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Preface

The aim of this study was to find an optimal interpolation method for Makkink reference evapo-
ration. This study is part of a larger project within the KNMI to improve the way we interpolate
meteorological data. Recording which interpolation method we choose to interpolate Makkink
evaporation and providing the scientific foundation for this choice is its main goal.

Our colleagues at KS-KA provided feedback on our interpolated maps and provided essential
climatological background information. In particular we thank Gerard van der Schrier, Rudmer
Jilderda, Rob Sluijter and Jules Beersma.

All interpolations, data processing and visualization where done using the statistical comput-
ing environment R (R Development Core Team, 2010). Without this open source project this
study could not have been performed.

De Bilt, February 2011

Paul Hiemstra and Raymond Sluiter
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Summary

Computer models, e.g. hydrological models, are one of the key components in determining effect
policy and estimating impact of water management. Many of these models require gridded
information on meteorological variables such as evaporation and precipitation. Creating such
gridded maps from observations is done using interpolation methods such as splines or linear
regression. The aim of this study was to find the optimal interpolation method for Makkink
reference evaporation.

The evaporation dataset consisted of three temporal support levels: yearly normalen, monthly
normalen and daily observations. For each level we interpolated using a number of interpolation
methods: inverse distance weighted interpolation, kriging, linear regression, interpolation with
the mean, nearest neighbor and thin plate splines. To choose which method was optimal we
looked at two aspects: summary statistics of cross-validation and the visual appearance of the
map.

From our results we conclude that for this dataset thin plate splines is the optimal interpo-
lation method.
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Chapter 1

Introduction

In an ever changing environment, effective policy development to counter any adverse changes
is of great importance. For example, should the height of the North Sea dikes be increased in
response to a rise in sea level? Or how does climate change influence the availability of water
for drinking and industrial applications? Computer models, e.g. hydrological models, are an
important tools in assessing the impact of changes. Forecasts of meteorological parameters,
e.g. rainfall or evaporation, are fed into the model. The behavior of the hydrological model in
response to these changes in driving forces provides insight in the impact of these changes.

One of the driving forces for hydrological models is the reference evaporation. In the Nether-
lands, roughly 70% of the precipitation that falls evaporates. This fact makes evaporation an
important driving force for any hydrological model. There are a number of methods to calculate
the reference evaporation (Winter et al., 1995) from a number of meteorological parameters. At
the KNMI, Makkink is used to calculate the reference evaporation. Makkink requires the incom-
ing shortwave radiation and the mean daily temperature to calculate the reference evaporation for
a particular day. The incoming radiation and temperature are measured at monitoring stations.
However, hydrological models require gridded maps which include estimates of reference evapo-
ration at unmeasured locations. Generating gridded maps from point data, i.e. the monitoring
stations, is commonly referred to as interpolation. Many interpolation methods are available
and where previously used for meteorological data, e.g. multiple linear regression (Gurtz et al.,
1999), inverse distance weighted interpolation (Ni et al., 2006; Menzel, 1999), splines (McVicar
et al., 2007; Jeffrey et al., 2001) or kriging (Jeffrey et al., 2001). Each of these interpolation
methods has strong and weak points.

The purpose of this study was to find the optimal method for interpolating Makkink reference
evaporation. Based on our own experience and previous research at the KNMI (Sluiter, 2009;
Buishand et al., 2008) we defined a number of research questions. First, the number of stations
for which Makkink can be calculated varies between 5 and 36 stations. Especially when the
number of points is low, interpolation of these observations presents challenges. How many
stations do we need to get an acceptable interpolation? Second, the evaporation shows a clear
temporal trend throughout the year. Evaporation is much higher in summer than in winter,
which is mainly caused by the small amount of incoming shortwave radiation. What is the
influence of this temporal trend on the interpolation? Does the performance of the different
interpolation methods change? Third, the data is available on three temporal supports: daily
evaporation, 30 year yearly averages, or yearly normalen, and 30 year monthly averages, or
monthly normalen. How does the performance of the interpolation methods change between these
temporal supports. Fourth, literature suggest a number of spatial trends that might influence
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evaporation (Schuurmans, 2009; McVicar et al., 2007; Jiang et al., 2004; Menzel, 1999; Gutman
and Rukhovetz, 1996). Which of these trends improve the interpolation significantly? Does the
improvement depend on the temporal support of the data, time of the year or the number of
available observations?

To answer these questions we interpolated all observations for the different temporal supports
and judged the quality of the resulting map. We determined the quality of a map by looking at
two aspects. First, we looked at cross-validation statistics to quantify the performance of each
interpolation method. Second, we used expert judgment on how the patterns in the interpolated
map fitted expected patterns as a qualitative performance measure. Such an expert judgment is
to some degree subjective. However, by defining the patterns we expect to find in an interpolated
map we tried to make the expert judgment as objective as possible.

This report is divided into a number of chapters. Chapter 2 discusses the individual inter-
polation methods assessed in this study. In addition, we describe how we judge the quality of a
particular map, which is paramount for accurately choosing the optimal interpolation method.
The interpolation results are shown in chapter 3. This chapter is subdivided into the three tem-
poral supports of the observations. Some of the results are shown inside this chapter, but the
majority is shown in a number of appendixes at the end of this report (appendixes A to B). The
final chapter will provide a discussion of the research questions and place them in the context of
previous research.
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Chapter 2

Methods

2.1 Makkink reference evaporation

The description of Makkink evaporation in this section is mainly based on Schuurmans (2009)
and Buishand and Velds (1980). For additional detail, the reader is referred to these publications.

The primary driving force in case of evaporation is the incoming solar radiation. The following
energy balance can be constructed at the surface:

Qn = S↓ − S↑ + L↓ − L↑ (2.1)

where Qn is the net radiation flux, S↓ the incoming shortwave radiation (0.1 - 3 µm), S↑ the
outgoing shortwave radiation, L↓ the incoming longwave radiation (3-50 µm) and, L↑ the out-
going longwave radiation. Part of the incoming shortwave radiation is reflected by the Earth’s
surface. The relation between S↑ and S↓ is given by:

S↑ = α · S↓ (2.2)

where α is the fraction of radiation that is reflected, also known as the albedo. The albedo
depends on the type of surface. Snow has a very high albedo (0.95), whereas grass has an albedo
of about 0.25. The longwave radiation is mainly emitted by the earth’s surface, but clouds
can reflect the longwave radiation back to the surface. An alternative energy balance for Qn

subdivides the net radiation into three processes in which it is used:

Qn = λE +H +G (2.3)

where λE is the latent heat flux (Wm−2, energy used for evaporation of water), λ the heat
of vaporization (Jkg−1), E the evaporation flux (kgm−2s−1), H the sensible heat flux (Wm−2,
energy used to heat up the air), and G the soil heat flux (Wm−2, energy used to heat up the
soil).

Makkink relates daily reference evaporation to the incoming shortwave radiation (de Bruin,
1987):

ETref = C · s

s+ γ
·
S↓day

λ ∗ ρ
(2.4)

where ETref is the Makkink reference evaporation (md−1), C a constant equal to 0.65 (de Bruin,
1987), s the slope of the curve of saturation water vapor pressure (kPa◦C−1), γ the psychometric
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constant (kPa◦C−1), S↓day the daily incoming shortwave radiation (Jm−2d−1), and ρ the bulk
density of water, i.e. 1000 kgm−3.

The slope of the curve of saturation water vapor pressure is related to mean daily temperature
(Tday, ◦C):

s =
7.5 · 237.3

(237.3 + Tday)2
· ln 10 · es (2.5)

where es equals:

es = 0.6107 · 10
7.5·Tday

237.3+Tday (2.6)

the psychometric constant (γ) is also related to Tday:

γ = 0.0646 + 0.00006 · Tday (2.7)

as is the heat of vaporization (λ):

λ = (2501− 2.375 · Tday) · 1000 (2.8)

This parametrization of Makkink only requires S↓day and Tday, which are both measured at
monitoring stations throughout the country.

2.2 Interpolation methods

In a spatial context, interpolation is the process of estimating a variable at unmeasured locations
using surrounding locations that do have a measurement of that variable. To obtain a gridded
map, an interpolation estimate is made at each grid node until the map filled. A very basic
interpolation method is to take the mean of all observations and assign it to all unmeasured grid
nodes. This interpolation method is called global mean interpolation. An improvement on global
mean interpolation is to take into account local deviations from the global mean by limiting the
range up to which points are used to calculate the mean value for an unmeasured grid node. This
method is known as local mean interpolation. Another option is to assign the nearest measured
value to each grid node, also known as nearest neighbor interpolation. These three interpolation
methods present the most basic methods in this study. Therefore, they act as a baseline for the
other interpolation methods. In the next few section we will provide details on four additional
interpolation methods.

2.2.1 Inverse distance weighted interpolation

Inverse distance weighted interpolation (IDW) extends on local mean interpolation. Local mean
interpolation assigns the same weight to each observation within the search radius. In IDW
the weight of an observation is inversely related to its distance to the prediction location. The
estimate Ẑ(x0) at an unmeasured location x0 is given by (Bivand et al., 2008):

Ẑ(x0) =
∑n

i=1 w(xi)Z(xi)∑n
i=1 w(xi)

(2.9)

where w(xi) is the weight that the observation at location xi receives, and Z(xi) the observation
at location xi. The weight is related to the distance by:
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w(xi) = ||xi − x0||−p (2.10)

where || · || is the Euclidian distance and p is a power that determines how fast the weight drops
with distance. Note that when the prediction location is equal to one of the observation locations,
the weight of that observation becomes infinite. Consequently, the prediction at that location
equals the observation. This means that IDW is an exact interpolator. Furthermore, the weights
are always in the range [0,1], so predicted values never fall outside the range of the observations.

In this study we tried three different IDW interpolation with different values for p: 0.5, 2 and
4. When p becomes larger the weight drops faster with distance and the pattern becomes more
locally oriented.

2.2.2 Linear regression

Linear regression relies on external variables which show a relation to that which we want to
interpolate. For example, if pollution is caused by a leaking underground tank, the concentration
of pollutant could be related with distance to the tank. To interpolate, a regression model is
fitted between the observations and the external variable. When predicting at an unmeasured
location, we invert this model. A simple regression model, or linear model, using one predictor
is expressed as:

Z(x) = β0 + β1f(x) + e(x) (2.11)

where β0 is the intercept of the regression model, β1 the slope, f(x) the value of the external
variable at location x, and e the residual to the regression model at location x. An assumption
in linear regression is that the residuals are uncorrelated. This means that there is no structure
left in the residuals and we can use Ordinary Least Squares fitting (OLS) for the coefficients of
the regression model. Note that regression models are not limited to using just one predictor.
Multiple predictors can be used jointly for interpolation. Furthermore, predictors can be both
continuous or discrete variables.

Literature suggests a number of possible external variables, or predictors, which could be of
interest:

- Altitude (Menzel, 1999; McVicar et al., 2007)

- Slope and aspect (McVicar et al., 2007)

- Distance to the coast (Sluiter, 2009)

- Landuse (Menzel, 1999)

- Vegetation type (Jiang et al., 2004)

- Radiation input from remote sensing (Schuurmans, 2009; Gutman and Rukhovetz, 1996)

- Wind (Schuurmans, 2009)

Within the scope of this research we chose to focus on distance to the coast and altitude. Fig-
ure 2.1 shows the two maps we used for distance to shore and altitude. The altitude map was
based on the Actueel Hoogtemodel van Nederland (AHN) and the distance to shore map was
created by calculating the distance to a digitised shoreline in a GIS.
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Figure 2.1: Maps of the predictors used in this study: a) distance to shore in meters and b)
altitude based on the AHN in cm.

2.2.3 Kriging

Kriging (Chilès and Delfiner, 1999; Christensen, 1996) is a form of linear regression. The differ-
ence between kriging and ’normal’ linear regression lies in how it deals with the residuals. In
linear regression these are assumed to hold no further information and are not used for prediction.
In kriging the residuals are spatially correlated and are taken into account during prediction. The
underlying linear model is very similar to the model in section 2.2.2:

Z(x) = β0 + β1f(x) + e(x) (2.12)

where the difference is that the residuals, e(x), are no longer uncorrelated but have a spatial
correlation: Cov(e(x), e(x+h)) = C(h). The function C(h) is also called the covariance function
. An important assumption in kriging is that the covariance between points only depends on the
distance between points, not on the location within the study area. This assumption, together
with the assumption that the mean of the residual is zero, is called stationarity . This form of
kriging is known as kriging with external drift (KED) or universal kriging (UK). In this study we
will use the term KED. In case the trend component in equation 2.12 is limited to a an unknown
mean value, the equation reduces to:

Z(x) = m(x) + e(x) (2.13)

this form of kriging is is known as ordinary kriging (OK). Simple kriging (SK) simplifies even
further by assuming that the trend is limited to a known mean value. In this study we focused
on using KED and OK, and disregarded SK as the mean value was unknown.

An important aspect of kriging is estimating the covariance function of the residuals. In
general the covariance function is defined as C(h) = C(0) − γ(h), where γ(h) is the variogram
function, or variogram model, and C(0) equals the sill, or maximum variance, or the variogram
function. In case of KED, fitting both the coefficients of the trend, β0 and β1, and the variogram
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model involves the following procedure. First, we estimate the coefficients using least squares
fitting. Second, we determine the residuals to the trend using the fitted coefficients. Third, we
construct a so called sample variogram based on the estimated residuals. The sample variogram
shows a plot of distance versus semivariance for the observation, i.e. how much do points differ
at a certain distance. An option is to show all the point pairs in the plot, but a more common
approach is to bin the distance into classes and calculate the average semivariance for those bins.
The sample variogram is calculated using the following expression:

γ̂(h̄k) =
1

2Nk

Nk∑
i=1

(ê(xi)− ê(xi + h))2 (2.14)

where γ̂(h̄k) is the estimated average semivariance for bin k, h̄k is the average distance of bin k,
Nk is the number of point pairs in bin k and ê(·) is the estimated residual at a certain spatial
location.

The sample variogram provides the estimated spatial structure of the data. In order to
estimate values at unknown locations we need this spatial structure defined not only at the
locations of the bins, but throughout the entire range of distance values. This is accomplished by
fitting a mathematical function to the sample variogram, the variogram model. The variogram
model cannot be any mathematical function, but needs to be conditionally positive definite
(Chilès and Delfiner, 1999). This ensures that no negative kriging error variances are produced
during prediction of the map.

Fitting the variogram model to the sample variogram can be either by a visual fit or by using
a fitting algorithm to minimize some cost function. In this study we used the automatic fitting
routine from the R package automap (Hiemstra et al., 2009), which builds heavily on the gstat
package (Pebesma, 2004). The fitting routine uses least squares fitting to find an optimal fit
between the variogram model and the sample variogram. In addition, we used a Stein type mode
(Ste) because this model can cover a wide range of possible function shapes by varying the kappa
parameter.

The coefficients of a variogram model are commonly termed nugget, sill and range. The
nugget is the short scale variation and is defined as the point where the variogram model crosses
the y-axis. The sill is the maximum semivariance of the variogram model and represents the total
variation in the residuals. Finally, the range is the value where the variogram model reaches the
sill. Beyond this distance the spatial correlation between points is no longer present.

Once the trend coefficients and the variogram model are estimated from the data, all predic-
tion locations can be visited sequentially to obtain a interpolated map of Makkink evaporation.

2.2.4 Thin plate spline

Splines (Wahba, 1990; Hutchinson and Gessler, 1994) interpolate by fitting a series of polynomials
through the observations. Cubic splines interpolate using third order polynomials. An important
aspect of splines is whether to fit the global pattern or the local pattern. Figure 2.2 illustrates
this concept by fitting a 2d cubic spline to a fake dataset. The splines in figure 2.2 show an
increased local fit from left to right, better reproducing the local variations. Whether local or
global interpolation is preferable depends on the objective of the study and on the data.

To interpolate the evaporation data we used the two-dimensional equivalent of the cubic
spline, thine plate splines (Wahba, 1990). Thin plate splines can be compared to bending a thin
sheet of metal to match the evaporation data. As with cubic splines, thin plate splines balances
local accuracy versus global accuracy. This optimization is done using a cost function which
involves a minimum error and the observation locations combined with a minimum in bending
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Figure 2.2: Cubic splines fitted to random data focusing on either global or local accuracy.

of the sheet. The minimum error at the observation locations maximizes local accuracy, whilst
minimizing the bending of the sheet penalizes over-maximizing the local accuracy, stimulating
global accuracy. How strong this effect is is controlled by the λ parameter. In this study we used
the function Tps from the fields package to calculate the thin plate splines interpolation.

In general λ is estimated form the observations using generalized cross-validation (GCV). For
the interpolation of normalen we wanted to keep the ratio of local versus global interpolation
consistent to make the interpolated comparable. We chose a λ equal to 0.004, based on expert
judgment of the maps.

2.3 Interpolation quality

The purpose of this study was choose an optimal interpolation method for Makkink evaporation.
Which interpolation method is optimal partly depends on how we define optimality. In this study
we defined optimal as a mix of cross-validation summary statistics and an expert judgment on
the maps.

2.3.1 Quality of the fitted trend

A common measure for the quality of a fitted trend is the R2 which indicates the fraction of
variance in the data which is explained by the model. The R2 for a given regression model is
defined as:

R2 = 1− SSe

SStot
= 1−

∑n
i=1(Zi − Ẑi)2∑n
i=1(Zi − Z̄)2

(2.15)

where Zi is the measured evaporation, Ẑ the evaporation estimated by the regression model, and
Z̄ the mean evaporation. There is no way to link a certain R2 to an objective measure of quality.
Whether or not an R2 is good depends on, among others, the type of data which is modeled
and the personal preference of the modeler. The R2 is primarily used to compare alternative
regression models.
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2.3.2 Cross-validation

Cross-validation uses all data to train the model. After that, observations are taken out of the
dataset one by one, i.e. leave-one-out cross-validation. By predicting that point using the other
observations we can asses how effective the interpolation is in predicting itself. By calculating
statistics on the cross-validation residuals we can quantify the accuracy of a interpolation method.
A common summary statistic is the root mean squared error (RMSE):

RMSE =

√√√√ 1
n

n∑
i=1

(Ẑcv,i − Zi)2 (2.16)

where n is the number of observations, (Ẑcv,i the cross-validation estimate and Zi the measured
observation. A second statistic is the mean error (ME) or bias. The ME indicates whether there
is a tendency towards over- or underestimation in the cross-validation residuals (Ẑcv − Z):

ME =
1
n

n∑
i=1

(Ẑcv,i − Zi) (2.17)

Calculating RMSE and ME for the different interpolation methods allows us to compare their
performance. However, these statistics only say something on relative performance. It could be
that all methods perform poorly, but some perform less poorly than others. To quantify the
actual performance we defined:

RMSESD =

√
1
n

∑n
i=1 (Ẑcv,i − Zi)2√

1
n−1

∑n
i=1(Zi − Z̄)2

(2.18)

where Z̄ is the mean of the observations. RMSESD divides the cross-validation RMSE by the
standard deviation of the observations. This indicates how the variance of the cross-validation
residuals compares to the variance of the observations. Consequently, the RMSEsd quantifies
the performance of an interpolation method relative to interpolating using the mean of the
observations.

We used a similar approach for ME by diving it by the mean of the observations:

MEmean =
1
n

∑n
i=1 (Ẑcv,i − Zi)

Z̄
(2.19)

MEmean provides a sense of scale of the ME relative to the scale of the observations (the mean
value).

For interpolating daily evaporation the amount of cross-validations is very large. To visualize
the large large amount of cross-validation results we defined the following approach. For each
day 10 points are divided amongst the interpolation methods. The division is done based on the
RMSESD score. Interpolation method i on day t will receive a score defined by:

scoreit =
RMSESD,i∑k

j=1RMSESD,j

∗ 10 (2.20)

where k is an index for all interpolation methods. Summing the score for a certain time interval
(e.g. 1 year or 30 years) will provide a cumulative score for each interpolation method. Dividing
the score of each interpolation method by the score of interpolation using the mean provides the
skill of the interpolation method to just using interpolation with mean.
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2.3.3 Expert judgment

Choosing between interpolation methods using expert judgment on its visual appearance can be
somewhat subjective. To remedy some of the subjectiveness we tried to formalize the expert
judgment by defining a number of patterns there should or should not be present in the map:

- The detail in the spatial pattern should be reasonable given the amount of observations. If
the pattern is too detailed the map suggests an amount of accuracy that is not valid. On
the other hand, if a pattern is present it should be represented in the map. Furthermore,
too much detail puts emphasis on the local patterns, which might be a problem when we
are interested in a globally accurate pattern.

- For the yearly and monthly normals, evaporation is higher at the sea. This is caused by,
on average, less cloud cover close to the shore. This effect is strongest at the western shore
and less pronounced at the northern wadden shore. Within the year this pattern shifts
from west-east to south-west north-east orientation.

- On a daily timescale the patterns should be much more erratic than on a time scale of
normals.
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Chapter 3

Results

In this chapter we present the results of this study per temporal support level: yearly normals,
monthly normals and daily observations of Makkink reference evaporation. The unit of daily
evaporation used in this study is 10−1 mm, the normals have unit mm. We used this odd unit
for daily evaporation to be able to store the evaporation data in the database as integers. Note
that this choice also influences the units of the derived quantifies such as the sample variogram
and the fitted regression parameters.

3.1 Interpolation of yearly normals

Some basic statistics on the yearly normalen are given by table 3.1. Note that for calculation of
the yearly normals we only included stations which had a timeseries of Makkink evaporation of
more than 20 years.

mean 581.31 mm
sd 21.29 mm

min 544.70 mm
max 614.60 mm

Table 3.1: Basic statistics for yearly normals.

An important matter is how the explanatory variables explain the variation in the evaporation
data (evap). We fitted linear regression models for all combinations of both candidate explana-
tory variables: distance to the shore (dist_shore) and altitude (alt). How well the regression
models perform is vital for the trend-based interpolation methods: linear regression and kriging
with external drift (KED). Table 3.2 shows the results for each regression model. It is obvious
that log(dist_shore) performs better than dist_shore as a predictor for evaporation, the R2

becomes almost twice as large. Adding alt increases regression model performance slightly: the
R2 increase somewhat. However, the coefficients fitted for altitude are all non-significant (p-value
< 0.025). In addition, the regression model with only alt performs poorly with a very low R2

and very high p-value.
Fitting a variogram model is an important step for the four kriging based interpolations we

tested. These where ordinary kriging (OK) and kriging with external drift using three regression

15



model R2 dist_shore dist_shore dist_shore
evap ∼ dist_shore 0.2153 0.0946
evap ∼ dist_shore + alt 0.3511 0.0433 0.1575
evap ∼ log(dist_shore) 0.3924 0.0165
evap ∼ log(dist_shore) + alt 0.5070 0.0082 0.1380
evap ∼ alt 0.0434 0.4745

Table 3.2: R2 and p-value for linear regression models for each combination of the candidate
explanatory variables.
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Figure 3.1: Sample variogram and fitted variogram models for the four kriging interpolations.

models: evap ∼ dist_shore, evap ∼ log(dist_shore) and evap ∼ log(dist_shore) + alt.
Figure 3.1 shows the variogram models for each kriging option.

A number of important trends are visible in this figure. For the first three variograms there is
a clear drop in sill. This is logical because some of the variability in the observations is explained
by the trend. The sill is lowest for evap ∼ log(dist_shore), for evap ∼ log(dist_shore)
+ alt the sill increases again. The trend in the sill seems to following the trend in the R2,
although the lowest sill is not associated to the highest R2 (evap ∼ log(dist_shore) + alt),
but to evap ∼ log(dist_shore). The range stays roughly the same for evap ∼ 1 and evap ∼
dist_shore. However, the range increases for evap ∼ log(dist_shore) and even more for evap
∼ log(dist_shore) + alt, indicating that the spatial trend in the residuals becomes more and
more globally oriented.

To choose an optimal interpolation method we looked at two aspect: how does the map look
and how does the map perform in cross-validation. First we will look at the visual appearance of
the map. The twelve interpolation options we selected are shown in figure 3.2. Judging the visual
appearance is done using the aspects mentioned in section 2.3.3. Ordinary kriging (OK), kriging
with external drift (KED) with dist_shore, all inverse distance weighted interpolations, nearest
neighbor interpolation and interpolation with the mean show a non continuous pattern parallel to
the shore. This pattern does not correspond with the expected pattern with high evaporation at
the coast. KED with log(dist_shore), KED with log(dist_shore) + alt, both regressions
and the thin plate splines (TPS) do show the expected pattern at the coast. TPS distinguishes
itself further in the north of the Netherlands. KED and regression show isolines parallel to the
coast, TPS shows lines perpendicular to the coast.

In addition to the pattern at the coast, an important aspect was how globally or locally
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Global pattern
1 mean:evap ∼ 1
2 idw05:evap ∼ 1
3 regress:evap ∼ log(dist_shore)
4 krige:evap ∼ log(dist_shore) + alt (KED)
5 tps:evap ∼ 1
6 krige:evap ∼ log(dist_shore) (KED)
7 krige:evap ∼ 1 (OK)
7 krige:evap ∼ dist_shore (KED)
7 idw:evap ∼ 1

10 krige:evap ∼ log(dist_shore) + alt (KED)
11 idw4:evap ∼ 1
12 nn:evap ∼ 1

Local pattern

Table 3.3: Ordinal ranking of the interpolated maps in figure 3.2 on a scale from a locally to a
globally oriented pattern.

oriented the pattern was. Table 3.3 shows a subjective ordinal ranking of the interpolation
methods according to how globally or locally oriented they are. Interpolation with the mean and
IDW with inverse distance power 0.5 show a very global pattern. Nearest neighbor and IDW
with a power of 4 show a much locally oriented map. TPS and KED with log(dist_shore)
present a compromise between the global pattern and the local variations. The KED and the
regression which use altitude as a predictor show some very local trends. These trends are most
likely artifacts of the underlying altitude map used to perform the interpolation. The amount of
detail in this map suggests too much accuracy in the map.

In addition to the visual appearance of the maps, we also performed cross-validation to
quantify the performance of the interpolation. Figure 3.3 shows the bias and absolute error of each
interpolation method, see section 2.3.2 for details on their definition. Judging from the RMSESD

The best performing interpolations are TPS and KED evap ∼ log(dist_shore) + alt, closely
followed by KED evap ∼ log(dist_shore). The regressions perform very poorly. Of the
IDW options IDW with a power equal to 4 performs best. Note that interpolations that are a
compromise between the global and local pattern perform well in cross-validation. The bias for
all interpolation methods is very low compared to the mean value of the observations.

Cross-validation statistics only give the average performance of method. Figure 3.4 shows a
spatial plot of the cross-validation residuals, enabling us to visualize any patterns. We want to
highlight the following patterns:

- The residuals of interpolation with the mean (mean:evap ∼ 1) show underestimation at
the coast and overestimation more inland. This confirms that evaporation should be higher
at the coast.

- Increased performance of KED by adding altitude (krige:evap ∼ log(dist_shore) vs
krige: evap ∼ log(dist_shore) + alt) is mainly caused by an improved performance
at the southern most stations (in Limburg).

- The performance of TPS versus the two KED’s which perform well (krige: evap ∼
log(dist_shore) and krige:evap ∼ log(dist_shore)+ alt is mainly better in the
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north. This indicates that the trend with distance to the coast is not as prominent in
the north. TPS performs better there because it does not assume any trend.

- The regression cross-validation results still show a lot of pattern, much more than the KED
with the same regression model. This indicates that interpolation of the residuals from the
regression model boosts interpolation performance.
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Figure 3.2: Interpolated maps of yearly normal Makkink reference evaporation. The names used
in this figure are: krige for kriging, idw for inverse distance weighted interpolation, regress for
linear regression interpolation, tps for thin plate splines, nn for nearest neighbor and mean for
mean interpolation. The text behind the ∼ shows the explanatory variables used.
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Figure 3.3: Cross-validation statistics for the different interpolation options: (root mean squared
error / sd observed) and (bias / mean observed).
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Figure 3.4: Map of the cross-validation residuals for all interpolation methods considered. Red
is overestimation, green is underestimation.
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3.2 Interpolation of monthly normals

Interpolation of monthly normals shows a lot of similarity to the interpolation of yearly normals.
This section will focus on the differences and similarities between the monthly and yearly inter-
polation results. As with yearly normals, we excluded stations with only 20 years of available
data. In addition, we only included stations for which we had normals for each month. Finally,
we excluded stations CABAUW and WILHELMINADORP. Both these stations showed large local varia-
tions with surrounding stations, making variogram modeling difficult. Taking into account these
considerations, we calculated the sample variograms based on 12 observations for each month.

month mean evap sd evap
January 8.41 0.74
February 15.15 1.01
March 33.99 1.60
April 60.16 1.74
May 86.98 2.24
June 93.66 2.96
July 98.25 2.97
August 82.53 2.85
September 50.88 1.82
October 28.07 1.31
November 11.17 0.95
December 6.32 0.45

Table 3.4: Mean and standard deviation of Makkink evaporation monthly normals (mm).

Table 3.4 shows the mean and standard deviation of the observations for each month. The gen-
eral trend is obvious: high evaporation in summer and low in winter.The results in appendix A.1
show the regression results for each month. In the ’warm’ months, March to September, the
trend with distance to the coast shows a relatively high R2 (>∼0.25) and small p-values. In
addition, the results are much better for log(dist_shore) than for dist_shore. This R2 and
p-values indicate that distance to the shore is a significant trend in these warm months. However,
in the remaining ’cold’ months the R2 is low and the p-values are large. So, in these cold months
the trend with distance to the shore is not significant.

In the warm period the variogram models, shown in appendix A.2, show roughly the same
pattern as the yearly normals. The sill drops when more predictors are used and the range
becomes larger. In the cold period the sill and range stay roughly the same, indicating that the
predictors do not explain part of the variance in the observations. This confirms the low R2 and
high p-value in appendix A.1: in the cold period the predictors are not successful.

The maps for each month in appendix A.3 show a comparable relation to the yearly normals.
In the warm period the maps show a pattern similar to the yearly normals: high evaporation
near the shore, low evaporation more inland. In the cold period the spatial pattern becomes more
north-south oriented, which again confirms that the trend with distance to shore is not present
in the cold period. This is confirmed by the fact that the maps of the four kriging options look
roughly same for the cold period. The pure regression based interpolations still show a shore
oriented trend in the cold period, whilst it is clear that there is no trend. Ordinary kriging
and TPS both show a good compromise between local accuracy and global accuracy. The IDW
interpolations with power 2 and 4 show a tendency towards a local pattern.
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Figure 3.5: Number of stations which can be used for interpolation versus time.

Finally, we quantified the performance of each interpolation method using cross-validation.
The general pattern is that TPS and ordinary kriging show the best performance. This indicates
that they are most successful in adapting to the changing pattern during the year. In the warm
period, methods that take into account the trend show a sharp increase in performance, e.g.
the results for May. Overall, the observation oriented methods such as TPS and OK perform
better than the trend oriented and mixed trend/observations methods such as KED and linear
regression.

3.3 Interpolation of daily observations

The sheer number of interpolated maps makes interpreting the results of daily observations more
complex than that of the normalen. So, the results for daily observations are not focused on
variogram models and maps, but more on aggregated cross-validation results. However, some
differences and similarities between the daily observations and the normalen are important to
note:

- The number of available monitoring stations is not constant, figure 3.5 show how the
number of stations changes in time. This is caused by a limited number of global radiation
observations for those years.

- The yearly temporal trend is similar to that in the monthly normals, high evaporation in
summer, low in winter. Figure 3.6 shows a timeseries of the mean daily evaporation from
1970 to 2010.

- The trend of high evaporation at the coast and low inland is not consistently present in
the daily maps. Of number of regression models from 2008 illustrates this point nicely, see
figure 3.7. Some days there is no trend at all, and on the days that the trend is present it
is not always a higher evaporation at the coast.
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To provide a sense of how interpolated maps look like on a daily basis, appendix B provides
a few weeks of maps. The figure shows the first week of January and July for 1970, 1989 and
2008. Although the maps we selected to show are arbitrary, they provide a nice illustration.
Most prominent is that the patterns are much more erratic than for the maps of normals. Going
from 1970 to 2008 shows an increased amount of detail as the number of available observations
increases.

To quantify interpolation performance across the daily evaporation dataset, we calculated
the skill each method had in contrast to interpolation using the mean. Figure 3.8 shows this
skill. The results have split out into several categories: low (< 12), medium (> 12 and ≤ 18) and
high (> 18) amounts of observations and period in the year, warm (March-September) or cold.
For all categories TPS performs best. A striking outlier is the performance of the interpolations
that include altitude as a trend for low amounts of observations. The skill relative to the mean
interpolation increases when the number of observations increases. This is logical given that
more observations allow an interpolation method to insert much more detail into a map, which
is nog present in the mean interpolation. In addition, performance in the warm period is a little
better than in the cold period.
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Figure 3.6: Timeseries of daily mean Makkink evaporation (10−1mm) for the period 1970 to
2010. The blue line is a fitted spline.
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Figure 3.7: Regressions of log(dist shore) versus evap (10−1mm) per day in the period April
- July 2008. Time progresses from top left to bottom right.
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Figure 3.8: Skill score relative to the mean for each interpolation method for the warm and cold
periods (columns) and low to high amounts of observations (rows).
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Chapter 4

Discussion and Conclusion

4.1 Optimal interpolation

The optimal interpolation method for Makkink reference evaporation is thin plate splines (TPS).
This conclusion holds under all different circumstances we took into consideration: for all
amounts of available stations, for yearly and monthly normals, for daily observations and in
the cold and warm period of the year. For interpolation of normals we base this conclusion on
the cross-validation results combined with expert judgment on the pattern in the maps. TPS
showed a low value for RMSESD and showed all the patterns expected of the map. Furthermore,
the map showed the amount of detail we expect based on the amount of stations used during
interpolation. For daily observations we relied primarily on the cross-validation results. These
show that, on average, TPS performs best.

Examples of other studies using thin plate splines for interpolation of meteorological variables
include Jeffrey et al. (2001) and Price et al. (2000). These two studies used ANUSPLIN (Hutchin-
son, 1995). A difference between those studies and this current study is that they used altitude
as an additional independent variable. We did not deem this necessary as the Netherlands is
quite flat.

A number of research question where addressed in the introduction. We will discuss these
issues in the next section. Finally, we will discuss some issues which are not directly related to
any of the research questions.

4.2 Research questions

Number of stations
How many observations are necessary for an accurate map? This question is not straightforward
to answer as this depend heavily on the type of data to be interpolated and on the use of the
maps afterwards. For kriging a popular rule of thumb is to use a minimum of 30 observations to
estimate the variogram (Journel and Huijbregts, 1978). According to this criterion almost none
of our interpolated kriging maps are good enough. But how many observations one needs also
depends on the spatial variability in the data. If the data exhibits a lot of local details, many
observations are needed to interpolate a map accurately.

The normalen maps are much smoother than the daily maps. Consequently, we believe less
observations are needed to interpolate those accurately. Expert judgment on the TPS maps
suggested the normalen maps showed the patterns and detail we expected. Therefore, the 13
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observations of normalen where enough to interpolate these normalen. Of course, such an expert
judgment is to a degree subjective.

Daily evaporation maps are less smooth. The interpolated maps show that increasing the
amount of stations increase the detail of the patterns in the map, especially going from low
to medium amount of points. This suggests that the actual pattern is more detailed than the
pattern emerging from the interpolation based on 5 points. This effect is also present when
going from medium to high amount of points, but the effect is smaller. This is confirmed by
the cross-validation results. The performance of the interpolation methods relative to using the
mean for interpolation increases when increasing the number of points. We suggest to at least a
medium amount of points (∼15) should be used to interpolate daily evaporation.

Time of the year
The monthly normals show a change in spatial pattern between the warm and cold period. In the
cold period the pattern is more north-sout oriented, while in the warm the pattern is west-east
oriented parallel to the coast line. This is obvious from the interpolated maps and is confirmed
by the cross-validation results. These results show that interpolation with regression based on
distance to shore performs better in the warm period than in the cold period. The kriging
interpolation that use this trend suffer less in the cold period. Interpolation of the residuals to
the trend can correct some of the error introduced by using the faulty trend. The cross-validation
performance of TPS is good for both the cold and warm period, almost always ranking first or
second.

The cross-validation results for interpolation of daily observations show that the performance
of the interpolation methods is better in the warm period. On average this is by a factor of 1.4.
However, the ranking of the interpolation methods does not change, with TPS ranking first.

Temporal support
For all temporal supports TPS performs best. Important is that the pure regression based
interpolations perform less for daily observations than for normalen. In addition, data oriented
interpolation methods (e.g. ordinary kriging) show an increased performance when interpolating
daily observations.

Spatial trends
From literature a number of predictors where deemed important for interpolating evapora-
tion (Schuurmans, 2009; McVicar et al., 2007; Jiang et al., 2004; Menzel, 1999; Gutman and
Rukhovetz, 1996). In this study we focused on distance to the shore and altitude. Although our
results show that these trends influence the maps and cross-validation results significantly, we
did not choose an interpolation method which incorporated them. The rationale behind is as
follows. Incorporating a trend focuses the map into that trend. For example, incorporating the
distance to the sea makes that trend very dominant in the resulting map. The lack of detailed
validation data makes it hard to decide if this dominant pattern is realistic or not. TPS does
not rely on the trend and lets the observations dictate the pattern.

In addition to dominating the pattern, incorporating a trend can also introduce a false sense
of accuracy. Many studies use regression based interpolation, e.g. Agnew and Palutikof (2000).
These maps tend to show a lot of detail, especially when based on high resolution DEM’s. An
example of such a map in our study was the mapping of yearly and monthly normals with KED
using distance to shore and altitude. We find, based on expert judgment, that the detail in this
map is too high. This suggests a level of map accuracy which is not realistic given the amount
of stations we have available. An argument against this could be that when (cross-)validation
results favor the detailed map, that it should be favored over other methods. However, the small
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support of the observations combined with the large size of the study area makes validation of
a detailed pattern questionable. When a DEM is used in regression, we suggest smoothing the
DEM to obtain a level of detail in the DEM which matches the level of detail appropriate for
the amount stations available. In our opinion, validation and expert judgment should go hand
in hand when assessing the quality of an interpolated map.

The impact of distance to the shore is significant in the Netherlands. In other areas which are
less influenced by the sea, this predictor is likely to be unimportant for interpolating Makkink
reference evaporation. Many studies include slope and aspect as predictors (Agnew and Palutikof,
2000; Vicente-Serrano et al., 2007). We expect this to have little influence in a flat country such
as the Netherlands.

4.3 Recommendations for future research

A number of research topics emerged during this study, which could prove to be interesting:

Definition of optimality
To determine which interpolation method is optimal, it is vital to define what exactly we mean by
optimal. In this study we defined optimal by looking at the predictive power of the interpolation
method: how well could the method reproduce the observations. The maps of daily evaporation
are used for modeling studies. An alternative definition of optimality would be to see how the
hydrological model performs using different interpolated datasets. This is not necessarily the
same method we found optimal. The result could be that interpolation using a mean value is
more than enough for the model to perform well. This in turn depends on the sensitivity of the
hydrological model to evaporation.

Interpolation of anomalies
For interpolation of daily observations we interpolated the observations as they where. Another
option is to first calculate long term averages, i.e. normals, for each station and correct each
station for its normal. These corrected values are called anomalies. In this context we can use
either yearly or monthly normals, most likely monthly normals are advisable. Interpolation would
than become a stage process of calculating the normals, subtracting them from the observations,
interpolating these anomalies and than add the interpolated normals. An advantage of this
approach is that within the daily dataset we guarantee that the pattern prevalent in the normals
is also present in the daily dataset.
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Appendix A

Interpolation of monthly
normalen

A.1 Regression results
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model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.0304 0.5879
VARIABLE ˜ dist shore + altitude1km 0.2280 0.1468 0.1634
VARIABLE ˜ log(dist shore) 0.0866 0.3532
VARIABLE ˜ log(dist shore) + altitude1km 0.2376 0.1369 0.2146
VARIABLE ˜ altitude1km 0.0117 0.7383

Table A.1: Regression results for January

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.1345 0.2410
VARIABLE ˜ dist shore + altitude1km 0.3456 0.0577 0.1226
VARIABLE ˜ log(dist shore) 0.2730 0.0814
VARIABLE ˜ log(dist shore) + altitude1km 0.4208 0.0311 0.1640
VARIABLE ˜ altitude1km 0.0018 0.8966

Table A.2: Regression results for February

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.2215 0.1226
VARIABLE ˜ dist shore + altitude1km 0.3619 0.0590 0.1928
VARIABLE ˜ log(dist shore) 0.3530 0.0416
VARIABLE ˜ log(dist shore) + altitude1km 0.4260 0.0345 0.3125
VARIABLE ˜ altitude1km 0.0309 0.5850

Table A.3: Regression results for March
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model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.3960 0.0284
VARIABLE ˜ dist shore + altitude1km 0.5053 0.0251 0.1921
VARIABLE ˜ log(dist shore) 0.6003 0.0031
VARIABLE ˜ log(dist shore) + altitude1km 0.6481 0.0048 0.2977
VARIABLE ˜ altitude1km 0.1099 0.2926

Table A.4: Regression results for April

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.3198 0.0553
VARIABLE ˜ dist shore + altitude1km 0.3730 0.0852 0.4048
VARIABLE ˜ log(dist shore) 0.5463 0.0060
VARIABLE ˜ log(dist shore) + altitude1km 0.5799 0.0115 0.4181
VARIABLE ˜ altitude1km 0.1125 0.2864

Table A.5: Regression results for May

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.3291 0.0511
VARIABLE ˜ dist shore + altitude1km 0.4487 0.0359 0.1959
VARIABLE ˜ log(dist shore) 0.5520 0.0056
VARIABLE ˜ log(dist shore) + altitude1km 0.6211 0.0058 0.2321
VARIABLE ˜ altitude1km 0.0768 0.3833

Table A.6: Regression results for June

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.2865 0.0729
VARIABLE ˜ dist shore + altitude1km 0.4582 0.0275 0.1256
VARIABLE ˜ log(dist shore) 0.5277 0.0075
VARIABLE ˜ log(dist shore) + altitude1km 0.6440 0.0036 0.1205
VARIABLE ˜ altitude1km 0.0427 0.5194

Table A.7: Regression results for July

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.1970 0.1484
VARIABLE ˜ dist shore + altitude1km 0.3973 0.0401 0.1178
VARIABLE ˜ log(dist shore) 0.3824 0.0321
VARIABLE ˜ log(dist shore) + altitude1km 0.5216 0.0128 0.1400
VARIABLE ˜ altitude1km 0.0126 0.7279

Table A.8: Regression results for August
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model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.1167 0.2771
VARIABLE ˜ dist shore + altitude1km 0.3698 0.0472 0.0897
VARIABLE ˜ log(dist shore) 0.2650 0.0868
VARIABLE ˜ log(dist shore) + altitude1km 0.4562 0.0226 0.1090
VARIABLE ˜ altitude1km 0.0000 0.9920

Table A.9: Regression results for September

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.0022 0.8847
VARIABLE ˜ dist shore + altitude1km 0.2031 0.2789 0.1662
VARIABLE ˜ log(dist shore) 0.0120 0.7348
VARIABLE ˜ log(dist shore) + altitude1km 0.2371 0.2141 0.1377
VARIABLE ˜ altitude1km 0.0856 0.3561

Table A.10: Regression results for October

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.0019 0.8940
VARIABLE ˜ dist shore + altitude1km 0.2292 0.1874 0.1377
VARIABLE ˜ log(dist shore) 0.0351 0.5597
VARIABLE ˜ log(dist shore) + altitude1km 0.2504 0.1599 0.1424
VARIABLE ˜ altitude1km 0.0549 0.4634

Table A.11: Regression results for November

model rsq ds pval lds pval a1km pval
VARIABLE ˜ dist shore 0.0119 0.7359
VARIABLE ˜ dist shore + altitude1km 0.2384 0.1530 0.1363
VARIABLE ˜ log(dist shore) 0.0693 0.4083
VARIABLE ˜ log(dist shore) + altitude1km 0.2774 0.1145 0.1419
VARIABLE ˜ altitude1km 0.0322 0.5765

Table A.12: Regression results for December
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A.2 Variogram models

37



dist

ga
m

m
a

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

evap~1

+

+ +
+ +

+

+
+

+ +

+

+

+
+

+

+

+

+

+
+

+

+

+

+ +

+

+
+

+ +

+ + +

+

+

2e+044e+046e+048e+041e+05

evap~dist_shore

+
+ + + +

+

+ + + +

+

+

+
+

+

+

+ +
+ +

+

+ +

+

+

+

+

+ +

+

+ +
+

+

+

2e+044e+046e+048e+041e+05

evap~log(dist_shore)

+
+ +

+ +

+
+ + + +

+

+
+

+
+

+

+ +
+

+

+

+ +

+

+

+

+

+
+

+

+ +
+

+

+

2e+044e+046e+048e+041e+05

evap~log(dist_shore)+altitude1km

+
+ +

+ +

+

+ +
+ +

+

+ +

+
+

+

+ +

+
+

+

+

+ +

+

+

+
+

+

+

+
+ +

+

+

2e+044e+046e+048e+041e+05

M
arch

A
pril

M
ay

June
July

A
ugust

S
eptem

ber

Figure A.1: Variograms for the ’warm’ months, March through September.
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Figure A.2: Variogram for the cold months, January, February, October, November and Decem-
ber.
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A.3 Interpolated maps
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Figure A.3: Interpolated maps of 30 year monthly average for January
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Figure A.4: Interpolated maps of 30 year monthly average for February
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Figure A.5: Interpolated maps of 30 year monthly average for March
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Figure A.6: Interpolated maps of 30 year monthly average for April
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Figure A.7: Interpolated maps of 30 year monthly average for May
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Figure A.8: Interpolated maps of 30 year monthly average for June
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Figure A.9: Interpolated maps of 30 year monthly average for July
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Figure A.10: Interpolated maps of 30 year monthly average for August
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Figure A.11: Interpolated maps of 30 year monthly average for September
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Figure A.12: Interpolated maps of 30 year monthly average for October
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Figure A.13: Interpolated maps of 30 year monthly average for November

51



Figure A.14: Interpolated maps of 30 year monthly average for December
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A.4 Cross-validation

A.4.1 Summary statistics
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Figure A.15: Cross-validation summary statistics (RMSE divided by standard deviation and ME
divided by mean) for monthly interpolated maps of January to March.
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Figure A.16: Cross-validation summary statistics (RMSE divided by standard deviation and ME
divided by mean) for monthly interpolated maps of April to June.
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Figure A.17: Cross-validation summary statistics (RMSE divided by standard deviation and ME
divided by mean) for monthly interpolated maps of July to September.
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Figure A.18: Cross-validation summary statistics (RMSE divided by standard deviation and ME
divided by mean) for monthly interpolated maps of October to December.
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A.4.2 Plots of CV residuals
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Figure A.19: Spatial pattern in cross-validation residuals for January
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Figure A.20: Spatial pattern in cross-validation residuals for February
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Figure A.21: Spatial pattern in cross-validation residuals for March
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Figure A.22: Spatial pattern in cross-validation residuals for April
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Figure A.23: Spatial pattern in cross-validation residuals for May
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Figure A.24: Spatial pattern in cross-validation residuals for June
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Figure A.25: Spatial pattern in cross-validation residuals for July
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Figure A.26: Spatial pattern in cross-validation residuals for August
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Figure A.27: Spatial pattern in cross-validation residuals for September
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Figure A.28: Spatial pattern in cross-validation residuals for October
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Figure A.29: Spatial pattern in cross-validation residuals for November
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Figure A.30: Spatial pattern in cross-validation residuals for December
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Appendix B

Interpolation of daily observations

B.1 Daily interpolated maps
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Figure B.1: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of
January 1970. Columns represent different interpolation methods, rows represent time.
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Figure B.2: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of July
1970. Columns represent different interpolation methods, rows represent time.
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Figure B.3: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of
January 1989. Columns represent different interpolation methods, rows represent time.
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Figure B.4: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of July
1989. Columns represent different interpolation methods, rows represent time.
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Figure B.5: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of
January 2008. Columns represent different interpolation methods, rows represent time.
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Figure B.6: Interpolated maps of daily Makkink evaporation (10−1mm) for the first week of July
2008. Columns represent different interpolation methods, rows represent time.
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Appendix C

R settings and packages

> sessionInfo()
R version 2.12.0 (2010-10-15)
Platform: i686-pc-linux-gnu (32-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] splines grid stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] fields_6.3 spam_0.23-0 xtable_1.5-6 ggplot2_0.8.8 proto_0.3-8
[6] reshape_0.8.3 plyr_1.4 rgdal_0.6-28 automap_1.0-10 gstat_0.9-74

[11] sp_0.9-72

loaded via a namespace (and not attached):
[1] digest_0.4.2 lattice_0.19-13 RColorBrewer_1.0-2 tools_2.12.0
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A complete list of all KNMI-publications (1854 – 
present) can be found on our website  
 
www.knmi.nl/knmi-library/knmipub_en.html 
 
 
 
 

 
 
 
 
 

The most recent reports are available as a PDF on 
this site. 
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