frequency band. Phase shifts do 
not reduce the coherence.  
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above 10 hours. The coherence between the DOWA and the lidar measurements 
is good for  frequencies below 0.07/hour (periods above 14 hours).  

 
Figure A2: Coherence spectra of collocated wind speed data: mast/lidar (black), 
mast/DOWA (blue), lidar/DOWA (red) and DOWA/KNW (magenta).  

We may conclude from this that the DOWA and KNW reanalyses generate 
realistic wind speed fluctuations on all time scales, but these agree with the 
observed wind speed fluctuations only at periods roughly above ten hours. 
 
It is very well possible that the wind fluctuations occur, but not exactly at the 
location or at the moment that DOWA/KNW projects them (for example, two grid 
points away or an hour later, and for some other event, three hours earlier). 
This is one of the reasons why the quality of models often appears to decrease 
upon increasing the resolution: a model is penalized twice if an event is 
predicted where it did not occur and no event is predicted where it does occur. 
This is called the double penalty effect. In low-resolution model output, small-
scale features are smeared out (smoothed), which tends to improve the 
performance statistics. In fact, DOWA provides more real detail that ERA5 
(Duncan et al, 2019b), which is remarkable.  

For wind resource assessment, it is important that the wind fluctuations of 
DOWA and KNW have realistic magnitudes at all time scales from 2 hours to 3 
years.  The similarity between the spectra of DOWA and KNW and the spectra of 
the measurements shows that this is the case, so the hourly DOWA and KNW 
data can be safely used as a reference wind data set for, for example, dynamic 
simulation of power production.  
 
  



31 
 

Combining the spectra and coherence functions, we may obtain an estimate of 
the noise spectrum of DOWA, i.e., the spectrum of wind speed fluctuations in 
DOWA unrelated to the observed wind. Assuming that the mast measurements 
have very low noise (as appears from the triple and quadruple collocation 
analyses in Section 2.3), we may estimate the noise spectrum of DOWA as (1), with  the DOWA wind speed spectrum and  the coherence between DOWA 
and mast measurement; Figure A3 shows that the wind speed spectrum of 
DOWA (red) almost coincides with its noise spectrum (cyan) for periods below 
roughly 7 hours (frequencies above 0.15/hour), i.e. the DOWA wind speed at 
these time scales is almost entirely noise.  
 

 
Figure A3: Spectra of mast (black) and DOWA (red) wind speed, and estimated noise 
spectrum of DOWA (magenta). Note that spectra are plotted on a linear scale. 
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