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Abstract

Aerosol-Cloud Interactions (ACIs) are one of the least understood climate feed-

backs. Ground-based remote sensing has a large potential to study these interac-

tions. In this study a UV-depolarisation lidar has been set up on Ascension Island,

a remote island in the southeast Atlantic Ocean, for one month in summer 2016 and

one month in summer 2017, to study the aerosol, cloud microphysical properties,

and their interaction. In clear-sky (cloud-free) periods, the backscattered signal is

used to calculate the Aerosol Optical Depth (AOD). The AOD is a measure of the

attenuation of the lidar beam due to suspended particles, which can be estimated

in clear-sky, by integration of the extinction profile over the column and accounting

for the Rayleigh (molecular) attenuation. A UV-depolarisation lidar measures not

only the backscattered signal but also the depolarisation of the returned signal. De-

polarisation of the lidar beam can occur due to multiple-scattering inside liquid wa-

ter clouds. The multiple-scattering inside the cloud near the cloud-base was simu-

lated using a Monte Carlo (MC) model inside an idealised semi-adiabatic liquid wa-

ter cloud. Using lookup tables generated by the MC model, the cloud microphys-

ical properties such as the cloud droplet number concentration and the effective

radius were derived from the depolarisation ratio observed by the lidar. The aim

of the study was to validate these retrieval methods. The AOD product was com-

pared to AERONET data and data from hand-held sun-photometers. The multiple-

scattering (MS) based inversion method for the retrieval of the cloud droplet effect-

ive radius was compared to a method using radar observations on the island from

the US ARM mobile facility.

The lidar AOD retrievals show similar values in 2016 as the AERONET data. In

2017 the AOD lidar retrievals do not correlate well with the AERONET, Calitoo and

Microtops data. Misalignment has caused difficulties in the AOD retrieval in 2017.

The effective radius in clouds retrieved from the lidar data could not be compared

to the methods with radar data in 2016, because the radar was operating for only 9

days of our measurement period. In 2017 the lidar retrieved effective radius agrees

within the error bands with the radar retrieved effective radius. These results show

the UV-depolarisation lidar to be a potentially useful instrument to study the AOD

and the cloud droplet effective radius. With more research focusing on the valid-

ation of the methods to employ the lidar, the instrument could prove valuable for

Aerosol-Cloud Interaction monitoring.

Keywords: UV-depolarisation lidar, aerosol optical depth, multiple-scattering, cloud

effective radius, AERONET, Calitoo, Microtop, Cloud radar, Ascension Island
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1. Introduction

Aerosol-Cloud Interactions (ACIs) are one of the least understood climate feed-

backs, according to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC, 2014). To gain more insight on these effects different types

of research are done. On the global scale, the aerosol effects on clouds are studied

using satellite remote sensing observations and by model studies, at smaller scales

studies are carried out using surface remote sensing or a combination of aircraft

in-situ data with surface remote sensing.

Aerosols can have various effects on clouds, which are explained extensively in

Lohmann and Feichter, 2005. In this research we focus on the first indirect effect,

the Twomey effect, (Twomey, 1977). The Twomey effect is related to the number

of available Cloud Condensation Nuclei (CCN), which is a subset of the aerosols

present. In low-level liquid stratocumulus clouds with a constant Liquid Water

Content (LWC), the cloud droplet number concentration (Nd) increases and the size

of the cloud droplets decreases with an increase of CCN. The increase of Nd and

decrease of the size of the cloud droplets increases the optical thickness and cloud

reflectivity. This is a secondary effect and is called the cloud albedo effect, directly

resulting from the Twomey effect (Allison McComiskey et al., 2009). Another result

of the Twomey effect is the delay of precipitation (Lohmann and Feichter, 2005).

Ascension Island is chosen as study area for its generally well defined stra-

tocumulus deck (Norris, 1998), its remote location and its high level of biomass

burning aerosols (Swap et al., 1996), released from the African continent from July

through October, because of the dry season. This makes the island a perfect loca-

tion for studying the ACIs. Ascension Island is midway the Atlantic Ocean between

Africa and America, just south of the equator, in a sub-tropical region. The aerosols

that are mostly observed at Ascension Island are dust particles from the Sahara or

smoke particles from biomass burning events south of the Sahara, besides marine

aerosols (Swap et al., 1996). The aerosol distribution across the ocean depends on

the wind speed and direction.

A UV-depolarisation lidar (LIght Detection And Ranging) is a remote sensing

laser instrument, which makes height resolved measurements of the aerosol and

cloud backscatter. The lidar is a promising instrument to examine the vertical pro-

files for clouds, aerosols and the ACI (Mamouri and Ansmann, 2016). Often used

parameters to represent ACI are the Aerosol Optical Depth (AOD) and Aerosol

Index (AI) for the aerosols1. And the effective radius (Reff), cloud droplet num-

1The AOD is the integrated aerosol extinction profile. The AI is a measure of how much the

wavelength dependence of the total backscatter (molecular and aerosol scattering and absorption)

differs from the wavelength dependence of the pure molecular backscatter (Rayleigh scattering, by

the molecules in the air only).
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ber concentration (Nd), liquid water path (LWP) and cloud optical depth for the

clouds2. The vertical extinction profile can be integrated over the whole column

on cloud-free periods to get the AOD, following the Klett inversion (Klett, 1981).

The cloud parameters are retrieved in this study from the lidar with a method de-

veloped by Donovan et al. (D. P. Donovan et al., 2015). The Multiple Scattering

(MS) based inversion method uses the polarisation of the lidar pulses due to mul-

tiple scattering in liquid water clouds.

Several studies have been performed in the past years, using ground-based re-

mote sensing instruments, studying the range of interactions that take place between

aerosols and clouds. Although the methods are similar the measured parameters

differ a lot. Generally, A. McComiskey and Feingold (2012) conclude that regard-

ing the differences in temporal and spatial scale, “the numerous process studies

that have attempted to assess the magnitude of these effects have generated con-

flicting answers, and even the sign of the cloud water response to changes in the

aerosol is in question”.

AOD measurements are widely done with lidars, the retrieval of microphysical

cloud properties not so much. The depolarisation lidar is an instrument with high

potential for the retrieval of cloud microphysical properties due to the simulation

of multiple scattering in the clouds and the depolarisation ratio. To check how the

depolarisation lidar is doing for the retrieval of the AOD and the cloud parameters

and to study the ACIs compared to other methods, in this thesis various methods

are compared, by checking whether the retrieved parameters agree within their

error bands.

The AOD data used for the intercomparison is from AERONET, Calitoo meas-

urements and Microtops measurements. The Calitoo Aerosol photometer and Mi-

crotops were used to measure AODs at clear-sky moments manually, the AEro-

sol ROotic NETwork (AERONET ) which has a station at Ascension Island with an

automated sunphotometer.

The Reff for intercomparison is retrieved with methods described by (Frisch,

Fairall et al., 1995) from radar reflectivity measurements gathered with cloud radars.

These cloud radars are operated by the Atmospheric Radiation Measurement Cli-

mate Research Facility (ARM) as part of a temporal site as Ascension Island. This

ARM site is the implementation of the Layered Atlantic Smoke Interactions with

Clouds (LASIC) campaign.

Our research was part of the UK measurement campaign CLouds and Aerosol

Radiative Impacts and Forcing (CLARIFY ). CLARIFY flew with Ascension as base

with an aircraft full of atmospheric in situ and remote sensing instruments. The in-

situ measurements from CLARIFY provide an excellent opportunity to verify the

retrieval method for the cloud parameters and the AOD retrieval. Although care

2The effective radius of cloud droplets is the area weighted mean radius of the cloud droplets,

Reff =
∫
∞

0
R3n(R)dR

∫
∞

0
R2n(R)dR

, where n(R) is the cloud droplet particle size distribution. Nd is in cm−3 and

the LWP is the integrated liquid water content in a column in gm−3.
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should be taken for the spatial, horizontal and vertical difference and for the fact

that we only retrieve the cloud parameters for the cloud base.

Methods to evaluate the aerosol and cloud vertical profiles with a ground-

based depolarisation lidar is valuable for ACI and global warming related research.

Therefore, we focus on the evaluation of these methods for acquiring such data.

The objectives of this research are:

RQ1: How do the lidar products compare to other methods?: 1a) How does the

AOD retrieved from the lidar compare to the AOD gathered from AERONET, the

Calitoo and Microtops? and 1b) How does the Reff retrieved from the lidar com-

pare to the Reff retrieved from the radar data with Frischs methods?

RQ2: How do the two years of lidar measurements compare in terms of the AOD

and Reff?

RQ3: Is the accuracy of the retrievals from the lidar sufficient to say something

about the ACI above Ascension Island?
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2. Field Campaign

2.1. Study area

Ascension Island(7.9o S, 14.4o W) is an isolated volcanic island surrounded by the

South Atlantic Ocean, with an area of approximately 88 km2. The island has a

hot desert climate. The annual rainfall is low, although it is in the tropical zone

(Dorman and Bourke, 1981) with an average value of 142 mm/yr at Ascension

Island.

Figure 2.1: Map showing the location of the study area, Ascension Island.

The prevailing wind in the boundary layer on the island is from the (east-)

southeast, because of the dominating subtropical trade wind (Kim et al., 2003).

These trade winds are almost invariant. This means, as can be seen in figure 2.3,

that the wind flows over the highest point of the island first. Above the boundary

layer (1200 - 2000 m above sea level, depending on the diurnal cycle) the wind is

coming from the equatorial regions. These air masses have dominantly been last

in contact with the ground in tropical Africa (Greatwood et al., 2017). Swap et al.,

1996 found that air parcels take around 7 days to travel from Namibia to Ascension

Island between 900 hPa and 800 hPa when stability is sustained. With back traject-

ories the movement of air parcels is recalculated and the aerosols above Ascension

Island can be tracked back to their source.

2.2. Campaigns

In 2016 the lidar was operated at Ascension Island by KNMI. In 2017, the research

corroborated the UK measurement campaign CLoud-Aerosol-Radiation Interac-

tions and Forcing (CLARIFY). During CLARIFY an aircraft was operated with As-

10



cension as base, full of atmospheric measurement instruments, in situ and remote

sensing. Airborne aerosol and cloud observations were in 2017 also performed dur-

ing a NASA campaign, ObseRvations of Aerosols above CLouds and their intErac-

tionS (ORACLES), having Sao Tome as a base. Their aircraft flew predominantly

north-east of Ascension Island. With Namibia as base, a french campaign, AErosol

RadiatiOn and CLOuds in Southern Africa (AEROCLO-SA), flew with the same in-

centive during the 2017 period. A large area of the South-East Atlantic was covered

with in-situ measurements during our 2017 measurement period, shown in figure

2.2. All studying the effect of aerosols on clouds, radiation and the climate.

Figure 2.2: Map showing the locations of the Aircraft Campaings in 2017, CLA-

RIFY on the left in rainbow colors, with Ascension as base. ORACLES in the north,

shown with the green lines, with Sao Tome as their base and AEROCLO-SA from

Africa, shown with the blue lines, with Namibia as their base.

2.3. Instrumentation

For this study, data was collected with a ground-based UV-depolarisation lidar.

The lidar was set-up in both years on the airport site, shown in figure 2.3. For both

measurement periods, the lidar was set up for a total duration of 26 days. In 2016

the lidar was non-operational due to power cuts and to computer malfunction from

the morning of the 24th of August until the evening of the 27th of August. In 2017

more computer malfunctioning appeared but for shorter duration, so no full days,

but only parts of days are missing in the data.

Radiosonde data, gathered by ARM, was used to calibrate the lidar for the

Rayleigh scattering. The radiosondes, released from the airport site, gather in situ

data for the vertical profiles of temperature, pressure and relative humidity. They

were launched 8 times a day in 2016 and 4 times a day in 2017. The radiosonde

11



data was interpolated to the time and height resolution of the lidar. From this data

the molecular extinction and backscatter coefficients were calculated.

A Calitoo Aerosol photometer was used occasionally in 2017, when there was

clear sky, to measure the AOD. These measurements were performed from the air-

port site or from Georgetown, 5 km north from the airport site. AERONET has a site

at Ascension Island, from which we can use the AOD data. In 2017 the AOD was

also measured by the CLARIFY team, with Microtops, comparable aerosol pho-

tometers as the Calitoo, although not in accuracy. These products offer the AOD

products, with which we can validate our AOD retrievals. For the cloud product

comparison, data from the ARM site is used for both measurement periods. The

products we have used were measured with a Ceilometer, Cloud Radars and a Mi-

crowave Radiometer (MWR), all located at the main ARM site, situated 6 km east

from the airport site, at around 365 m above mean sea level. This location is also

shown in the map below.

Figure 2.3: Ascension Island layout of instrumentation.

As observational data, two periods of measurements were used, one month

from summer 2016 and one month from summer 2017. In these periods other at-

mospheric observations were done at or around Ascension Island which offer data

to compare the processed lidar data with. In the table below an overview of general

information and some meteorological parameters is shown for both of our meas-

urement periods.
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Table 2.1: Table with general information for the two periods of measurements with

the UV-depolarisation lidar.

Dates 3 sept 2016 - 29 sept

2016

15 aug 2017 - 10 sept

2017

Location Airport site Airport site

Full days 21 16

Measured in total 537 hours 568 hours

Other campaigns ARM, ORACLES ARM, CLARIFY, OR-

ACLES, AEROCLO-

SA

Average Surface temperature 21.19 oC 22.78 oC

Average Atmospheric pressure 97.78 kPa 97.71 kPa

Average Relative humidity 90.39 % 82.31 %

Average Wind direction East-Southeast East-Southeast

Average Wind speed 7.72 m/s 7.12 m/s

2.3.1. UV-depolarisation lidar

A LIDAR (LIght Detection And Ranging) is a remote sensing laser instrument. It

has a laser on the transmission side and photomultipliers to detect the incoming

radiation on the receiver side. The linearly polarized light transmitted by the laser

travels through the air until it is absorbed or scattered by a molecule, aerosol or

cloud droplet. When the light is only scattered once and returns in the direction

of the lidar, is it termed single-scattering. When single-scattering occurs with a

spherical particle, like a liquid water cloud droplet, the light will return with the

same polarisation as it is transmitted by the laser, the light is parallelly polarized.

The light can become depolarised, when it is scattered by a non-spherical particle,

mostly ice or aerosol particles, or because of multiple scattering. Multiple scatter-

ing occurs when the light is scattered more than once by a particle. This multiple

scattering is accounted for with an inversion method in the MS based inversion

method.

Before the light is actually measured it goes through a filter, which will filter

out the diffuse sunlight, through a lens, to focus the light. And in the end the

return signal is split using a polarized beam-splitter into components whose plane

of polarization is parallel and perpendicular to the transmidded light polaization

plane. After the incoming light is split, it is detected by the photo-multiplier tubes

(PMTs).

At the receiver side of the lidar a certain percentage of incoming radiation is

lost during the detection, because of the filtering, the lenses and the splitting. These

factors are combined in the lidar calibration constant, Clid. The values used for the

lidar calibration constants are shown in table 2.2. This lidar constant differs for the

13



two separate channels as it depends on the seperate PMTs. Cross-talk between the

channels can exist, due to the uncertainty of the beam-splitter and thus the pres-

ence of signal with orthogonal polarisation in each channel. This effect is a source

of uncertainty in the estimation of the depolarisation ratio. A polarisation cross-talk

parameter δC is defined to correct for this effect. To calibrate the parallel and per-

pendicular channels in relative sense, an inter-channel depolarisation calibration

constant, Cr, is defined, the value for this calibration coefficient is assumed a priori.

To make sure that the inversion algorithm does not depend on the absolute calib-

ration of the lidar, which is often not good, the attenuated backscatter normalised

by the maximum value of the parallel attenuated backscatter is used.

Figure 2.4: Leosphere ALS-450

UV-depolarisation lidar setup

during the field campaign. (7.97o

S, 14.35o W)

Figure 2.5: Calitoo Aerosol pho-

tometer used during the field

campaign.
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Table 2.2: Lidar calibration constants for the inversion process.

Constant Value in 2016 Value in 2017

Clid 9.5 ± 1.0 9.5 ± 1.0

δC 0.97 0.87

Cr 1/0.026 1/0.031

FOV interpolation factor 0.14 0.14

The lidar that was used is a commercial Leosphere ALS-450 operating at 355

nm, pointed vertically with a zenith angle of 3 degree (Leosphere, n.d.). It has a

tripled Nd-Yag laser with an energy of 16 mJ per pulse. The pulse duration is 5

ns and it fires with a frequency of 20 Hz. The lidar has a vertical resolution of 15

m and a 30 second time interval. So 600 pulses are averaged, to get the 30 second

time interval. The lidar was positioned 76 m above mean sea level. The laser beam

and receiver Field-Of-View (FOV) have an incomplete overlap in the lowest 200 m

above the lidar, the system measures the backscatter from 200 m above the lidar. In

2016 the data had a good signal-to-noise ratio up to 20 km, in 2017 this was only up

to 15 km, because of a misalignment.

2.3.2. Calitoo Aerosol photometer

The Calitoo is a hand-held sun photometer (Tenum, n.d.). It needs to be directed to

the sun manually. It measures the incoming radiation flux, which is a function of

radiation emitted by the sun and the effect of the atmosphere. From this incoming

radiation flux, the total extinction is derived. The effect of the atmosphere is the at-

mospheric absorption and scattering from the molecules in the air, calculated from

the measured pressure and temperature, and the extinction by the ozone column.

Climatology data is used for the ozone column, to subtract from the total extinction

in the profile. After correcting the total extinction for this molecular and ozone ab-

sorption and scattering, the AOD is calculated from the aerosol extinction (absorp-

tion and scattering) integrated over the column. The AOD is calculated for three

different wavelengths in the visible light spectrum: blue (465nm), green (540nm)

and red (615nm). The calculation of the AOD is done using the raw brightness

measurements, the calibration coefficients, the atmospheric pressure, date and the

GPS position.

The total AOD at wavelenght λ is derived following Beer-Lambert-Bouguer’s

law: Vλ = V0λD
−2 exp (−τλM), where Vλ is the signal measured by the instrument

at wavelength λ, V0λ is the extraterrestrial signal at wavelength λ, D is the earth-sun

distance in astronomical units at time of observation, τλ is the total optical thickness

at wavelength λ, consisting of the molecular, aerosol and ozone optical thickness

and M is the optical air mass (Ichoku et al., 2002). Beer’s law is only accurate when

multiple-scattering is not important, when there are no clouds.
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The Calitoo was operated from the airport site or from Georgetown, 5 km north

from the airport site, see figure 2.3. In total 15 values for the AOD were measured

during the period in 2017. The AOD measured for the blue wavelength is used

for the intercomparison as it is the closest to the wavelength of the lidar. The un-

certainty in the value for the AOD measured with the Calitoo is dominated by the

variation of the averaged measurements, gathered within 5 minutes.

2.3.3. AERONET

AERONET offers their AOD data processed on the website for various wavelengths,

the AOD measered at a wavelength of 340 nm is used for the intercomparison.

AERONET is a network of several ground-based sun-photometers distributed glob-

ally gathering direct sun measurements, to calculate the wavelength dependent

AOD (Holben et al., 1998). The instruments are automatic tracking sun and sky

scanning radiometers with a 1.2o field of view. They measure the direct sun meas-

urements every 15 minutes at 8 wavelengths. An ion-assisted deposition interfer-

ence filter with a band pass of 2 nm is positioned in front of the detector for the

340 nm measurement. The AERONET data we used in this study was quality- and

cloud-screened. The AERONET AOD data measured at the wavelength of 340 nm

has an uncertainty of 0.021. This is due to atmospheric pressure variation when as-

suming there is a 3 % maximum departure from mean surface pressure (Eck et al.,

1999).

2.3.4. Microtops

Microtops are also hand-held sun photometers. They work similar as the Calitoo.

With a moving filter wheel, the filters are changed inside the instrument, to meas-

ure the direct sunlight at five different wavelengths. The filters used in the channels

have a band pass of 10 nm for all channels. The AOD gathered with the Microtops

is calculated with the same equation as was stated for the Calitoo.

The data from the Microtops was shared by the CLARIFY team on Ascension Is-

land. They operated two instruments every time at the same moment. The average

of the AOD is calculated for the wavelength of 550 nm from the two instruments.

The instrument uncertainty of the Microtop is comparable to the uncertainty from

AERONET (Ichoku et al., 2002). At 550 nm, the uncertainty in the Microtops AOD

measurements is 0.03. We also calculate the variation in the measurements gathered

by the two instruments within 5 minutes.

2.3.5. ARM instruments for Cloud Parameter retrievals

The cloud parameters used for the intercomparison are calculated with the use of

reflectivity data gathered by the Cloud Radars from ARM and the LWP data meas-

ured by the Microwave Radiometer. Because there is no Cloud Radar at the air-
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port site, for both products the data from the main ARM site were used. In 2016

the W-band Scanning ARM Cloud Radar (WSACR) ((ARM), Instruments: WSACR

n.d.) was operating from the start of our measurement period up until the 11th of

september. In 2017 the Ka-band Scanning ARM Cloud Radar (KASACR) ((ARM),

Instruments: KASACR n.d.) has been operating for the full period. The radars oper-

ate with a field of view of 0.3 degrees for both radars and a frequency of 94 GHz and

35.3 GHz respectively for the WSACR and KASACR. Vertical pointing scans are

taken each hour, for a duration of 4 minutes. The products with a time-resolution

of 2 seconds and a vertical resolution of 30 m, are available online. For the LWP,

Microwave Radiometer (MWR) ((ARM), Instruments: MWR n.d.) data were used,

which was available online for the period in 2016, but not yet for the period in 2017.

The LWP is measured and processed once every 30 seconds.

Cloud Radars

A Cloud Radar is like a lidar an active remote sensing instrument but transmits

pulses in the radio-frequency instead of in the visible light or ultraviolet. Both the

radars include a Ka-band radar (2 kW peak power), the WSACR also has a second

radar, the W-band (1.7 kW peak power) ((ARM), Instruments: WSACR n.d.). The

ARM cloud radars are special because of their scanning strategies. For this research

the vertical-pointing mode is used, in which the radar is not scanning. From the

vertical pointing scans with the cloud radar, the 2D radar reflectivity factor, Z, is

used. This reflectivity is the backscattered radio frequency from cloud droplets or

precipitation. The radar has a transmitter in the center, the receiver is in a circle

around this trasmittor. The radiation trasmitted by the radar travels through the

air until it is reflected back by a cloud droplet or precipitation. The product we

collected from the ARM database is a height-time product of the reflectivity in the

vertical above the radar.

Microwave Radiometer

A microwave radiometer (MWR) is a radiometer measuring energy emitted by gas

or particles in the atmosphere in the microwave (millimetre-to-centimetre wavelengths)

range. The ARM MWR is a sensitive microwave receiver that detects the microwave

emissions of the water vapor and liquid water molecules in the atmosphere at two

frequencies: 23.8 and 31.4 GHz. ((ARM), Instruments: MWR n.d.). Water vapor has

its absorption line around 23 GHz, liquid water emission increases with frequency,

so the 31.4 GHz frequency is more sensitive to liquid water emission by hydromet-

eors. As the size of the hydrometeors increases, the frequency at which they emit

energy is increasing. For example, large rain drops and larger frozen hydrometeors,

having sizes of a few milimeters, emit energy at a frequency especially higher than

90 GHz so will not be detected by the MWR we used. Using a statistical retrieval
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algorithm, the integrated water vapor and liquid water path are derived from the

radiance measurements ((ARM), Instruments: MWR n.d.).

2.3.6. Overview of the instruments and products

An overview of all the products used in this study is given in the table below.

Table 2.3: Cloud and aerosol properties measured or derived, and used in this

study, from the observations at Ascension Island.

Measured quantity Definition Instrument(s)

Attenuated backscatter coefficient ATB (m−1 sr−1) Leosphere ALS-450

Pressure and Temperature profiles P (Pa), T (K) Radiosondes

Aerosol Optical Depth (AOD) τ Leosphere ALS-450

Cloud droplet effective radius Reff (µm) Leosphere ALS-450

Aerosol Optical Depth (AOD) τ AERONET, Calitoo

photometer, Micro-

tops

Radar reflectivity factor Z (dBZ or m6m−3) WSACR/KASACR

Cloud liquid water path LWP (gm−2) MWR

Cloud droplet effective radius Reff (µm) WSACR/KASACR

+ MWR
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3. Methods

Lidar data was processed to retrieve the AOD product and the Reff as the cloud

parameter used for the intercomparison. AERONET, Calitoo and Microtops meas-

ured AOD data was used to compare the lidar retrieved AODs. The AOD measure-

ments from AERONET and the hand-held Calitoo and Microtops were performed

on randomly distributed moments during the periods, because of the requirement

of clear sky and direct sunlight. For the lidar measurements, the direct sunlight will

cause solar background noise during the day, so the aerosol signals were generally

more accurate during the night. In this study, selections in day and night time are

used for the AOD retrieval. The Reff is retrieved from the lidar using the MS based

inversion method, and compared to Reff calculated with Frischs methods using re-

flectivity data gathered with the Cloud Radars and LWP data gathered with the

MWR. For the retrieval of the cloud parameter, low level marine stratocumulus

clouds were selected. The cloud parameter results were only analyzed statistically,

because the clouds could not be selected case-by-case because of the 6 km distance

between the airport site from where we retrieved our product and the ARM site.

3.1. Lidar data processing

The lidar signal is detected as described in the previous chapter. The time after

which photons are detected is translated to range, z = ct
2 , where c is the speed of

light and t the time after which the photon is detected. The detected signal over a

vertical range can be analyzed with the three-component lidar equation (Measures,

1984, p. 237–243):

P (z) =
Clid

z2
(βm(z) + βa(z) + βc(z))e

−2
∫ z

0 (αm(z′)+αa(z′)+αc(z′))dz′ (3.1)

where P (z) is the received power as a function of range, Clid is the lidar cal-

ibration constant, as described in section 2.3.1, z is the range, β is the backscatter

coefficient divided into a molecular, aerosol and cloud component, denoted with

subscripts m, a, c respectively. α is the extinction coefficient, also divided into the

three components. The attenuated backscatter (ATB) is an atmospheric parameter,

independent of instrumental effects, ATB(z) = P (z)z2

Clid
, and β(z) = α(z)

S(z) , where S(z)

is the extinction-to-backscatter ratio, or the lidar ratio. This ratio depends on the

type of particle, composition, size or structure.

To examine the AOD, lidar measurements without cloud and precipitation, and

without full irradiance by the sun should be considered. For the cloud parameter

retrieval, low level homogeneous stratocumulus clouds are selected by eye. An

example for both of the selections is shown in figure 3.1.
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Figure 3.1: The total ATB in the lower troposphere (0-5 km), for the 26th of August

2017. Visualisation of the selections for the analysis of the aerosol profile, A, and a

cloud, B.

There are six atmospheric unknowns in equation (3.1), the extinction coefficient

α for the molecular, aerosol and cloud component, and the backscatter coefficient

β for the molecular, aerosol and cloud component. These coefficients are discussed

in the following paragraphs. First αm and βm, the molecular extinction and backs-

catter coefficients from Rayleigh scattering. Followed by the aerosol extinction and

backscatter coefficients, αa and βa in the AOD retrieval section. The cloud extinc-

tion coefficient αc is retrieved in the MS based inversion method. For the cloud

parameter intercomparison Reff is the parameter used, instead of αc. The Reff is

directly dependent on αc and the LWC.

3.1.1. Rayleigh scattering

The wavelength of the transmitted light λ, is 355 nm. Rayleigh scattering is strongly

wavelength dependent, the particles diameter is only a fraction of the wavelength.

At 355 nm, Rayleigh scattering, from the molecules in the air, is of big import-

ance. The known molecular scattering is used to calibrate the lidar. With the

data from radiosondes, the molecular particle density of the atmosphere, ρatm,

is calculated with ρatm = P
T×ρair

kgm−3 where P is the measured pressure in

Pa, T the measured temperature in K and ρair is the gas density of dry air, 287

J kg−1K−1. By multiplying the molecular Rayleigh backscattering cross section,

σR(λ) = 5.45
[

550
λ(nm)

]4
× 10−32 m2 sr−1, (Measures, 1984, p. 42) with the molecular

particle density divided by the molecular mass, the molecular backscattering coef-

ficient, βm, is calculated, βm = ρatm

M ×σR m−1 sr−1. With the Rayleigh extinction-to-

backscatter ratio of 8π
3 sr (Guzzi, 2008, p. 231), the molecular extinction coefficient

αm can be calculated.

20



3.1.2. AOD retrieval

After selecting correct profiles to retrieve the AOD, a time average atmospheric

extinction profile, αatm, is retrieved with the lidar and then inverted to an aerosol

extinction profile and AOD following the Klett inversion (Klett, 1981), a boundary-

value problem, as described below. When there is no cloud, the lidar equation,

(3.1), is only dependent on the aerosol and molecular components. We can define

the total, atmospheric extinction coefficient as αatm(z) = αa(z) + αm(z)

A normalisation height was set where the aerosol extinction is zero, αa(z0) = 0.

In our case, z0 = 7 km. The atmospheric extinction at this normalisation height,

αatm(z0) is then given by αatm(z0) = αm(z0) = S(z0)βm(z0). The normalisation

height should be defined carefully, so that there is still a good value of Signal-to-

Noise-Ratio (SNR) but that there can be stated with high certainty that it is a height

free of aerosols.

In our calculations for the AOD, following the Klett procedure, the value for

S is defined to be height dependent. From literature (Wandinger, Ulla et al., 2016;

Greatwood et al., 2017) and from the observations on the island, it is concluded

that marine aerosols are always present in the lower boundary layer, up until 1200

m. Smarine is set to be 25 sr, a good approximation for marine aerosols (Wandinger,

Ulla et al., 2016; Cattrall et al., 2005; Müller et al., 2007). (Aged) Smoke and dust

is often, almost always, present above the boundary layer, in the layer from 1200

m to 5000 m, sometimes it can be mixed in the boundary layer. Sdark is defined

to be the value used for the aerosol-to-extinction coefficient in this layer. This is

just a definition in this study for the coefficient used where smoke and dust are the

most likely aerosols. Sdark is set to 50 sr, which is an appropriate value for dust and

aged biomass burning aerosols (Wandinger, Ulla et al., 2016). Above 5000 m, the

air was mostly clean and clear of aerosols, the lidar ratio is set to be the molecular

extinction-to-backscatter ratio, Smol = 8π
3 sr (Guzzi, 2008, p. 231). The marine

particle and aerosol extinction-to-backscatter ratios can be different than assumed

and can therefore cause an error, this error will act as a bias error, and is evaluated

in the next chapter, by varying Smarine and Sdark around the values of 25 and 50 sr.

To check if the correct values are chosen, also in situ data about the type of aerosols

can be used.

The lidar equation, (3.1), is rewritten to a two-component lidar equation for

cloud-free situations. In this two-lidar equation, the signal is first corrected for the

molecular transmission, and the lidar-ratio is included from the equation β(z) =
α(z)
S(z) . Transformed variables are introduced: P ′(z) = S(z)P (z)e2

∫ z

0 (αm(z′)−S(z′)βm(z′))dz′

and α′(z) = (S(z)βm(z) + αa(z)), which results in:

P ′(z) =
Clid

z2
α′(z)e−2

∫ z

0 α′(z′)dz′ (3.2)

P ′(z) and α′ are the transformed variables for the rewritten lidar signal equation in

height z. Clid is the lidar calibration constant. With the definition τ ′ =
∫ z0
0 α′(z′)dz′
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the transformed lidar equation is rewritten and differentiated which gives:

α′(z) =
dτ ′

dz
(z) =

[

P ′(z)z2

Clid − 2
∫ z
0 P ′(z′)z′2dz′

]

(3.3)

This is transformed into a boundary value problem:

α′(z0) =

[

P ′(z0)z
2
0

Clid − 2
∫ z
0 P ′(z′)z′2dz′

]

(3.4)

with P ′(z0) the transformed lidar signal at the normalisation height, α′(z0) the

transformed extinction at the normalisation height, which is a known value: α′(z0) =

(S(z0)βm(z0) + αa(z0)) because the assumption is that αa(z0) = 0 at the normalisa-

tion height and S(z0) and βm(z0) are both known values. At z = z0, S(z0) = Smol =
8π
3 sr and βm(z0) is calculated from the Rayleigh scattering. Equation (3.4) solved

for Clid and filled in in equation (3.3) gives the solution for the transformed variable

α′(z):

α′(z) =





P ′(z)z2

P ′(z0)z20
α′(z0)

+ 2
∫ z0
z P ′(z′)z′2dz′



 (3.5)

From the transformed variable α′ the aerosol extinction is derived to be αa(z) =

α′(z) − S(z)βm(z). The aerosol backscatter coefficient is now derived by divid-

ing the aerosol extinction by the height dependent lidar ratio. To calculate the

AOD, the aerosol extinction coefficient is integrated over the vertical column, τ =
∫ zmax

0 αa(z)dz, where zmax is a chosen value for the maximum height to integrate

the extinction over. This maximum height is in our study 1000 m above the norm-

alisation height, and thus 8 km.

3.1.3. Cloud parameters retrieval

Four out of the six atmospheric unknowns in equation (3.1) have now been treated.

For the derivation of the cloud extinction and backscatter coefficient, a different

approach is necessary because the lidar equation only applies when no multiple-

scattering is accounted for. Multiple-scattering is taken into account in the Monte

Carlo (MC) optimal estimation method.

With this method, and most already existing cloud parameter retrieval meth-

ods, cloud parameters can be derived only for a liquid water cloud, with a (quasi-)

linear liquid water content (LWC) and a (quasi-) constant cloud droplet number

concentration (Nd). The cloud droplet size distribution used in this method, is

defined as a single-mode modified-gamma distribution (Miles et al., 2000):

n(R) =
Nd

Rm

1

(γ − 1)!

(

R

Rm

)γ−1

exp

(

R

Rm

)

, (3.6)
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where Nd is the cloud droplet concentration, defined to be constant with height, R

is the droplet radius, Rm is the so-called mode radius and γ is the shape parameter

of the distribution.

The method is based on multiple scattering by the liquid water cloud droplets.

The returning light from the cloud will be partially depolarised due to multiple

scattering (Liou and Schotland, 1971). This multiple scattering on the liquid water

clouds defined by the cloud model is simulated by Monte Carlo (MC) modelling.

The MC model used is the Earth Clouds and Aerosol Radiation Explorer (Earth-

CARE) simulator (ECSIM) lidar-specific MC forward model. The ECSIM lidar MC

model is a modular multi-sensor simulation framework, which in our case can cal-

culate the spectral-polarisation state of the lidar signal. The ECSIM lidar MC model

is shortly described in appendix B.1. An in depth explanation about the MC model

and the method in general can be found in D. P. Donovan et al. (2015).

The constraints on the LWC and Nd as given before, are met in the simple cloud

representation described by Roode and Los (2008). With this cloud model, the para-

meters to describe the cloud are reduced to two, the cloud effective radius (Reff) and

the cloud extinction (αc). A linear liquid water content defines a constant liquid

Figure 3.2: A step in the MS based

inversion method. The measured

data is shown by the lines, the dots

show the fitted profiles, used in the

method. Black for the parallel ATB,

red for the perpendicular ATB and

magenta for the depolarisation ratio.

water lapse rate, Γl. When the liquid wa-

ter content increases with height and the

number density remains constant, Reff will

increase with height. The cloud extinction

coefficient, αc, also increases with height.

Be aware that the clouds in the MS based

inversion method are represented by semi-

infinite clouds, with a cloud top at infinity

because the lidar can only penetrate a few

hundred meters into the cloud, no inform-

ation is known about the upper part of the

cloud. This leads to the prediction that the

depolarisation ratio is generally increasing

throughout the cloud, while observations

show that the depolarisation ratio may ex-

hibit a peak (Sassen and Petrilla, 1986).

These parameters are calculated for a

reference height. The lidar signal will not

penetrate further into the cloud than 100-

300 m, so the retrieved parameters are only

applicable to the cloud-base region. For

the reference height, in this research, 100 m

above cloud-base is used. The parameters

used in this research are therefore R100
eff , Reff

at reference height, and α100
c , αc at reference
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height.

The MC simulations were performed for various values of the cloud-base height,

the lidar field-of-view (FOV), R100
eff and Γl. The exact values can be found in Table

1 in D. P. Donovan et al. (2015) and in table B.1. Look-up tables (LUTs) were gener-

ated from the simulations and predefined input parameters, the lidar constants and

initial values for R100
eff and α100

c . These LUTs contain information on the simulated

parallel and perpendicular ATB and therefore the depolarisation ratio.

The Cloud Base Height (CBH) is difficult to define from real observation due

to the presence of sub-cloud drizzle and the presence of growing aerosol particles.

The need to accurately identifying the CBH directly from observations is avoided

by using the peak of the observed parallel lidar ATB as a reference instead of the

CBH in the fitting procedure. The CBH is produced as a product of the fitting pro-

cedure determined by the optimal fit to the observations, which is used to define

Reff 100 m above the CBH. The observed ATB and depolarisation ratio are com-

pared to the LUTs, by an iterative process, to find the best matching values for

R100
eff and α100

c . After the simulated profiles, which are normalised by the maximum

value of the observed parallel ATB, the best fit out of the simulations can be found

by minimizing a cost-function as given in (Rodgers, 2000, p. 238). In this proced-

ure the best fit for a distinct pair of the R100
eff and α100

c with the observed profiles

is found in the LUTs. An estimate of the cloud-base height is a by-product of the

fitting procedure determined by the optimal fit to the observations. In figure 3.2,

the observed and fitted ATBs and depolarisation ratio profiles from the LUTs are

shown, for a cloud selection on the 26th of August, shown in figure 3.1. The scat-

ter plots correspond to the fitted values from the LUTs, with the parallel ATB in

black, the perpendicular ATB in red and the depolarisation ratio in magenta. The

observed value for the parallel ATB is shown by the black line, the perpendicular

ATB by the red line and the depolarisation ratio by the magenta colored line.

Because multiple-scattering is occurring in a cloud, the LUTs, the shape of the

ATB profiles and the depolarisation ratio are all well-defined functions of the LWC

and effective radius profile. For single-scattering the parallel ATB profile will not

depend on the effective radius profile.

To summarize, the inversion scheme to define the values for the cloud paramet-

ers from the observed parallel and perpendicular ATB and the depolarisation ratio,

is based on finding the best fit for the normalised ATBs by finding a global min-

imum in the cost-function, regarding the simulated LUTs. Care should be taken;

local minima in the cost function can exist, errors in the depolarisation calibration

(e.g. Cr and δC) need to be taken into account, and because normalised ATB is

used, the error in the normalisation should also be accounted for. The calibration

constants are defined a priori for the methods, with different values in both years

after analyzing the lidar depolarisation in cases of only Rayleigh scattering.
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3.2. Cloud parameters from other instrumentation

The instruments we used from the ARM site to retrieve cloud products for our

intercomparison were the cloud radar and the microwave radiometer. To retrieve

the same product as retrieved with the lidar, R100
eff , 2D reflectivity data and the LWP

from the cloud radar and the MWR, respectively, were used. In figure 3.3 a time-

height cross section of the radar reflectivity from the KASACR is shown for a cloud

selection. The reflectivity factor from the ARM dataset is given in decibel, dBZ.

dBZ = 10 log(Z) + 180 to translate it to the reflectivity factor Z in m6m−3.

Figure 3.3: A step in the cloud parameter retrieval following Frisch’s method with

the cloud radar data (Frisch, Shupe et al., 2002). The reflectivity factor, as a contour

plot, with the measured cloud base from the ceilometer plotted with the triangles,

the green line represents the interpolated cloud base height to the radar time resol-

ution.

To retrieve the R100
eff from the ARM instrumentation, two methods described

by Frisch (Frisch, Fairall et al., 1995; Frisch, Shupe et al., 2002) were used. One

where a constant cloud droplet number concentration (Nd) throughout the cloud is

set, which gives a relationship for the R100
eff only depending on the reflectivity factor.

The second method uses the LWP as additional input, which makes the assumption

for Nd unnecessary. This second method gives a relationship between the LWP,

reflectivity factor and Reff, and is for example used by Sarna and Russchenberg

(2016) in a new approach to study ACIs. Both methods are fully described in Frisch,

Shupe et al. (2002).

In both methods, a lognormal model of the cloud droplet size distribution is

used. The mean value and the spread of the lognormal distribution needs to be

assumed a priori. For our retrievals the droplet spread is set on an assumed value

of 0.34, to be a good assumption for the spread in marine, low-level stratocumulus

clouds, taken from literature (Fairall et al., 1990; Frisch, Fairall et al., 1995; Miles et
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al., 2000). This lognormal spread for the cloud droplet size distribution, is varied to

analyze the uncertainty from this parameter on Reff. The lognormal cloud droplet

size distribution used in the retrieval is given by:

n(R) =
Nd√
2πRσx

exp

[

−(ln (R)− ln (R0))
2

2σ2
x

]

, (3.7)

where Nd is the cloud droplet concentration, defined to be constant with height, R

is the droplet radius, R0 is the median radius, and σx is the logarithmic spread of

the distribution. In a lognormal droplet size distribution Reff is related to the me-

dian radius by Reff = R0 exp (
5
2σ

2
x) and the radar reflectivity factor for a lognormal

cloud droplet size distribution is Z = 26NdR
6
0 exp (18σ

2
x). Solved for Reff, this gives

retrieval method 1:

Reff =
1

2

(

Z

Nd

)1/6

exp (−0.5σ2
x). (3.8)

From equation (3.8), it is clear that relatively large changes in the cloud droplet

concentration Nd or in the logarithmic spread σx, will only produce small changes

in Reff. This is why, if we have an estimate of Nd and σx, Reff can be retrieved from

Z.

The radar retrievals were executed in two ways, with different assumptions

for Nd. One were a constant value of 100 cm−3 was set, which was taken from

literature for low-level marine stratocumulus clouds (Davidson et al., 1984; Martin

et al., 1994). The other implementation was with a daily varying value for the

a priori definition of Nd, gathered from the lidar retrievals. Besides Reff, the MS

based inversion method also has Nd as a product. This product was daily averaged

and these values were used as input for the assumption on Nd in Frischs method 1.

This first method is executed to retrieve the effective radius data for the 2016 and

2017 measurement periods.

For the 2016 retrievals, LWP data is available online, so the second method was

also performed. The derivation of equation (3.9), for Reff as a function of height,

can be found in Frisch, Shupe et al. (2002).

Reff(h) =
Z1/6(h)

2LWP1/3

(πρ

6

)1/3
(

i=m
∑

i=1

Z1/2(hi)∆h

)1/3

exp (−2σ2
x) (3.9)

Nd and σx are again constrained to be constant in height, hi is the height in the

cloud, i = 1 is the radar range gate at cloud base, derived from ceilometer data on

the main ARM site. i = m represents the radar range gate at cloud top. The radar

range gate at cloud top is found to be the highest range gate where the reflectivity

factor is higher than -44 dBZ, which seemed appropriate for our retrievals. ∆h is

the radar range gate thickness, 30 m in our case, ρ is the water density, 106 gm−3.

The LWP is the microwave radiometer-derived integrated liquid water content in

gm−2. This second method eliminates the assumption on Nd.
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The WSACR was only operating until the 12th of September in 2016. As the

LWP has an uncertainty of 15 gm−2 calculated from the MWR (Turner et al., 2007),

the values below 30 gm−2 are disregarded. In marine stratocumulus clouds, drizzle

can appear from 90 gm−2 (Rémillard et al., 2012), so the values above 90 gm−2 are

also excluded from the retrievals. Only the values between 30 and 90 gm−2 are

used for the retrieval with Frischs method 2.

The uncertainties in the retrieval from the assumptions and measurement errors

in both methods are described in Frisch, Shupe et al. (2002). In the first method,

where Reff is only depending on the assumptions for Nd, σx and the measurements

of the reflectivity factor, the error in Reff can be calculated with equation 7 in Frisch,

Shupe et al. (2002). In method 2, the method with the LWP data points, there is no

longer an error due to Nd, but there is an error due to the measurement error of the

LWP, which is assumed to be 20% (Westwater et al., 2001). The final retrieval error

in Reff is calculated with equation 9 in Frisch, Shupe et al. (2002).
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4. Results

4.1. Lidar data processing

To retrieve the AOD and the cloud parameters from the lidar data, the measured at-

tenuated backscatter (ATB) was analyzed with the Klett inversion method and the

MS based inversion method respectively. With the results that are shown and de-

scribed, the uncertainties were also evaluated. The results are analyzed in compar-

ison with the retrieved products from other instruments and from other methods,

as described in the previous chapter. This provides an outlook on the validation of

our retrievals.

Correction for misalignment in 2017

The lidar itself causes uncertainties in the measurements, instrument errors. In 2017

the laser beam was slightly misaligned, therefore less power was detected by the

receiver, the SNR was lower and larger uncertainties arise due to the uncertainties

in the calibration coefficients, Cr and δC. The calibration coefficients need to be

defined a priori, and were in 2017 corrected for this misalignment, the used values

in both measurement periods are shown in table 2.2. In the estimation of the cal-

ibration coefficients for 2017, the uncertainty is large because of an assumption for

the effect of the misalignment. After the corrections in the calibration coefficients,

the consistency in the lidar operation over the two measurement periods was eval-

uated by analyzing the depolarisation ratio in both years at moments of no clouds,

and altitudes without aerosols. These selections were made by a visual inspection

of the raw data, and are generally of a height bin of 1 km thick and above a height

of 5 km. The results of the averaged depolarisation ratio in these boxes for both

measurement periods are shown in A.1. The average depolarisation ratio over the

two measurement periods differs slightly but not significantly to expect the lidar

to operate differently, after the correction. We do see that the standard deviations

in the values for the depolarisation ratio differ by a significant factor, this is due

to lower SNR in 2017 and therefore larger variation in the signal. From the res-

ults it seems that the instrument calibration, after the correction in the calibration

coefficients for 2017, is consistent over both measurement periods.

In the aerosol retrievals and AOD calculations, the misalignment will be no-

ticeable because of the lower SNR, and therefore larger standard deviations when

averaging. In the cloud product retrieval, the correction for the misalignment in the

calibration coefficients was of importance, in addition to the low SNR. And also, a

correction was made on the look-up tables (LUTs) for the misalignment because

this misalignment mostly affected the multiple-scattering (MS) and therefore the

28



fitting procedure of the LUTs with the observed depolarisation ratio. This correc-

tion is only mentioned here, no further consequences are taken into account.

4.2. AOD

The lidar retrieved AODs are analyzed for both periods taking into account the

systematic error arising from the definition of the extinction-to-backscatter ratios

and the random error due to the definition of the normalisation height. The results

are shown in figure 4.2(a) and 4.3(a). The retrieval errors due to the extinction-

to-backscatter ratio S(z) and the normalisation height z0 are evaluated in the next

paragraphs and shown in the figures 4.2(b), 4.2(c) and 4.3(b), 4.3(c). The results

are compared to the AOD data from AERONET, the Microtops and the Calitoo.

The intercomparisons are shown in figure 4.2(d) and 4.3(d). Striking cases after

this intercomparison were evaluated and an interpretation for the aerosol vertical

distribution is made.

4.2.1. AOD retrieval from lidar data

Uncertainty due to the assumption for S(z)

The standard assumed values for the retrieval of the AODs were described in the

previous chapter to be Smarine = 25 sr, Sdark = 50 sr, Smol =
8π
3 sr, z0 = 7000 m and

zmax = 8000 m. The results of the AOD retrieval for both years with these standard

values is shown in figures 4.2(a) and 4.3(a). To define the possible bias error from

the uncertainty in S(z), the values for Smarine and Sdark were varied and the AODs

were calculated. The marine particle extinction-to-backscatter ratio, Smarine (for the

0 m to 1200 m altitude domain) was varied in the range 20-30 sr and the ’dark’ aero-

sol extinction-to-backscatter ratio, Sdark (for the 1200 m to 5000 m altitude domain)

was varied in the range 40-60 sr. The uncertainties resulting from varying the ra-

tios are shown in figures 4.2(b) and 4.3(b). The shaded area represents the results

from varying over the ranges for Smarine and Sdark. The lower boundary represents

the AODs calculated for the combination with the lowest values of S(z), Smarine =

20 sr and Sdark = 40 sr. The upper boundary represents the AODs calculated for

the combination with the highest values of S(z), Smarine = 30 sr and Sdark = 60 sr.

The exact averaged values for the AODs over the measurement periods, with nine

combinations for the varying of the ratios, are shown in appendix A.2.

The average AOD in 2016 calculated for the standard values for the retrieval

was 0.26±0.116 as we saw in figure 4.2(a). The average AOD is 0.236±0.11 for the

combination of S with the lowest values and 0.281±0.121 with the combination of

S with the highest values. In 2016 a change of 20 % in the initial values of the

extinction-to-backscatter ratios gives a change of 8.7 % in the average AOD value.

For 2017 the average AOD for the standard extinction-to-backscatter ratios was

0.27±0.132, as we saw in figure 4.3(a). The average AOD varies to 0.247±0.126
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and 0.288±0.136 for a change in the values for the extinction-to-backscatter ratios

to the lowest or highest combination respectively. So a change of 20 % in the initial

values of S gives a change of 7.6 % in the final average AOD value in 2017. Despite

the lower SNR and larger standard deviations in 2017, the uncertainty due to the

estimation of S is slightly larger in 2016.

Uncertainty due to the assumption for z0

Another uncertainty in the AOD retrieval is the definition of the normalisation

height z0. To analyze this uncertainty, z0 is varied to 6500 m and 7500 m in the

Klett inversion method. The results for both years, with the standard values for the

extinction-to-backscatter ratios and the varying normalisation height, is shown in

figures 4.2(c) and 4.3(c). In the Klett inversion method the total lidar backscatter is

defined for this normalisation height to solve the boundary value problem. For the

total lidar backscatter at this normalisation height the average of 5 range gates (75

meters) of the lidar is calculated. So we look at the effect of varying the altitude for

the normalisation height on the value for the total lidar backscatter which is used

for the boundary value problem and which is influenced by the height-resolved sig-

nal, the assumption of the aerosol free altitude and the noise. The maximum height

for the integration of the extinction profile, to calculate the AOD, varies with the

same absolute value as the variation in the normalisation height.

The average AOD in 2016 calculated for the standard values for the retrieval

was 0.26±0.116 as we again saw in figure 4.2(a). The average AOD in 2016 is

0.25±0.117 for z0=6500 m and 0.262±0.129 for z0=7500 m. A variation in norm-

alisation height of 500 m, 7 %, and therefore a change in the value for the signal

assumed to be at the aerosol free altitude, gives an average change of 2.3 % in the

final averaged AOD value in 2016. For 2017 the average AOD for the standard nor-

malisation height of 7000 m was 0.27±0.132, as we saw in figure 4.3(a). The average

AOD varies to 0.287±0.18 and 0.239±0.19 for z0=6500 m and z0=7500 m respect-

ively. A variation in normalisation height of 500 m, 7 %, and thus a change in the

signal assumed to be at aerosol free altitude, gives a change of 8.9 % in the final

averaged AOD value in 2017. The uncertainty due to the estimation of the norm-

alisation height, and therefore the estimation of the signal at aerosol free altitude

used in the boundary value problem, is larger in 2017, due to the lower SNR.

Total uncertainty

The AODs are more sensitive to the definition of the normalisation height then to

the definition of the values for the extinction-to-backscatter ratios. And as we see

from figures 4.2(b) and 4.3(b), varying S(z) gives a systematic uncertainty, while

varying z0 gives a random uncertainty, which we can see in figures 4.2(c) and 4.3(c).

The retrieval (instrument) error due to the uncertainties in S(z) and z0 is 11 % in

2016 and 16.5 % in 2017. Next to the retrieval error, random uncorrelated errors in
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the signal are taken into account, the standard deviation in the selections, which

were shown with the error bars in figures 4.2(a) and 4.3(a). This standard deviation

is 7.5 % on average in 2016 and 10.4 % on average in 2017. So the total uncertainty

of the AOD, random plus systematic, averaged over the measurement periods is

18.5 % in 2016 and 26.9 % in 2017.

4.2.2. Study cases AOD calculation

The clear sky selection for which the dependency on the normalisation height is the

largest, is now examined in detail. This selection is on the 25th of August 2017, as

can be seen in figure 4.3(c). This is due to the low SNR, which can be seen in figure

4.1(a). To see the difference in 2017, the averaged ATB for a case on the 26th of

August 2017 is shown in figure 4.1(b). The ATB has a larger SNR than the selection

on the day before, and therefore the AOD is not as sensitive to the definition of z0.

The different time in the days for the selections can be the cause of this difference in

SNR, because from around 8 AM, direct sunlight will lower the SNR. The averaged

ATB for one selection in 2016, on the 14th of September, is shown in figure 4.1(c).

The averaged ATB has an even smaller standard deviation and thus the calculated

AOD is less dependent on the definition of z0, which we could also conclude from

figure 4.2(c) is the case for 2016 on average.

(a) (b) (c)

Figure 4.1: The averaged ATB for three selections. One on the 25th of August 2017

(a), one on the 26th of August 2017 (b) and one on the 14th of September 2016

(c). The shading is the standard deviation. The black line shows z0 = 7000 m, the

standard value. The dashed lines show z0 = 6500 m and z0 = 7500 m.
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(a)

(b)

(c)

(d)

Figure 4.2: In (a) The AODs for the clear sky selections in the 2016 measurement

period are shown. With the error bars, the standard deviation of the AOD is shown.

The errors calculated for the AOD come from the integrated random uncorrelated

errors in the extinction profile. The shaded area shows the retrieval error, 11 %. The

average AOD during the measurement period is shown by the green dashed line,

the shading around this line is the variation around this mean value, the standard

deviation. In (b) the AODs for varying values of S(z), the aerosol extinction-to-

backscatter ratio is shown. The dots are the AOD calculated with the standard

values for S(z), Smarine = 25 sr and Sdark = 50 sr. The lower boundary represents

the AOD for Smarine = 20 sr and Sdark = 40 sr. The upper boundary represents the

AOD for Smarine = 30 sr and Sdark = 60 sr. In (c) the AODs for varying values of z0,

the normalisation height, is shown. The black line represents the AODs calculated

with the standard values for S(z) and z0. The red line shows the results for z0 =

6500 m and the green line shows the results for z0 = 7500 m. (d) shows the AODs

retrieved with the lidar and the AODs from AERONET. The black error bars show

the standard deviation of the lidar retrieved AODs. The shaded areas show the

retrieval errors, 0.021 for the AERONET data and 11 % for the lidar data.
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(a)

(b)

(c)

(d)

Figure 4.3: In (a) The AODs for the clear sky selections in the 2017 measurement

period are shown. With the error bars, the standard deviation of the AOD is shown.

The errors calculated for the AOD come from the integrated random uncorrelated

errors in the extinction profile. The shaded area shows the retrieval error, 16.5 %.

The average AOD during the measurement period is shown by the green dashed

line, the shading around this line is the variation around this mean value, the stand-

ard deviation. In (b) the AODs for varying values of S(z), the aerosol extinction-

to-backscatter ratio is shown. The dots are the AOD calculated with the standard

values for S(z), Smarine = 25 sr and Sdark = 50 sr. The lower boundary represents

the AOD for Smarine = 20 sr and Sdark = 40 sr. The upper boundary represents the

AOD for Smarine = 30 sr and Sdark = 60 sr. In (c) the AODs for varying values of

z0, the normalisation height, is shown. The black line represents the AODs calcu-

lated with the standard values for S(z) and z0. The red line shows the results for

z0 = 6500 m and the green line shows the results for z0 = 7500 m. (d) shows the

AODs retrieved with the lidar and the AODs from AERONET, the Calitoo Aero-

sol photometer and the Microtops. The error bars show the standard deviation of

the retrieved AOD. The shaded areas show the retrieval errors, 0.03 for the Micro-

tops, 0.021 for the AERONET data and 16.5 % for the lidar data. For the Calitoo no

retrieval error is indicated. 33



To check whether the uncertainty due to the definition of the normalisation

height can be decreased, a larger altitude domain is chosen to average over for

the normalisation height. In figure 4.4(b) the results of the Klett inversion method

are shown for the 2017 measurement period, when for the normalisation height an

altitude domain from 6000 to 7000 m is used. The assumption is that the altitudes

above 6000 m are free of aerosols, which was the case in 2017. By averaging over

such a large amount of range gates, we see that the standard deviations in the se-

lections decrease, the average standard deviation for the selections is 3.5 % instead

of the 10.4 % which was the case for the results with the normalisation height aver-

aged over 5 range gates, as used as standard amount in the Klett inversion method.

To use this altitude domain instead of the standard normalisation height averaged

over only 5 range gates, the modification should first be studied in more detail.

(a)

(b)

Figure 4.4: In (a) The AODs for the clear sky selections in the 2017 measurement

period are shown, with the standard value of z0 = 7000 m. And the average of

5 range gates around that altitude. These results are the same as shown in 4.3(a).

In (b) the AODs for the clear sky selections in the 2017 measurement period are

shown with the normalisation height chosen to be the altitude domain from 6000

up to 7000 m. This means 66 range gates are averaged over for the power at the

normalisation height. In both figures: with the error bars, the standard deviation

of the AOD is shown. The errors calculated for the AOD come from the integrated

random uncorrelated errors in the extinction profile. The shaded areas show the

retrieval error, 16.5 %. The average AOD during the measurement period is shown

by the green dashed line, the shading around this line is the variation around this

mean value, the standard deviation.
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We see two data points with large standard deviations in the results from the

Klett inversion method with the averaging for the normalisation height over an

altitude domain of 1 km. The selection with the largest standard deviation, on the

4th of September 2017, I now look at in further detail. The averaged ATB for the

selection is shown in figure 4.5(a). With the gray band, the normalisation height

domain is indicated. The standard deviation for the extinction profile is large prob-

ably because of liquid water present in the boundary layer, which we can see from

the averaged ATB profile and we will check with the quicklook of the raw data in

figure 4.5(b). Indeed high signals for the total lidar backscatter are seen at the start

of the averaging interval. This points out that clear-sky selections should be defined

with care, which was not the case for the two selections in the 2016 measurement

period as we saw now. The other selections are well defined clear-sky selections

and therefore we can overall trust the selections. By using the altitude domain of 1

km for the normalisation height, the standard deviation overall decreases, because

noise is averaged out better. In the cases were the standard deviation increases,

noise is not the cause of the large variation, so probably liquid water is present in

the vertical profile which causes large uncertainties. This averaging over a larger

altitude domain was only done to see the consequences, further research needs to

be done to verify whether this change can be made for the Klett inversion method

to give better accuracy. The use of an altitude domain of 1 km for the normalisation

height could be used to better select the cloud-free periods.

(a)
(b)

Figure 4.5: One clear-sky selection on the 4th of September 2017. The averaged ATB

from the lidar signal in (a). The shading is the standard deviation. The black lines

show the limits of the normalisation altitude domain, 6000 and 7000 m. The total

lidar backscatter, raw data, for the selection is visualized in (b).
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4.2.3. AOD intercomparison

AERONET data was used to compare our lidar retrievals with for the 2016 meas-

urement period. In 2017 the AOD was also measured with the Calitoo and with

the Microtops from the CLARIFY campaign. So for the 2017 measurement period

our lidar retrieved AODs were compared to the AERONET, Calitoo and Microtops

data. The results are shown in figures 4.2(d) and 4.3(d).

The AERONET data has an instrument uncertainty of 0.021 at 340 nm. The

Microtops have an accuracy of 0.03 for the 550 nm measurements. In addition to

the instrument uncertainty, the Microtops data was averaged over measurements

gathered within 5 minutes, which gives a standard deviation of 0.0033 on aver-

age. This averaging was also done for the Calitoo measurements, which gives an

average uncertainty of 0.0063. The instrument uncertainties are shown with the

shadings in figures 4.2(d) and 4.3(d), the variation in the measurements within 5

minutes is shown with the error bars.

The AODs were measured at different moments in time for the different instru-

ments. Cloud-free periods selected for the lidar data do not mean that AERONET

data is measured at that specific moment because clouds can be present above the

main ARM site where the AERONET sun-photometer was positioned. All of the

AOD measurements are done within a spatial range of 5 km from the lidar, this

is close enough to assume that the aerosol distribution will be comparable for the

measurements within this spatial range (Carlson and Prospero, 1972; Zuluaga et

al., 2012), if the time separation of the measurements is no more than a day. As the

aerosol distribution will be quite stable over a time range of a day, averaging over

a day gives results which can be compared. That is why in figures 4.6 and 4.7 the

average values per day, for all the instruments, are compared.

The square of the correlation coefficients, r-squared, is given in the legends. For

2016, the daily averaged AODs we retrieved with the lidar agree within the uncer-

tainty with the daily averages from AERONET, with an r-squared of 0.76. But there

is an offset between the two of about 36 %, the AERONET data increases relative

to the lidar data with increasing AOD values. In 2017, there is more variation and

uncertainty in the lidar retrieved AODs as we saw already in figure 4.3(a). A small

correlation, r-squared is 0.29, between the lidar retrieved AODs and the data from

AERONET is found. This small correlation is influenced much by the three data-

points in the upper left of figure 4.6(b). The cause of the significant deviation of

such a data-point is shown later.

As we can see in figure 4.7, the Microtops measured AOD values correlate well

with the Calitoo measured AODs (4.7(a)) and the Calitoo measured AODs correlate

well with the AERONET AODs (4.7(b)). Although there is an offset between the

AERONET data and the Calitoo data of around 40 %. As can be seen in figure

4.7(c), with a value of 0.53 for the r-squared, the lidar retrieved AODs correlate

well with the Calitoo measured AODs.
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(a) (b)

Figure 4.6: For both measurement periods the daily averaged AOD values retrieved

with the lidar are compared to the daily averaged AOD values from AERONET.

The black error bars show the variation around the calculated mean value per day.

The red error bars show the retrieval error, 0.021 for the AERONET data, 11 % for

the lidar data in 2016 and 16.5 % for the lidar data in 2017.

(a) (b) (c)

Figure 4.7: The daily averaged AOD values for the 2017 measurement period re-

trieved with the lidar, from the Microtops, the Calitoo and AERONET are com-

pared. In (a) the data gathered with the Microtops is compared to the Calitoo, in

(b) the AERONET data is compared to the Calitoo and in (c) the Calitoo is com-

pared to our lidar retrieved values for the AOD. The black error bars show the

variation around the calculated mean value per day. The red error bars show the

retrieval error, 0.03 for the Microtops, 0.021 for the AERONET data, 11 % for the

lidar data in 2016 and 16.5 % for the lidar data in 2017. For the Calitoo no retrieval

error is indicated.
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Different days are taken into account for the Calitoo-Lidar intercomparison than

for the Calitoo-AERONET intercomparison, because only the days where both in-

struments gathered data for the AOD are included, for both intercomparisons sep-

arated. That is why it happens that the AERONET data correlates well with the

Calitoo data and the Calitoo correlates well with the lidar data, but according to

figure 4.6(b) the lidar data does not correlate well with the AERONET data. More

days are included in the intercomparison shown in figure 4.6(b).

Because the statistical analysis is done with daily averaged values, it is not a

robust correlation study. To look into some details, I point out one striking case. In

figure 4.6(b) one of the three data-points is notable because of its low value for the

lidar retrieved daily averaged AOD and its quite large value for the daily averaged

value for the AOD from AERONET (at ∼ 0.07,0.4). We see no variation in the data-

point, the averaged values come from only one AOD retrieval from the lidar and

one AOD measurement from AERONET in that day, the 23th of August 2017. The

AERONET measurement is from 13:01, the lidar selection is from 15:42 to 16:00.

In the figure below the quicklook of the raw data is shown for the 23th of Au-

gust 2017. The moment of the AERONET measurement is indicated in figure 4.8,

although this measurement is not done at this location, this is just to point out the

time-difference of the two measurements. The clear-sky selection for the AOD re-

trieval with the lidar data is shown with the black vertical lines in figure 4.8. A Total

Sky Image, shown in figure 4.9(b), is shown for the moment of the lidar retrieval,

but from the main ARM site.

Figure 4.8: The total lidar backscatter in the lower troposphere (0-5 km), for the 23th

of August 2017. Where the AERONET arrow is, is the time at which the AERONET

AOD is measured, from the main ARM site, 5 km to the east. So this indication

is just to point out the time difference. The selection for the lidar AOD retrieval is

shown with the arrow and the black vertical lines.

As we see from figure 4.8, clouds are present and visible above the airport site at

the moment of the AERONET measurement and as we see from figure 4.9(b) clouds
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were present above the main ARM site, where the AERONET sun-photometer was

positioned at the moment of the lidar retrieval. From these figures it can clearly be

seen that not the same moments for both locations, for the lidar and the AERONET

sun-photometer, can be used for the AOD retrievals, as clear-sky periods need to

be selected. Therefore averaging over the days or parts of the days is necessary to

intercompare.

The AERONET measurement is from 13:01 and has a value of 0.397. With our

method we did not retrieve an AOD value for this moment, because clouds were

present above the lidar. The averaged ATB for the lidar retrieval is shown in fig-

ure 4.9(a). The integrated aerosol extinction coefficient, the AOD is 0.07, with the

standard value of the normalisation height of 7000 m. Which is highly unlikely the

true value. If we change the normalisation height to 6500 m, the output from the

Klett inversion method for the AOD is 0.31, which deviates a lot from the value

found with the standard used normalisation height of 7000 m, and compared to

the average AOD value in the 2017 measurement period is a better estimation of

the true value. So again, the uncertainty by the estimation of the normalisation

height is large and highly important for the intercomparisons.

Also at the moment of our retrieval, from 15:42 until 16:00, a low-level thin

cloud was present above our lidar, which we see from the little bump around 750

m in the averaged ATB profle, figure 4.9(a). So the retrievals for this day are highly

uncertain because of the presence of clouds and the large uncertainty in the lidar

AOD retrieval due to the estimation of the normalisation height.

When instead of all the daily averages, only the measurements that are within

an hour from each other from the AERONET data and the lidar selections are used,

the correlation coefficient turned out to be 0.003, significantly smaller than the cor-

relation coefficient when all the daily averages were taken into account. Only 5

lidar measurements were taken into account in this analysis. Because of this small

amount of data-points, an incorrect lidar retrieval has a large effect at the correla-

tion analysis. Unfortunately no more measurements from AERONET and the lidar

were gathered within an hour from each other. So reducing the time-intervals for

averaging does not increase the correlation of the lidar AOD retrievals with the

AERONET data.
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(a)
(b)

Figure 4.9: In (a) the averaged ATB for one selection on the 23th of August 2017

is shown, the selection is shown with the black lines in figure 4.8. The shading is

the standard deviation. The black line shows z0 = 7000 m, the standard value. The

dashed lines show z0 = 6500 m and z0 = 7500 m. In (b) a Total Sky Image is shown

from 15:50, so during the lidar selection but taken at the main ARM site, 5 km to

the east. Clouds were present above the main ARM site while a clear-sky selection

is made for that moment above the lidar.
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4.2.4. Aerosol vertical distribution 2017

(a)

(b)

Figure 4.10: The subdivision of the measurement period in 2017 regarding the aer-

osol vertical distribution is shown in (a). The CLARIFY scientist made this subdivi-

sion after analyzing the preliminary results for aerosol number density concentra-

tions, scattering coefficients and the data gathered with mass spectrometers. The

gray diagonal stripes indicate smoke/dust aerosols. Thicker stripes for more aer-

osol. In (b) the AODs for the clear sky selections in the 2017 measurement period

are shown. The total AOD, the same as in figure 4.3(a), is shown in gray. The in-

tegrated aerosol extinction in the BL is shown in green and the integrated aerosol

extinction in the troposphere is shown in red.

In addition to the calculation of the AOD, the vertical distribution of the aerosols

can be analyzed from the lidar signal. The results are shown below, in comparison

with a subdivision of regimes for the measurement period in 2017, regarding the

vertical distribution of the aerosols, made by CLARIFY scientists. Aerosols in the

form of smoke or dust were always present during the period in 2017, the altitude

at which they were present varied during the period. The CLARIFY team made a

subdivision of the measurement period in 2017 (‘personal communication, 2017’),
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regarding where the smoke was present based on in situ data and model data, in

the boundary layer, above, both or non. This subdivision is visualized in figure

4.10(a).

With the lidar retrievals, we tried to see if we could study the same thing, the

vertical distribution of the aerosols. To check whether the aerosols detected are

present in the boundary layer (BL), or above, in the free troposphere, the aerosol

extinction coefficient is integrated separately for the two layers (from 200 to 2200

m for the boundary layer and from 2200 to 8000 m for the free troposphere). The

results are shown in figure 4.10(b).

A trend can be seen in figure 4.10(b). The AOD in the BL is at the start of the

period larger than the free tropospheric AOD. From 21 Augustus onward a clear

shift is visible in the lidar results for the AOD, the free tropospheric AOD is larger

than the BL AOD. From 27 Augustus until the end of the period the total AOD,

shown with the gray dots in figure 4.10(b) is larger than in the first half of the

period, and in the end the BL AOD is larger than the free tropospheric AOD, which

again corresponds to the division of the regimes, as was visualized in figure 4.10(a).

The vertical distribution can be analyzed from the lidar retrieved aerosol extinction

profiles.

To study the causes for the aerosols to be in the boundary layer or in the upper

atmosphere, two cases are studied in further detail. One selection, on the 16th of

August 2017, in the first regime, where aerosols were mostly present in the lower

atmosphere, the boundary layer. And one selection, on the 24th of August 2017, in

the second regime, where aerosols were mostly present in the upper atmosphere,

the free troposphere. Both selections are around 7 AM. The raw data for the total

lidar backscatter and the lidar depolarisation ratio for both selections is shown in

figures 4.11(a,b,d,e).

In figure 4.11 we see that the total lidar backscatter and the lidar depolarisation

ratio for the selection on the 16th of August are relatively larger in the boundary

layer compared to the total lidar backscatter and the lidar depolarisation ratio for

the selection on the 24th of August. In this selection on the 24th of August, the

boundary layer is clean, and the aerosols are higher up in the atmosphere, in the

free troposphere. This vertical distribution can also be seen in the aerosol extinction

profiles shown in figures 4.11(c,f), calculated from the Klett inversion method. The

profile for the 24th of August has larger values for the aerosol extinction up to 5 km,

where the values for the aerosol extinction on the 16th of August are significantly

smaller from 2 km in altitude upwards. The AOD calculated from the integration

of these profiles are 0.269 for the selection on the 16th of August and 0.304 for the

selection on the 24th of August. So the aerosol extinction has overall larger values

for the selection on the 24th of August.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: The total lidar backscatter, lidar depolarisation ratio and averaged aer-

osol extinction profiles for two selections, one on the 16th and one on the 24th of

August 2017. In (a) and (d) the total lidar backscatter in the lower troposphere (0-

5km) for a selection on the 16th (a) and the 24th (d) of August is shown. In (b) and

(e) the lidar depolarisation ratio in the lower troposphere for the two selections is

shown. In (c) and (f) the averaged aerosol extinction profiles for the 16th (c) and

the 24th (f) of August are shown. The aerosol extinction vertical profile is averaged

over the selection in time. And is averaged in the vertical over 5 range gates to

smooth the profile.

The difference in the aerosol vertical distribution is caused by for example, a

different wind speed, wind direction, temperature vertical profile, humidity or a

different source of the aerosols (Szabó-Takács, 2011). We studied a few of these

effects for the two selections as were given above, for the 16th of August 2017 and

the 24th of August 2017. For the wind, temperature and humidity data, general

meteorological data measured at the surface from the main ARM site is used.

In the measured relative humidity at ground-level a significant difference is

found between the two selections. 76 % on average for the selection on the 16th of

August and 95 % on average for the selection on the 24th of August. This high rel-

ative humidity for the selection on the 24th of August can cause the aerosols to be

high in extinction and therefore cause the larger value for the total AOD (Xu et al.,

2015). We know from observations and the notes we kept up during the measure-
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ment period that in the second regime, 22th until the 26th of August, more precipit-

ation events happened than in the first week of the 2017 measurement period. This

could have influenced the relative cleaner boundary layer in the second regime.

Also, another wind speed and direction are measured at the surface during

the two different selections. 6.3 m/s from the EESE for the selection on the 16th

of August and 5.7 m/s from the SE for the selection on the 24th of August. This

means that the air we measured on the 16th of August has blown over the island

east to west before we detected the vertical profile with the lidar at the airport site.

For the selection on the 24th of August we measured air that came straight from the

ocean blowing over the island from the SE. To be able to say something about the

vertical distribution, the type of aerosol and to link this to the dynamical processes,

the sources of the aerosol should be tracked-back.

The type of aerosol affects the amount of depolarisation the lidar will meas-

ure, as described in the previous chapter. Spherical particles will cause the lidar

to detect backscattered light pulses with a parallel plane of polarization in refer-

ence to the emitted light pulses, while non-spherical particles will depolarize the

light. Dust and smoke are typically non-spherical particles and will therefore de-

polarize the light. To study which aerosols we detected at what altitude during

these two cases, HYSPLIT back-trajectories are made using the NOAA HYSPLIT

Trajectory Model (Stein et al., 2015). For three altitude levels, the air is tracked

back for 10 days, 240 hours. In figure 4.12(a) the back-trajectory ending on the

16th of August 7 AM is shown. On the 16th of August we detected non-spherical

particles in the boundary layer as the depolarisation ratio is larger than zero. From

the back-trajectories we learn that the air in the boundary layer on Ascension Is-

land at the 16th of August 7 AM, is originating from above western Africa, which

indeed means biomass burning aerosol could be in the air. In figure 4.12(b) we see

that the air reaching Ascension Island on the 24th of August 7 AM, in the boundary

layer, is coming more from the south and has blown for at least the last five days

through the boundary layer over the Atlantic ocean, which means that the air is

clean of biomass burning smoke or dust, because less biomass burning events hap-

pen in the south of Africa and due to turbulent mixing and precipitation events that

clean the boundary layer. The air above, at 2000 m and 4000 m in altitude for this

selection, does originate from western Africa, which means that the chance is large

that dust or biomass burning aerosol is present in this air, which causes the larger

depolarisation ratios measured in the altitude domain 2000 m-5000 m for the selec-

tion on the 24th of August compared to the case on the 16th of August. This second

case, on the 24th of August, is a typical situation where thus the boundary layer air

is clean of smoke and dust, only contains marine aerosol and the layers above do

contain smoke from the biomass burning events in Africa or Saharan dust. To really

define the cause in the difference in vertical distribution, further research needs to

be done, especially by taking into account the characteristics of the aerosols and the

dynamical processes.
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(a) (b)

Figure 4.12: HYSPLIT Backtrajectories for two selections in 2017, for 240 hours and

3 altitude levels. In (a) the back-trajectories ending on the 16th of August 2017, 7

AM are shown. In (b) the back-trajectories ending on the 24th of August 2017, 7

AM are shown. With the red line, the air which reaches Ascension Island at 500

m altitude is shown. With the blue line, the air which reaches Ascension Island

at 2000 m altitude is shown. With the green line, the air which reaches Ascension

Island at 4000 m is shown. In the plots on the bottom of the figures, the altitude

of the parcels reaching Ascension Island at the specific altitudes, is shown over the

days. With on the left the moment we are interested in and to the right the ten days

the parcel has travelled.
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4.3. Cloud parameters

For both measurement periods, in 2016 and 2017, the cloud parameter R100
eff is cal-

culated from the lidar data with the MS based inversion method and compared to

R100
eff retrieved from the radar data with Frisch’s methods. But first the reference

height in the cloud of 100 m abouve cloud base height is validated, whether the

same is used in both methods. For the lidar retrievals, the cloud selections were

made by a visual inspection of the raw data, the total lidar backscatter, selecting

homogeneous stratocumulus clouds with a thickness of at least 100 m and a cloud

base height of at least 1000 m. These selections were used to calculate the effective

radius and cloud extinction profiles, with the MS based inversion method. From

this, we use the effective radius at the reference height in the cloud to compare our

retrievals with the ones we retrieved from the ARM Cloud Radars. The effective

radius at 100 m above cloud base height, retrieved from the lidar data with the MS

based inversion method, is shown for both periods in figure 4.16(a) and 4.17 (a).

Importance of the Cloud Base Height

Figure 4.13: The CBH for the cloud

selections in the 2017 measurement

period, retrieved with the ARM Ceilo-

meter and the lidar, both at the airport

site. With the error bars the standard

deviation in the cloud, the variation

around the mean is shown.

For the cloud parameter retrieval a refer-

ence height of 100 m above cloud base

height (CBH) is used. It is of big import-

ance that the parameters with which we

want to compare our results with are the

parameters at this same relative height in

the cloud, as the effective radius has a large

dependency on the height in the cloud

(Zhang et al., 2011). The CBH in the lidar

retrievals is a product of the MS based in-

version method and not a real direct meas-

ured quantity, as described in the previous

chapter. This produced CBH from the lidar

retrieval needs to agree with the CBH used

in the radar method, to make sure the same

reference height above these CBHs is used

for the R100
eff intercomparison. The radar

data is gathered from the main ARM site,

therefore the CBH can not be compared

directly with the one we retrieved from

the lidar data, at the airport site, because

they are at 5 km spatial distance from each

other. For the CBH in the radar retrieval

method, at the ARM site, we used the CBH
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measured by a Ceilometer. An identical instrument is operated by the ARM at the

airport site, so the CBH we retrieved from the lidar data for the cloud selections,

is compared to the CBH measured by the Ceilometer at the airport site at those

moments, shown in figure 4.13 and 4.14. This CBH from both instruments is cor-

rected for the altitude above mean sea level of the instrument so the CBHs in the

figures are the CBHs above mean sea level. Assuming that the Ceilometer at the

airport site and the Ceilometer at the ARM site are similar, we can conclude that

the CBH we use in the lidar retrieval and in the radar retrieval are similar and thus

the reference height in the cloud correspond well and the intercomparison of the

parameters at this reference height can be done.

Figure 4.14: The CBH both measured with the lidar and the ARM Ceilometer at the

airport site, for the R100
eff retrieval selections. With the red dots the CBH retrieved

from the lidar data, from the aiport site, is shown. With the green crosses the CBH

detected by the Ceilometer operated by the ARM at the airport site, for the same

time-selections, is shown. With the error bars, the standard deviation in the cloud,

the variation around the mean is shown.

However, a new study, performed by Y. Blanchard (‘personal communication,

2018’), during our 2017 measurement period, has shown that there is a higher cloud

fraction above the main ARM site than above the airport site. So not all CBHs and

cloud fraction are similar above the airport site and the main ARM site. To show

this, the CBHs measured by the Ceilometer at the airport site and the CBH meas-

ured by the Ceilometer at the main ARM site are shown in figure 4.15 for one day,

the 26th of August 2017. Again, the CBH is corrected for the altitude above mean

sea level of the instrument, so the CBHs are given in altitude above mean sea level.

As can be seen, more low-level clouds are detected above the main ARM site. So

overall the cloud fraction and CBH can not be assumed to be similar over the air-

port site and main ARM site. Because the main difference is in the low-level clouds,

with a CBH below 1000 m in height, this does not affect our intercomparison, be-
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cause for our retrievals we select clouds on the constraint that the CBH is at least

1000 m.

So for the intercomparison of R100
eff , we conclude from figure 4.13 that the refer-

ence height in the cloud 100 m above the CBH can be used to compare the Reff but

we do need to take into account for further analysis that the cloud characteristics

can be different at the different locations.

Figure 4.15: The CBH from the Ceilometer at the Airport site compared to the CBH

from the Ceilometer at the main ARM site for one day, the 26th of August 2017.

With the red circles the CBH detected above the main ARM site is shown. With the

green crosses the CBH detected above the airport site is shown. Both are measured

with similar Ceilometers operated by the ARM.

4.3.1. Cloud parameters retrieval from lidar data

The uncertainties in the retrieval for the cloud parameters with the lidar data and

the MS based inversion method arise from the estimation of the instrument cal-

ibration coefficients, the measurement errors and the uncertainty in the method.

A priori estimates are assigned to the calibration coefficients, as was described

earlier. The uncertainties in the calibration coefficients and the uncertainties in the

MS based inversion method together give the retrieval error, 19.8 % on average for

2016 and 39.1 % on average for 2017. This retrieval error is significantly larger in

2017 due to the large uncertainties in the estimation of the calibration coefficients,

for the misalignment. The results for the retrieval of R100
eff , from the MS based in-

version method, for both measurement periods are shown in figures 4.16(a) and

4.17(a). The black error bars show the variation around the mean value for a cloud

selection, the standard deviation. The retrieval error is shown with the gray shad-

ing.
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(a)

(b)

(c)

Figure 4.16: In (a) the lidar retrieved R100
eff for the clouds selected in the 2016 meas-

urement period is shown. The y-axis has another range than in (b) and (c). The

error bars show the standard deviation in the cloud. The shaded area shows the re-

trieval error, 19.8 %. The mean R100
eff during the 2016 measurement period is shown

by the green dashed line, the shading around this dashed line is the standard devi-

ation. In (b) the R100
eff results are shown for the radar retrievals, for Nd = 100 cm−3

in red and for the variable daily averages retrieved from the lidar as input for Nd in

black. σx = 0.34 in both retrievals. The error bars show the standard deviation in

the cloud. The shaded areas show the retrieval errors, 12 % when Nd = 100 cm−3

and 5.7 % for the variable daily averages as input for Nd. The mean R100
eff during

the 2016 measurement period is shown by the dashed lines and in the legend. In

(c) the R100
eff results retrieved with the lidar and with the radar are shown, for the

variable daily averages as input for Nd and with σx = 0.34. The error bars show

the standard deviation in the cloud. The shaded areas show the retrieval errors, 5.7

% for the radar retrieval and 19.8 % on average for the lidar retrieval. The mean

R100
eff for the radar and the lidar retrievals, during the 2016 measurement period, are

shown by the dashed lines and in the legend.
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(a)

(b)

(c)

Figure 4.17: In (a) the lidar retrieved R100
eff for the clouds selected in the 2017 meas-

urement period is shown. The y-axis has another range than in (b) and (c). The

error bars show the standard deviation in the cloud. The shaded area shows the re-

trieval error, 39.1 %. The mean R100
eff during the 2017 measurement period is shown

by the green dashed line, the shading around this dashed line is the standard devi-

ation. In (b) the R100
eff results are shown for the radar retrievals, for Nd = 100 cm−3

in red and for the variable daily averages retrieved from the lidar as input for Nd in

black. σx = 0.34 in both retrievals. The error bars show the standard deviation in

the cloud. The shaded areas show the retrieval errors, 12 % when Nd = 100 cm−3

and 5.6 % for the variable daily averages as input for Nd. The mean R100
eff during

the 2017 measurement period is shown by the dashed lines and in the legend. In

(c) the R100
eff results retrieved with the lidar and with the radar are shown, for the

variable daily averages as input for Nd and with σx = 0.34. The error bars show

the standard deviation in the cloud. The shaded areas show the retrieval errors, 5.6

% for the radar retrieval and 39.1 % on average for the lidar retrieval. The mean

R100
eff for the radar and the lidar retrievals, during the 2017 measurement period, are

shown by the dashed lines and in the legend.
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4.3.2. Cloud parameters intercomparison

Frisch’s method 1 is applied to selections from the Cloud Radar data for the 2016

and 2017 measurement periods, the results are shown in figure 4.16 (b) and 4.17 (b),

both for the standard value of 100 cm−3 for the Nd and for the daily averaged Nd

values from the lidar retrieval as input for the a-priori defined Nd.

The uncertainties from the method are calculated, first for the 2016 data. We

used σx = 0.34 ± 0.09, Nd = 100 ± 70 cm−3 and Nd = 466.1 ± 127 cm−3 for the

standard value of 100 cm−3 and the variable daily averages as input respectively,

and an expected uncertainty in the measurement of ±3 dBZ in the reflectivity factor.

In 2017 Nd = 540.4± 142 cm−3 is used for the variable daily averages as input, for

the other parameters the same values as in 2016 are used. The error for the Reff

retrieval, for method 1, is calculated to be 12 % in 2016 and 2017 for the standard

value of Nd = 100 cm−3 as input. 5.7 % in 2016 and 5.6 % in 2017 for the variable

daily averages as input for Nd.

Dependency on Droplet Size Distribution in Radar Method

The lognormal cloud droplet size distribution used in the radar method, was de-

scribed in equation 3.7. The effect of the pre-defined estimation for the lognormal

cloud droplet spread on the cloud droplet size distribution and therefore the re-

trieved R100
eff is studied here.

This dependency on σx is studied only for the 2017 measurement period. For Nd

the average cloud droplet number concentration as retrieved from the lidar for 2017

was used, 540.4 cm−3. R0 is the median radius, we used the average R100
eff retrieved

from the radar with Frisch’s method 1 for 2017, 4.33 µm. To define the possible bias

error from the uncertainty in σx, the values for σx were varied and the R100
eff for the

cloud selections and the average were calculated. The values for σx used in the

Figure 4.18: The cloud droplet size distri-

butions for the radar method, with Nd =

540.4 cm−3, R0 = 4.33 µm and for varying

values of the lognormal spread, σx.

evaluation are 0.1, 0.2, 0.3, 0.4, 0.5 and

0.6. The resulting droplet size distri-

butions are shown in figure 4.18. The

retrieval errors change slightly from

a change in σx. The uncertainty in

Frisch’s method 1 with Nd = 540.4±142

cm−3 and Z = −30 ± 3 decibel, is 4.8

% for σx = 0.1 ± 0.09 and 7.1 % for

σx = 0.6 ± 0.09. The average value for

R100
eff in 2017 calculated for the standard

value for σx, 0.34, and with the vary-

ing value for Nd with the calculated

daily average Nd from the lidar as in-

put, was 4.33±1.01 µm as we saw in fig-

ure 4.17(b). The average value for R100
eff
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is 4.57±1.06 µm for σx = 0.1 and 3.83±0.89 µm for σx = 0.6. The change in R100
eff res-

ulting from the variation in σx is shown in figure 4.19. The exact averaged values

for R100
eff over the measurement period are shown in the legend.

Figure 4.19: R100
eff for the clouds selected in the 2017 measurement period, retrieved

with Frisch’s method 1 with the variable daily averages as input for Nd. Shown for

varying values of the assumed lognormal spread of the cloud droplet size distribu-

tion.

The retrieved R100
eff from the lidar is compared to the retrieved R100

eff with Frisch’s

method 1 from the radar data. The results are shown in figure 4.16 (c) and 4.17 (c).

The shaded areas in the figures are the retrieval errors, the error bars visualize the

standard deviations in the cloud.

It is difficult to say something about the intercomparison in 2016 because the

WSACR was only operating for 9 days during our measurement period which res-

ulted in 13 useful cloud selections. In 2017 the KASACR was working for the full

measurement period, which resulted in 36 useful cloud selections. In 2017 we can

see that the lidar retrieved R100
eff corresponds with the radar retrieved R100

eff within

the uncertainty band. Around the 23th/24th of August in 2017, the radar results

show significantly higher values than average, this is due to drizzle. The radar

method is highly sensitive to the presence of drizzle (Frisch, Fairall et al., 1995)

because the reflectivity is proportional to the diameter of the droplet to the sixth

power. Filtering for drizzle is done, but as this might have not been done properly,

this results in significantly larger values for the retrieval of R100
eff for rainy periods,

where drizzle-free selections were difficult to define. Cloudnet data, for example, is
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filtered for drizzle (Illingworth et al., 2007), using this might improve the retrieval.

Taking into account the uncertainty in the radar retrievals due to the large sens-

itivity to drizzle, the measurement errors and the uncertainty in the method, and

the uncertainties in the lidar retrievals due to the estimation of the calibration coef-

ficients, the measurement errors and the uncertainties in the method, the results for

the R100
eff from the lidar retrievals and the radar retrievals show a significant correl-

ation for the 2017 measurement period. Therefore the retrieval of the R100
eff from the

lidar data with the MS based inversion method seems promising.

Frisch’s Method 2

In addition to the method described above, Frisch’s method 1, also Frisch’s method

2 is used to calculate the R100
eff in the 2016 measurement period. This method uses

measurements for the LWP by the MWR. No assumption for Nd is needed now. The

used LWP data points for Frisch’s method 2 for 2016 are shown in figure 4.21(b).

The uncertainties in Frisch’s method 2 are dependent on the errors in Z and σx,

and the instrument error for the LWP. With the same values for Z and σx as was

used for method 1, and with an assumed error in the LWP measurement of 20 %,

the error in method 2 for the 2016 data is calculated to be 14 %. The results for the

R100
eff retrieved with Frisch’s method 2 for 2016 are shown in figure 4.21(c). As the

results have large uncertainties and because we have only 7 data points in 2016, the

data is not used for the intercomparison with the lidar retrievals. We only looked

at the methods in comparison to each other. The results differ a lot when we look

at the retrievals from Frisch’s method 1 and Frisch’s method 2, the intercomparison

is shown in figure 4.20.

Figure 4.20: R100
eff for the

clouds selected in the 2016

measurement period and re-

trieved with Frisch’s method

1 and method 2. The black

error bars show the standard

deviation in the cloud, the

variation around the mean.

The red error bars show

the retrieval error, 5.7 %

for method 1 and 14 % for

method 2.
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(a)

(b)

(c)

Figure 4.21: In (a) the lidar retrieved R100
eff for the clouds selected in the 2016 meas-

urement period is shown. The y-axis has another range than in (c). The error bars

show the standard deviation in the cloud. The shaded area shows the retrieval er-

ror, 19.8 %. The mean R100
eff during the 2016 measurement period is shown by the

green dashed line, the shading around this dashed line is the standard deviation.

In (b) the LWP from the MWR during the cloud selections in the 2016 measure-

ment period is shown, averaged per cloud selection. The black error bars show

the standard deviation in the cloud. The red error bars show the 20 % error in the

measurement of the LWP. In (c) the R100
eff at reference height for the clouds selected

in the 2016 measurement period, retrieved with Frisch’s method 2 are shown, for

σx = 0.34. The y-axis has another range than in (a). The black error bars show the

standard deviation in the cloud. The red error bars show the 14 % uncertainty. The

mean R100
eff retrieved with Frisch’s method 2 during the 2016 measurement period

is shown in (c) by the gray dashed line and in the legend.
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4.4. Deriving Aerosol-Cloud Interactions

For both measurement periods the daily averages for the cloud droplet number

concentration and the effective radius at reference height are calculated and plotted

against the daily averaged AOD. The results are shown in figures 4.22 and 4.23.

The retrieval errors are taken into account for the effective radius and shown by

the red error bars in 4.22(c) and 4.22(d). For Nd the retrieval errors are not shown,

they are significantly smaller than the retrieval errors in R100
eff and than the standard

deviations for Nd per day. The gray error bars show the standard deviations from

the averaging over the day. So on the left, in (a) and (c) the results for the 2016

measurement period are shown, a slight increase of the Nd is observed with an

increase of the AOD. And a slight decrease in the R100
eff is observed with an increase

of the AOD. This is as expected, as written before. The correlation coefficients are

small, so no firm conclusions can be made from this analysis, but it looks promising.

In 2017 the correlation coefficients are even smaller and these relationships cannot

be concluded, because of the low SNR and therefore the large uncertainties. To

refine the analysis for the ACIs a classification for the days is defined.

A classification is made for the days per measurement period, to select if the

day was a clean, mixed or separated case. In appendix A.3 lists are shown of which

days fell into what category for both measurement periods. The classification was

made by a visual inspection of the raw data, the total lidar backscatter. A clean day

was a day without smoke or dust present. A mixed day was a day where an aerosol

layer was mixed in with the cloud layer. A separated day means that an aerosol

layer was detected, vertically separated from the cloud layer. A layer of clean air

separates the cloud layer and the aerosol layer. Per category, the average R100
eff and

Nd are calculated and shown in the figures below.

In 2016 the clean days have on average a cloud droplet number concentration of

413.7 cm−3, where the mixed days have an average of 489.9 cm−3 for Nd. The aver-

aged R100
eff is 3.9 µm for clean days and 3.5 µm for mixed days in 2016. An increase of

Nd and decrease of R100
eff from the average over the clean days to the average over

the mixed days, this is as expected and as was concluded also above. When aerosols

are present in the cloud layer, more aerosol will act as CCN, and therefore the cloud

droplet number concentration increases. And, as the hypothesis was, the effective

radius decreases.

In 2017 such a difference is not found. There is no increase in cloud droplet

number concentration or decrease in effective radius perceived with this classifica-

tion. The selections for the classification can be made finer or better and not all the

days have to be included. When only the extreme cases for the three categories are

taken into account, the effects could be studied in more detail.
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(a) (b)

(c) (d)

Figure 4.22: The daily averaged R100
eff , Nd and AOD for the selections retrieved with

the lidar in the 2016 and 2017 measurement period. The red error bars show the

retrieval errors, 19.75 % and 39.05 % for the lidar R100
eff retrieval in 2016 and 2017 re-

spectively. For the number density and the AOD, the retrieval errors are significant

smaller than the standard deviations from the averaging. So these retrieval errors

are not shown in the figures. The gray error bars show the standard deviation in

the day, the variation around the mean.
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(a) (b)

(c) (d)

Figure 4.23: The R100
eff and the Nd averaged per category. The categories are clean,

mixed and separated, as explained in the text.
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5. Discussion

AOD

The AOD results are retrieved from clear-sky selections made by a visual inspection

using the raw data, the total lidar backscatter. The uncertainty from the predefined

extinction-to-backscatter ratios Smarine and Sdark was calculated to be 8 % on aver-

age, 8.7 % in 2016 and 7.6 % in 2017, for the AOD when the predefined values for

Smarine and Sdark were varied with 20 % from the standard value. The variation in

z0, and therefore a change in the value of the signal used in the boundary value

problem assumed to be at the aerosol free altitude, has a bigger impact on the AOD

results, a 7 % variation in the normalisation height, and thus the value of the signal

used in the boundary value problem, results in a change in the average calculated

AOD of 7 % on average, 2.3 % in 2016 and 8.9 % in 2017. The uncertainty due to z0,

and the value of the signal used in the boundary value problem, is larger in 2017

due to the low SNR.

The total retrieval error due to the estimation of the extinction-to-backscatter ra-

tios and the normalisation height, and thus the signal used in the boundary value

problem assumed to be at the aerosol free altitude, is 15 % on average over both

years, 11 % in 2016 and 16.5 % in 2017. Random measurement errors arise from

the noise in the aerosol extinction profiles, which is 9 % on average for the two

measurement periods, 7.5 % in 2016 and 10.4 % in 2017. The total uncertainty for

the AOD, retrieval plus measurement uncertainty, is 22.7 % on average for both

measurement periods, 18.5 % in 2016 and 26.9 % in 2017. In 2017 this uncertainty

is larger than in 2016 due to the low SNR caused by the misalignment. This uncer-

tainty needs to be taken into account. To optimize the Klett inversion method, per

selection a normalisation height could be estimated where the extinction is at its

minimum, or the use of an altitude domain of 1 km at aerosol free altitude for the

normalisation height can be further analyzed.

The AOD product for intercomparison is gathered from AERONET, the Calitoo

and the Microtops. As the measurements by the different instruments are not done

at the same moments, daily averages are compared. In 2016 a correlation between

the AERONET data and our lidar retrievals exist. In 2017 this correlation is weak,

this has to do with the low SNR and large uncertainties in 2017.

The vertical distribution of the aerosols can be studied with the lidar data by

for example calculating the AODs for separated vertical layers. This can be used

to study for example whether the aerosols are mostly in the boundary layer or in

the free troposphere. The vertical distribution is dependent on the wind direction,

wind speed, temperature vertical profile, humidity and the source of the aerosols.
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HYSPLIT back-trajectories can be used to define the source of the aerosols as was

shown. To study the vertical distribution of the aerosols, the characteristics of the

aerosol and the dynamical processes should be studied further.

Cloud parameter

The main ARM site, where the measurements with the Cloud Radar were done,

was situated 5 km to the east on Ascension Island, 300 m higher in altitude than

our lidar. Because cloud characteristics can change significant over such a distance

(Grabowski, 2000), this could make the intercomparison uncertain. And as was

studied by Y. Blanchard, the cloud fraction above the main ARM site is not the same

as the cloud fraction above the airport site, as we saw in figure 4.15. But because the

main difference is in the low-level clouds, with a CBH below 1000 m, which are not

included in the selections for the retrievals this difference in cloud characteristics is

not of direct importance in our intercomparison, but should be taken into account

in further analysis. The reference height used for the selections in the lidar method

corresponds with the reference height used in the radar method. So the products

at this reference height can be used for the intercomparison.

The retrieval of the cloud parameters with the MS based inversion method and

the lidar data is done for both years, also after cloud selections have been made

by a visual inspection using the raw data, the total lidar backscatter. The retrieval

error in 2016 was 19.75 % and in 2017 39.05 %, due to the calibration, retrieval and

measurement errors. In 2016 the lidar was just been serviced by Leosphere which

made that the alignment was better than in 2017 and thus the SNR was higher in

2016 than in 2017.

The R100
eff retrieved with Frisch’s method 1 for the Radar data, used for the in-

tercomparison are calculated with the variable daily averages calculated from the

lidar retrieval as input for Nd. The uncertainties are calculated for Frisch’s retrieval

method 1, 5.7 % in 2016 and 5.6 % in 2017. Important is that drizzle cases are

not included in the retrievals, as the reflectivity is highly sensitive to the size of

the hydrometeors, and thus to drizzle. This gives an uncertainty from selecting

drizzle-free periods for the selections for the retrieval.

The value for the lognormal spread of the cloud droplet size distribution used in

the Radar retrieval is estimated on σx = 0.34±0.09. The sensitivity on the calculated

R100
eff due to the assumption on σx is analyzed. when σx is varied to 0.1 and 0.6, an

average of 8.5 % change in R100
eff is found. These are extreme values for σx, which

would be unusual for a cloud droplet size distribution in marine stratocumulus

clouds (Miles et al., 2000). So the values in between are potential values for σx,

which results in a relatively small uncertainty in the R100
eff retrieval.

In 2016 the Cloud Radar was only operating for 9 days of our measurement

period, no intercomparison can be done. The intercomparison between our lidar

retrievals and the radar retrievals for R100
eff in 2017 correlate well. We see some
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outliers in the radar method in the second week of the 2017 measurement period,

this is caused by long periods of rain and therefore difficulties to make drizzle-free

selections for the retrieval.

Frisch’s method 2 is highly uncertain, the LWP measurements and the method

itself have large uncertainties. The fact that the retrieved values for R100
eff are on

average a factor 3 larger than the retrieved values from Frisch’s method 1, is not

evaluated yet and therefore we only take into account the R100
eff retrieval by Frisch’s

method 1 for the intercomparsion and further analysis.

Deriving Aerosol-Cloud interactions

In 2016 a clear relationship between the daily averaged R100
eff and Nd with the daily

averaged AOD is found. This was as expected, and gives evidence for the Twomey

effect. This was also the conclusion from the analysis with the classification of the

days for 2016. For 2017, these relationships were not found, because of the lower

SNR and larger uncertainties in 2017.

The averaging over the days was necessary because measurements were not

done at the same moments. But this averaging could have also been done over half

days or quarter days, this can be done in further research. In the classification of the

days all the days are included and assigned to a category. This can be improved,

only the days that fit 100 % in a category could be included in the classification or

parts of days can be used for the classification.

To be able to study the Twomey effect, one restriction on the situation is that

the LWP should be constant. With the same amount of water available, increased

aerosol will result in more droplets, and smaller Reff, due to the increased com-

petition of water by droplets. When water supply is sufficient, a positive relation-

ship between the AOD and Reff will appear owing to the collision-coalescence of

droplets (Qiu et al., 2017). No LWP measurements were taken into account in the

ACIs study yet. But the fact that the cloud selections in 2017 differed in the LWP

(figure 4.21(b)) could also be an explanation for not finding the expected relation-

ships between the R100
eff , Nd and the AOD in 2017. The LWP data-sets should be

included in further research to cope with the LWP constraint for the Twomey ef-

fect.

Qiu et al. (2017) also say that the dependence of Reff on the aerosol is largest

at heights near cloud base, therefore the reference height of 100 m for the cloud

parameter Reff will not be a limitation in studying ACIs.

Limitations in the ACI study next to the constraint on the LWP, are the relative

small data sets, the spatial distance between measurements and the uncorrelated

moments of measuring. Direct conclusions for the ACIs are highly uncertain. But

an indication by using the daily averages for the AOD, R100
eff and Nd and the cat-

egorization seems to provide evidence for the Twomey effect in 2016.
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Validation of the retrievals

In the future, the alignment should be checked to increase the SNR. This would

improve the results and decrease the uncertainty for the lidar retrieved AOD and

cloud parameters.

To improve the validation method, measurements should be done at exactly the

same moments in time at the same locations. Uncertainties will decrease a lot and

direct intercomparisons case-by-case can be done. This could for example be done

with a sun-photometer operating constantly situated next to the lidar to measure

the AOD or with aircrafts, UAV’s or drones to take in-situ measurements for the

cloud parameters above the lidar.

The best opportunity for the validation of the lidar retrieval methods will be

to compare them with airborne in-situ data. As the lidar operating on Ascension

Island was part of the CLARIFY campaign, this was the plan beforehand. But be-

cause the in-situ aircraft data was not available yet during this research, and the

ARM data was, the decision was made to start by comparing these products.

To further validate the AOD retrieval method and the cloud parameter retrieval

method for the lidar data, the datasets from the CLARIFY campaign can be used.

And other in-situ measurements can provide help full data to validate the methods.

The spatial and temporal resolution will decrease, and uncertainties due to these

effects will decrease. After validating the methods the data can be used to study

the aerosol vertical profiles, the cloud parameters, the evolution of these and the

interactions. HYSPLIT back-trajectories are necessary to study the sources of the

aerosols, general meteorological data is useful to study the dynamical processes, to

study the causes for the vertical distribution of the aerosols. Then the effect of this

vertical distribution can be studied in relationship to the cloud parameters. The

LWP constraint needs to be included in the end to study the ACIs.
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6. Conclusions

In this research we compared the AOD and cloud parameter products retrieved

from the UV-depolarisation lidar with the same products retrieved from other in-

struments and methods. We gathered a temporally dense dataset of lidar data over

the two measurement periods. For the AOD we were able to compare our product

in 2017 with AERONET, Calitoo and Microtops data, in 2016 only the AERONET

data was available. For the cloud parameter intercomparison in both measurement

periods, one similar retrieved product is used for the intercomparison, the cloud

parameter R100
eff calculated from radar reflectivity. We are now able to answer the

three research questions, stated in the introduction.

The AOD retrievals from the lidar for the 2016 measurement period correspond

well with the AOD values from AERONET. In 2017, the daily averaged lidar re-

trieved AODs correlate too little with the values from AERONET to draw conclu-

sions. In 2017, the lidar was operating with larger retrieval errors because of a

smaller SNR. Therefore the results in 2017 are overall less accurate.

For the cloud parameter intercomparison, not enough data points were avail-

able for 2016. In 2017, the R100
eff retrieved from the lidar corresponds well within the

uncertainty range with the radar retrieved R100
eff . For Frisch’s methods, the same as

for the lidar MS based inversion method, assumptions are of big importance for the

results, so the radar method is not naturally better than our lidar method, but be-

cause their results overlap within the uncertainty, confidence in our retrievals has

increased.

The average calculated AOD retrieved from the lidar in 2016 and 2017 is sim-

ilar, more fluctuation in the AOD seems to be present in 2017. Also the average R100
eff

over 2016 and 2017 is of similar value. For the aerosol and cloud conditions, when

only taken into account the lidar results, the situation seems similar over the two

measurement periods. Further analysis with meteorological conditions and taken

into account the sources of the aerosol is required to prove the climatic comparab-

ility in the measurement periods.

At this moment of writing, the lidar is being realigned, the uncertainty in the

calibration will decrease and a larger SNR would decrease the retrieval error. To

decrease the uncertainty in the AOD retrieval, the Klett inversion method could

be optimized, by defining a normalisation height per averaged selection, where

the extinction is at its minimum or by using an altitude domain at aerosol free

altitude. To further validate the cloud parameter retrieval from the lidar with high

certainty, direct in-situ measurements at the same location as the lidar would be the

best opportunity to verify the retrieval method. More data points corresponding in

spatial location and temporally scale will improve the validation of our retrieved

AOD and cloud products, and the ACI study. LWP data and binned data by the

LWP value should be included in the ACIs analysis to study the Twomey effect.

The UV-depolarisation lidar and the retrieval methods described in this re-

search can contribute to the ACI study and be used to improve climate models.
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A. AOD retrieval

A.1. Lidar Calibration

(a)

(b)

Figure A.1: The depolarisation ratio for clear sky selected height-time boxes for

2016 (a) and 2017 (b), without aerosols or clouds. To check the calibration of the

lidar. With the gray error bar, the variation around the mean, the standard devi-

ation, in the selected height-time box is shown. The total mean depolarisation ratio

during the 2016 and 2017 measurement period separately is shown by the green

dashed line, the shading around this line is the variation around this mean value,

the standard deviation. The standard deviations for the selections is 0.18 on aver-

age for 2016 with outliers of 0.6, while in 2017 the average standard deviation is

0.54 with outliers up to 30.
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A.2. Averaged AOD values from the uncertainty evaluation

Table A.1: Overview of the dependence on the calculated AOD from the predefined

values for S and z0. For the 2016 measurement period.

Smarine Saerosol AOD, z0=7000 AOD, z0=6500 AOD, z0=7500

20 40 0.236 ± 0.11

20 50 0.247 ± 0.114

20 60 0.257 ± 0.118

25 40 0.25 ± 0.113

25 50 0.26 ± 0.116 0.25 ± 0.117 0.262 ± 0.129

25 60 0.269 ± 0.119

30 40 0.263 ± 0.115

30 50 0.272 ± 0.118

30 60 0.281 ± 0.121

Table A.2: Overview of the dependence on the calculated AOD from the predefined

values for S and z0. For the 2017 measurement period.

Smarine Saerosol AOD, z0=7000 AOD, z0=6500 AOD, z0=7500

20 40 0.247 ± 0.126

20 50 0.26 ± 0.13

20 60 0.272 ± 0.133

25 40 0.258 ± 0.128

25 50 0.27 ± 0.132 0.287 ± 0.18 0.239 ± 0.19

25 60 0.281 ± 0.135

30 40 0.267 ± 0.13

30 50 0.278 ± 0.133

30 60 0.288 ± 0.136
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A.3. Classification of days

Table A.3: The days of the 2016 measurement period divided in the categories clean,

mixed or separated, as described in the text.

Clean Mixed Separated

03-09-2016 04-09-2016 10-09-2016

07-09-2016 05-09-2016 11-09-2016

08-09-2016 06-09-2016 14-09-2016

09-09-2016 12-09-2016 15-09-2016

17-09-2016 13-09-2016 16-09-2016

24-09-2016 18-09-2016 19-09-2016

29-09-2016 19-09-2016 27-09-2016

20-09-2016

21-09-2016

22-09-2016

23-09-2016

28-09-2016

Table A.4: The days of the 2017 measurement period divided in the categories clean,

mixed or separated, as described in the text.

Clean Mixed Separated

15-08-2017 20-08-2017 18-08-2017

16-08-2017 21-08-2017 19-08-2017

17-08-2017 22-08-2017 26-08-2017

15-08-2017 24-08-2017 27-08-2017

23-08-2017 25-08-2017 30-08-2017

28-08-2017 29-08-2017 31-08-2017

04-09-2017 01-09-2017

05-09-2017 02-09-2017

07-09-2017 03-09-2017

08-09-2017 06-09-2017

09-09-2017
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B. Cloud parameters retrieval

B.1. Summary of the ECSIM MS based inversion method

MC approaches are always based on stochastic behaviour. In the ECSIM MC model

the propagation of the laser photons is modeled in a stochastic manner. The photons

are launched from the laser with an initial vector. The distance travelled by the

photon before interacting with a scatterer or absorber is determined stochastic-

ally. The type and size of the particle that acts as scatterer or absorber is determ-

ined stochastically and if the photon is absorbed or scattered is then also determ-

ined stochastically according to the single-scatter albedo of the interacting particle.

When the photon is scattered, the direction of the photon is changed according to

its phase function.

The ECSIM MC model, unlike other MC models, is modified to increase com-

putational efficiency. In usual MC models, photons are tracked until they are ab-

sorbed, detected or exit the simulation area. As any photon has a very small chance

of being scattered back to the lidar receiver, the model is corrected for a certain

amount of energy loss, by the absorption or the photon exiting the simulation area,

in order to only evaluate the back scattered photons.

Table B.1: Range of parameters used in the MC calculations.

Parameter Values

CBH [km] 0.5, 1.0, 2.0, 4.0

FOV [mrad] 0.5, 1.0, 2.0, 4.0

R100
eff [µm] 2.0, 2.6, 3.3, 4.3, 5.6, 7.2, 9.3, 12.0

Γl [gm−3 km−1] 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
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C. Abbreviations and Symbols

C.1. List of abbreviations

AOD Aerosol Optical Depth

ACIs Aerosol-Cloud Interactions

CCN Cloud Condensation Nuclei

LWC Liquid Water Content

LIDAR LIght Detection And Ranging

AI Aerosol Index

LWP Liquid Water Path [gm−2]

AERONET AErosol ROotic NETwork

ARM Atmospheric Radiation Measurement Climate Research Facility

LASIC Layered Atlantic Smoke Interactions with Clouds

CLARIFY CLouds and Aerosol Radiative Impacts and Forcing

ORACLES ObseRvations of Aerosols above CLouds and their intEractionS

AEROCLO-SA AErosol RadiatiOn and CLOuds in Southern Africa

MWR MicroWave Radiometer

MS Multiple-Scattering

MC Monte-Carlo

PMT Photo-Multiplier Tubes

FOV Field-Of-View

WSACR W-band Scanning ARM Cloud Radar

KASACR Ka-band Scanning ARM Cloud Radar

ATB Attenuated Backscatter [m−1 sr−1]

SNR Signal-to-Noise Ratio

Earth-CARE Earth Clouds and Aerosol Radiation Explorer

ECSIM Earth Clouds and Aerosol Radiation Explorer simulator

LUT Look-Up Table

CBH Cloud Base Height

BL Boundary Layer
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C.2. List of symbols

Nd Cloud droplet number concentration [cm−3]

Reff Cloud droplet effective radius [µm]

Clid Lidar calibration constant

δC Polarisation cross-talk parameter

Cr Inter-channel depolarisation calibration constant

CN Normalisation factor

P Pressure [Pa]

T Temperature [K]

τ Aerosol Optical Depth

Z Reflectivity factor [dB or m6m−3]

z Range [m]

c Speed of light [ms−1]

t Time [s]

P Lidar power

β Backscatter coefficient [m−1 sr−1]

α Exctinction coefficient [m−1]

S Lidar ratio/Exctinction-to-backscatter ratio [sr]

ρ Particle/Gas density [kgm−3]

λ Wavelength [nm]

σR Molecular Rayleigh backscattering cross section [m2 sr−1]

M Molecular mass [kg]

z0 Normalisation height

Γl Liquid water lapse rate

n Cloud droplet distribution

R Cloud droplet radius

σx Logarithmic spread of the distribution
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