koninklijk nederlands meteorologisch instituut

Technical description LAM
and Ol: Limited Area
Model and Optimum
Interpolation analysis
Second edition

W.C. de Rooy
L.M. Hafkenscheid

ministerie van verkeer en waterstaat

Technical reports; TR-134a
Technische rapporten; TR-134a

De Bilt, 1992

de bilt 1992 publicatienummer: Technical reports=

technische rapporten; TR-134a

postbus 201 Division of Dynamical Meteorology
3730 AE de bilt

wilhelminalaan 10
tel. (030) 20691 1
telex 47096

fax (030) 210407

Technical description LAM and Ol : Limited Area
Model and Optimum Interpolation analysis
Second edition

First published 1991

auteur: W.C. de Rooy .
L.M. Hafkenscheid

U.D.C.: 551.509.313

ISSN: 0169-1708

ISBN: 90-369-2011-6

© KNMI, De Bilt. All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying,

recording, or any information storage and retrieval system, without permission in writing
from the publisher.

Technical description LAM & OI

(Limited Area Model and Optimum Interpolation analysis)

LAM Version: 1.1.1
OI Version: 1.0.0
Date: 09-01-792
Author: Wim de Rooy
Leo Hafkenscheid

INDEX

1 Introduction

2 Organisation of the 1AM & OI systems

2.1 Basic software
2.2 Installation
2.2.1 Installation of LAM
2.2.2 Installation of 0OI
2.3 ’Static’ and ‘dynamic’ data and software
2.3.1 ’static’ data and software
2.3.2 ’'Dynamic’ data
2.4 Running the LAM/OI
2.4.1 Environmental variables
2.4.2 Output

2.4.3 Start/suspend/stop LAM

3 Description of scripts and programs

3.1 Introduction
3.2 Script/programtree

3.3 Descriptions

4 Use of surface climatology

5 Retrieval of ECMWF boundary files

6 Postprocessing
6.1 Fields

6.2 Time Series Files

page

10

15

45

46

47
47

48

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

References

Environmental variables
Documentation files

Contents of $RUNMDL and S$RUNANA and
subdirectories

Data file names

Installation procedure

Fields and level codes for postprocessing
Variables in LAM Time Series Files
Gridpoints for which Time Series Files are

made

List of post processed fields

49

52

53

57

59

60

61

63

66

68

1 _Introduction

The FMLAM (Fine Mesh Limited Area Model) is a numerical
weather prediction model for the intermediate range (6 to 24
hours). The (FM)LAM originates from the limited area version
of the ECMWF gridpoint model [1]. For the analysis LAM uses
Optimum Interpolation in a procedure developed by Cats [2].

The initialisation uses a Bounded Derivative method developed
by Bijlsma [3].

This paper gives the technical description of the software,
needed to run the LAM system, i.e. OI analysis, initialisation
and LAM forecastmodel. It is intended for use by programmers
and scientists in charge of the maintenance and administration
of the LAM/OI system. The scientific description is given in
the references quoted above.

This paper describes LAM release 1.1.1. The differences
(relating to this paper) between this release and the release
(1.0.0.) described in the previous technical description are:

1 Automatical reset first guess errors
2 New installation procedure
3 Remove of scratch files

Two appendices, H and I are appended.

2 Organisation and installation of the LAM and 0OI systems

2.1 Basic software

All the software and data, needed to install LAM and OI is
contained 1in two directories, indicated by the variables
$SSYSLAM and $SYSOI, which are of the form

'<path name>/syslamlll’ and ’<path name>/syso0il00’. The last
three digits (here 111 and 100) correspond with the version
number (here: 1.1.1 for LAM and 1.0.0 for OI).

The versions under development have the path name
’ /ontw0/ontwapl/lahafken’.

Subdirectories of S$SSYSLAM are:

clim for LAM and OI climatology files

doc for documentation files

getbdrs for software used to extract ECMWF boundary fields
iscripts for LAM installation scripts

rscripts for LAM and OI run scripts

source for LAM source files

Subdirectories of $SYSOI are:

data for a character file used by the oi-program
'events’

iscripts for OI installation scripts

source for OI source files

At installation (see below) these subdirectories are copied to
the environment where LAM will be installed, except
’iscripts’. The subdirectory ’rscripts’ is copied to the
subdirectory ’scripts’. For the contents of the subdirectories
(after installation) we refer to Appendix C.

2.2 Installation
2.2.1 Installation of LAM

For installation of LAM the contents of $SYSLAM/iscripts must
be copied to a working directory. The scripts in ‘iscripts’
are:

allexes.sc
candlam.sc
compile.sc
compload.sc
installLAM.sc
makesclim800.sc
mklamenv.sc
prelamenv
sysset

Before installation «can be invoked, three environmental
variables must be set, namely:

EXPCODE oplll (for operational runs)
STATDAT /prodo/prodapl/prodhirl (for
operational runs)

DYNDAT /prodl/prodapl/prodhirl (for

operational runs)

For real time experiments the first two characters of EXPCODE
should be ’rt-’.

Installation is invoked by starting:

installLAM.sc S$RUNMDL

where SRUNMDL is the variable name of the directory where the
LAM directories should be written.

The script installLAM.sc:

-Creates the file ‘’setlamenv’ which is used to set the
environmental variables needed for installation

-copies the subdirectories ‘clim/LM800’, ‘getbdrs’, ’doc’,
'rscripts’ (to subdir: ’scripts’) and ’‘source’

-starts on request the script ‘allexes.sc’ which controls all
the compilations and writes the executables produced in the
directory ’$RUNMDL/exe’.

The script ‘allexes.sc’ creates two subdirectories in the
working directory where the installation is done:
obj for object files (temporary) and libraries (permanent)
log for loggings and compiler standard output

These subdirectories could be removed when complete
compilations are required only. The installation scripts give,
however, the possibility of updating the executables by
’‘partial compilation’ i.e. by compilation of separate

programs or subroutines. In this case ‘obj’ and ’log’ should
be kept.

The procedure for ’partial compilation’ is:

a) .
candlam.sc <lam block name> [<subroutine names>]

where <lam block name> is one of the source file names
(extension included):

dyns.p8

ecpp.p8

knpp.p4

mast.p8

phys.p8

spec.p4

tsfs.p8

and [<subroutine names>] is a 1list of subroutine names
(without extension) out of the ‘lam block’ specified. Only the
objects of these subroutines will be compiled and replaced in
’lambd9.exe’ or ‘pplin.exe’. If the list of subroutines is
omitted all subroutines of the block will be compiled.

b) Similarly:
compload.sc <program name> [<subroutine names>]

where <program name> is one of the source file names

(extension included):
bounder.p
chtogf.p
daytsf.f
hextobin.p
ligrib.p
listf.p
mlsurf.p
mxhist.p
mxtims.p
petosi.p
prebd.p
prhist.p
rwexa.f
sigrib.p
testprebd.p

and c):
compile.sc <lib name> [<subroutine names>]

where <lib name> is one of the source file names (extension
included):

tsf.p

utils.p

various.p

NOTE: ‘partial compilation’ is recommended for experimental
use only.

2.2.2 Installation of OI

The installation of OI is done in a way similar to that of
LAM.
A separate working directory should be used for copies of the
scripts in ’/$SYSOI/iscripts’.
These scripts are:

allexes.sc

compile.sc

compload.sc

installOI.sc

preoienv

NOTE: these scripts are not identical to those in
$SYSLAM/iscripts, although the same names are used.

Installation of OI is invoked by:

installOI.sc $RUNANA

where SRUNANA is the variable name of the directory where the
OI directories should be written.

Appendix E gives a short summary of the installation
procedure. A more complete description is given in the
documentation file $RUNMDL/doc/installatie (in Dutch).

2.3 ’Static’ and ‘dynamic’ data and software.

After installation the directories $RUNMDL and S$RUNANA contain
all files needed to run the LAM and OI, including the
necessary climatological data. These files do not change when
running the model. Therefor they are referred to as ‘’static’
data and software.

Not included, however, is the wvariable data such as

observations, output, loggings etc. That is called 'dynamic
data’.

2.3.1 ’Static’ data and software

After successful installation SRUNMDL contains the
subdirectories:

clim

doc

exe

getbdrs

scripts

source

and $RUNANA contains the subdirectories
data

exe
source

with the contents as given in Appendix C.

NOTE: for the current operational implementation the values of
SRUNMDL and $RUNANA are:

SRUNMDL /prodo/prodapl/prodhirl/lam
SRUNANA /prodo/prodapl/prodhirl /oi

nn

2.3.2 ’'Dynamic’ data

The ’‘dynamic’ data are contained in subdirectories of the
directory named $LAMDAT. The subdirectories are:

bdrs for ECMWF boundary fields

dbas for output GRIB files (only for non-operational runs)
log for logging files

mars for ’‘mars update’ files (implementation deferred)

oc for observation files

temp for temporary scratch files

work for work space

NOTE: the current operational value of SLAMDAT is:
/prodl/prodapl /prodhirl

2.4 Running the LAM/OI
2.4.1 Environmental variables

With the command ’source $RUNMDL/scripts/setenvlamrun’ the
environmental variables are set. This command is executed at
the beginning of scripts to start the LAM (resumelam.sc) or
scripts which can run ’stand alone’ (e.g. getOC.sc).

A listing of setenvlamrun with the current operational
settings is given in Appendix A. For the operational LAM/OI
the settings need not to be changed.

In principle there are two main modes for running LAM/OI: A
‘real time’ mode and an ‘experimental’ mode. This is
recognised by the setting of S$EXP.

a) ’'real time’ mode

This is the case when $EXP is of the form "opxxx" or "rtxxx",
where "xxx" is preferably a three digit number. But any other
three character combination for "xxx" will do as well.

"opxxx" is for operational runs (output fields in grib data
base GVDB).

"rtxxx" is for non-operational real time runs (output fields
in $LAMDAT/dbas).

In both cases the observation files (APL)OC<dtg of
observation> ON OPER must be present on A6-dev, while the
ECMWF files of the form ECMO_PQS_<dtg of ECMWF
analysis>00_00000_AB must be present in the GRIB data

base GVDB. (dtg is date/time in the format YYMMDDHH)

b) ‘experimental’ mode

This is the case when $EXP has not any form as given in case
a) (output fields in $LAMDAT /dbas) .

For the ’experimental’ mode the observation files must be made
available as $LAMDAT/oc/apl_oc<dtg of observation> or as
$LAMDAT/work/LAMF_OCB_<dtg of observation>00_00000_0C

The ECMWF boundary files must be made available in the form of
$LAMDAT/bdrs/ECMO_PQS_<dtg of verification>00_<3 digit
forecast period>00_GB

2.4.2 output

The next thing to do is checking the script
’$RUNMDL/scripts/cycle.sc”’.

This script controls the analysis/initialisation/forecast
cycle. Especially the output specifications for fields and
gridprints (Time Series Files) should be examined if one wants
something different from the operational settings.

More information is given in chapter 6: ’‘Postprocessing’.

2.4.3 start/suspend/stop LAM

LAM is started by submitting the script

SRMSCR/resumelam.sc [<dtgl> [<dtg2>]]

(NOTE: S$RMSCR = $RUNMDL/scripts) :

If no argument is given LAM resumes for the date/time 3 hours
later than the last completed cycle.

If only <dtgl> is given LAM will start for this date/time; if
also <dtg2> is given LAM will start with <dtgl> making
‘update’ cycles only until <dtg2>.

From <dtg2> on also ‘forecast’ cycles will be made if
required.

If no analysis first-guess is available for the required
date/time you are asked to type ‘cold_start’ to confirm that
you really want a cold start.

Continuation of LAM is controlled by the last line of the file
’'$LAMLOG/status’.

If the first word of this line is ‘go’ LAM will continue
normally.

If this word equals ’stop’ LAM will finish the current cycle
and then stop the control.

If this word equals ‘wait’ LAM will wait 300 seconds and then
read this line again.

The script resumelanm.sc appends the 1line ‘go’ to the file
’$LAMLOG/status’ so that LAM continues normally until 'stop’

or ‘wait’ is appended by e.g. the command ‘echo stop >>
SLAMLOG/status”’.

For more details we refer to the documentation files in
' $RUNMDL /doc”’ .

3 Description of scripts and programs

3.1 Introduction

In this chapter the scripts and programs will be discussed in
the same order and with the same numbering as in the
script/program tree in ©paragraph 3.2. If you want the
description of e.q. lam.sc, you first look in the
script/programtree to see the correspondlng number, in this
case 1.6. With the aid of this number it is easy to find the
description of lam.sc in paragraph 3.3.

The structure of the descriptions is the same for each program
or script, namely:

-tree number -script or program-name -symbolic argument(s)

-directory: Only in case of an external program the
directory of the executable is mentioned
here. The directory structure of LAM scripts
and programs is described in chapter 2.

-description of arguments: -general description plus the
actual given arguments when the script is
used in a LAMrun.

-description of program or script

-input/output-files: the actual given input/outputfiles when
prog/script is used in a LAMrun.

-schematical presentation input/output

Exanple:
script A

—inputfile ¥——>51 >{1 prog. B 4p-p>——outputfile T—>

inputfile ¥—>{3 stdout p>-p>——1og-file

Explanation example schematical presentation input/output

Inputfile X is called (this time given as argument $1) by the
same script that called script A because the arrow of
inputfile X starts outside script A. Inputfile Y however is
called by script A (the arrow starts inside script a).

Inputfile Y can be accessed by program B via fortran
unitnumber 3. ’

The standard output of prog. B is redirected (by script A) to
log-file Q. Standard output and standard input is abbreviated
as respectively stdout and stdin.

Colon’s beneath the input or outputfile means that the in-or
output consists of a number of files of those type.

The symbolic arguments are written in Unix-notation Ji.e. S1
is the first argument ,$2 the second etc.. An argument is
optional when it is notated between square brackets.

$$ is in unix the string which contains the processnumber. It
is used in temporarily directories and files.

The directories are notated as environmental variables (see
Appendix A). The directory structure of the programs and
scripts is explained in chapter 2. The datafilenames used. in

this chapter (for example: FMT_GB) are described in Appendix
D.

3.2 Script/program-tree

0

resumelam.sc | 0.1
mkrdirs.sc
0.2
tailor.sc

!
1
control.sc

—if operational or-{

realtine test-run

1.1 getPQS.sc

1.1,1 MAKE_ECNC_PQS_GB

1.2
catchPQS.sc

1.2.1
—1if there are— testmakepst.sc | 1.2.1.1
new PQS-files horint.exe
1.2.1.2
testprebd.exe
Lelse~-— 1.2.2
afpat.sc | 1.2.2.1
rarstoPQs.sc | 1.2.2.2
hextobin
1.2.3
testmakepst.sc |1.2.3.1
horint.exe
1,2.3.2
testprebd. exe

I
if $INOBS/0CB-file

not exists
|

1.3 qet0C.sc

10

or real time test
run

1.5
remove. sc

1.6
lam.sc

rif not operational—

1.6.1

cycle.sc

1.4 T
catchPQs. sc 141
—-if there are—{ testmakepst.sc | 1.4.1.1
new PQS-files horint.exe
1.4.1.2
testprebd. exe
—else— 1.4.2
afpat.sc | 1.4.2.1
marstoPQS.sc | 1.4.2.2
hextobin
1.43
testmakepst.sc |1.4.3.1
horint.exe
1.4.3.2
testprebd. exe
1.6.1.1
sigagrib.sc | 1.6.1.1.1
sigrib.exe
1.6.1.2
pplin.exe
1.6.1.3
ligrib.sc | 1.6.1.3.1
ligrib.exe

11

1
control.sc

1
control.sc

1.6
lam.sc

1.6
lam.sc

1.6.1
cycle.sc

1.6.1
cycle.sc

1.6.1.4
initan.exe

1.6.1.5
gettovs.sc

1.6.1.6
expand. exe

1.6.1.7
preana.exe

1.6.1.8
adanal.exe

1.6.1.9
postan.exe

1.6.1.10
postan.exe

1.6.1.11
petosi.exe

1.6.1.12
bounder .exe

1.6.1.13
sig2grib.sc

1.6.1.13.1
sigrib.exe

1.6.1.14
getpsts.sc

1.6.1.15
nxtins.exe

1.6.1.16
lanbd9.exe

12

1
control.sc

1.6
lam.sc

1.6.1.17

send2dbas.sc
1.6.1.17.1
destag.sc 1.6.1.17.1.1

horint.ee

1.6.1.17.2
DGB2AB.exe

1.6.1.18

sigagrib.sc | 1.6.1.18.1

sigrib.exe

1.6.1.19

errqro.exe

1.6.1.20

ligrib.sc | 1.6.1.20.1

ligrib.exe
1.6.1
cycle.sc

1.6.1.21

events.exe

1,6.1.22

obsfit.exe

1.6.1.23

obsfit,exe

1.6.1.24

maxmin, exe

1.6.2
—if $dtgeycle is divisible by 6— tailor.sc

13

control.sc

1

control.sc
Goto begin
control.sc

1.7
remove.sc

1.8
sweep.sc

1.9
tailor.sc

14

3.3 Description of the scripts and programs

-0 resumelam.sc [$1] [$2]

arguments: Default (calling resumelam.sc without an argument)
is to start the new lam-run 3 hours after the 1last
completed run, but:
-If $2 is present ,it is the dtg of the first
forecast and $1 is the first updatecycle. All
cycles till $2 are updatecycle’s.
-if only $1 is present ,it is the start-dtg and
the first dtg divisble by $FRFC (forecast
frequency, e.g. 6h) will be a forecast cycle.

description: With this script you can start a new lam-run or
resume an interrupted run. First the environmental
variables for running LAM and analysis cycles are
set in setenvlamrun (see Appendix A).
The script gives a warning if there’s no useful
BQS and/or FST-field. If no FST-field is available
the script asks you to type "cold_start". If you
do so a copy of a PST-field is used as first
guess. When no PST file is found (and SEXP=rtXxx
Or opXXX) resumelam.sc tries to get the required
PQS-files and converts them to PST~-files (all
cases) using getPQS.sc (for description see 1.1)
and catchPQS.sc (see 1.2). The date at which the
cold start is made is written in
$LAMLOG/coldstarts.
At the end of resumelam.sc "go" is appended to the
file $APLSMS/status, the (scratch-)directories
$TEMP/$$ SWRKDAT/S and $LAMLOG/$$ are removed and
control.sc is invoked.

=0.1 mkrdirs.sc

description: In this script some environmental variables

(containing directories) are made if they doesn’t
already exist.

15

-0.2 tailor.sc $1 $2

arguments: remove first part of file $1 (full path name
required), but keep last $2 lines. When tailor.sc
is called from resumelam.sc the actual given
arguments are: S$1 = $LAMLOG/controlzero.log
$2 = 40

description: see arguments

16

-1 control.sc $1 [$2]

arguments:

description:

-If S$2 is present ,it is the dtg of the first
forecast and $1 is the first update cycle. All
cycles till $2 are updatecycle’s.

-if only $1 is present ,it is the start-dtg and
the first dtg divisble by S$FRFC (forecast
frequency, e.g. 6h) will be a forecast cycle.

In the beginning of this script the status is
determined (by reading SAPLSMS/status) to take the
proper action. The status can be:

go :just go on with the script (most usual)
wait:sleep for some seconds
stop:stop (exit 2)

For operational runs (SEXP=0pXXX) or real time
tests (SEXP=rtXXX) control.sc starts looking for
PQS-files in $GVDB and observationfiles at the a6
(production) 2 hours after $dtgcycle (=date time
group of the cycle). All this is described in 1.1
getPQS.sc till 1.3 getOC.sc. If the OCB and PQS-
files are available a cycle (analysis,
initialisation and forecast) is submitted.

If SEXP <> opXXX or rtXXX then the program is
looking for PQS-files continuously. If they are
available lam.sc is started. Then the OCB-file has
to be present in the directory $INOBS otherwise
lam.sc will be stopped (exit 17) and run again
after 300 seconds.

Once a month (2nd at 12UTC) the first guess errors
(BQS-file) are reset to climatological values
(rtxxx and opxxx runs only). This is done because
of stability reasons.

All normal messages in control.sc are redirected
(by resumelam.sc) to control.log. This 1log-file
reports the wall clock time and the dtg of the
cycle. It also reports the first PST file (if
available) in a list of PST files.

controlzero.log is the errorfile logging of
control.sc. The standard output of control.sc is
redirected to this file by resumelam.sc.

output-logfile: $LAMLOG/control. log

$LAMLOG/controlzero.log

17

-1.1 getPQS.sc $1

arguments:

This argument is given to determine which PQS-
files have to be processed. The actual given
argument is $dtgcycle.

description: In this script the necessary PQS_GB-files are

extracted from the gribfields database using
MAKE_PQS_GB. But first the PQS fields are checked
with external CHECKFLD. CHECKFLD checks the PQs-
asimof files wusing the descriptor files in
SGETBDRS. These * .desc files are made by
$RMSCR/makeECMOLAMdesc.sc (see chapter 5) and
contain information about the quantities which are
necessary for a LAM run. If $status=0 after
running CHECKFLD MAKE_PQS_GB is invoked.

The standard output of getPQS.sc is appended to
getPQS.log '

outputfiles: S$INBDRS/ECMO*PQS*GB

logfile:

SLAMLOG/getPQS.log

getPQs.sc

CHECKFLD $GETBDRS/ECMOLAK*.desc----if $status=0 then----|MAKE_PQS_GB

stdout >—getPQS. log

analyse dtg $1*POS*AB >— INBDRS/+PQS*GB
dtg of necessary PQS-files——Sz-—J :

-1.1.1 MAKE_ECMO_PQS_GB $1 $2

directories: executable can be made using the makefile

arguments:

$SGETBDRS/make_ecmo_pgs_gb.mk
source: $GETBDRS/make_ecmo_pgs_gb.f

$1 = dtganalyse = the dtg of the PQS_AB file
(normally previous day 12 o’clock).

$2 = forecast (hours). This argument is changing
during one getPQS.sc run (loop), so all necessary
PQS_GB-files (+00, +06, @ cicceiee.. +42) are
extracted from the PQS_AB file.

18

description: This program produces the

input:
output:

ECMO_PQS_{dtg)00_{forecast period}00_GB files
(determined by $1 and $2) from the
ECMO_PQS_{dtg}00_00000_AB file using subroutine
getfld.

$GVDB/ECMO_PQS_{dtg}OO_OOOOO_AB
$INBDRS/ECMO_PQS_{dtg+forecast}00_00000_GB

=1.2 catchPQOS.sc [$1]

arguments: When this argument is given it is the first

(oldest) PQS dtg to be processed. all PQS files
are processed if no argument is given. The actual
given argument is: $1 = Sdtgpst (=$dtgcycle-3h)

description: At the beginning of this script the environmental

variables are set. This script treats PQS files
and lamg-ecmwf-output files.

When POS files are available in the directory
SINBDRS the files are converted one by one to PST-
files. Subsequently PQS- and PST-files (contain
boundary conditions interpolated to the LAM grid)
are moved to SWRKDAT.

When no PQS-files are detected in the directorv

SINBDRS the marsupdate cyclus is invoked. First
$ECFILES/lamg_ecmwfoutput_** are converted to PQS-
files in the directory S$INSURF. These PQS-files
contain only surface data and will be notated as
PQS(surf) in this report. Actually the filename
is the same for a 1- or 14 level PQS-file.

The PQS(surf) file is merged with the already
existing PST-files from $WRKDAT.

The standard output of catchPQS.sc is redirected
to catchPQs.log by control.sc. Which PQS~files are
treated and in which mode they are treated (mars
Oor normal mode) is written 1in monitPQS.log. 1In
monitPQS.log you can also see which "old" PST file
is removed from $WRKDAT.

input/output-files: output: S$INSURF/*PST*ac (in case of

marsupdate)
$WRKDAT/*PST*_HW

logfile: $LAMLOG/monitPQS. log

19

1 When PQOS files are available in the directory $INBDRS
echo->-nonitPgs. log
catchPQs.sc stdout ->-catchPs. log
testnakepst.sc
horint.exe
if $status
<& 0 stdout >nakepst$d
stdout +->prebd. log—tail -64->>prebd$$
POS_GB—1$1>(1 21-PPS_Mi—>{20 3pH->PST_HW (if $status <> 0 after
: testprebd. exe running testprebd.exe)
—KSD_Mi-—>17
2 When no PQOS-files are detected in the directory $INBDRS
(mars update cyclus)
echo>—uonitPgs. log
catchPQs.sc stdout p—catchPS, log
fpat.sc testnakepst.sc >nakepst$$
narstoPQS.sc horint.exe testprebd.exe
if $status
hextobin 0 stdout stdout ;>t>prebd. 1og
|
ecawfoutput—>11 2 >—+PQS* (surf) 91— |1 2D>-*PPS*(surf)—20 31p>1-$INSURE /#PST+ac
l
SWRKDAT*PSTHHW——- 3 3 >+—4PSTHIN—>
*KSDAMW 7

20

=1.2.1 testmakepst.sc $1 [$2]

argument: $1 is the name (inclusive dtg) of the ECMO PQs-
file which will be converted in this script.
If $2=’pgs’ then the "1.2.1 testmakepst.sc"
description (and all descriptions of programs
called from 1.2.1 testmakepst.sc) is valid. Else
the 1.2.3 (marsupdate-) description of
testmakepst.sc is valid. So here the actual given
second argument is ‘pgs‘.

description: In this script PST_HW files in LAMgrid are
created from PQS_GB and KSD_MW files. The standard
output of horint.exe and prebdy is redirected by
testmakepst.sc to respectively makepst$s and
prebd.log.

input/outputfiles: input: $INBDRS/*PQS*GB
output: $INSURF/*PST*ac
$WRKDAT/*PST*_HW
logfiles: $LAMLOG/makepst$$
$LAMLOG/prebd. log
$LAMLOG/prebd$$ (only if $status
<> 0 after running testprebd.exe)

=1.2.1.1 horint.exe (external)

directories: $DHORI/horint.exe

description: When this program is executed in this place ,it
interpolates the PQS_GB file bilinear to the LAM
grid. The outputfile is in MBW gridcode. The u and
vV windcomponents are staggered.

input/outputfiles:
input: see 1.2.1 testmakepst.sc
output: $INBDRS/*PPS*_ MW
logfiles: $LAMLOG/makepst$$ (This log-file is
removed if $status = 0 after running
horint.exe)

21

1.2.1.2 testprebd.exe

description: This program prepares the PST-historyfile ,which

contains the lateral boundary conditions, merged
with climatological data from *KSD*MW, for a LAM-
run.

The standard output of testprebd.exe is redirected
to prebd.log. If $status <> 0 after running
testprebd.exe then the last 64 lines of prebd.log
are written in prebd$$.

input/outputfiles: input: $INBDRS/*PPS*_MW
SRMCLM/S$SAREA /*KSD*_MW
output: see 1.2.1 testmakepst.sc
logfiles: $LAMLOG/prebd.log
SLAMLOG/prebd$$ (only if $status <>
0 after running testprebd.exe)

1.2.2 afpat.sc (part of marsupdate cyclus (see page 20))

description: Afpat is an abbreviation for Automatic File
Processing After Transfer. The hexadecimal
lamg_ecmwfoutput_** files (only containing surface
data) are converted to binair *PQS*GB files
(notated as *PQS*(surf) in this paper).

outputfiles: $INSURF/*PQS*GB (surf)

1.2.2.1 marstoPQS.sc $1 $2 $3

arguments: $1 is the filenamebase
$2 is the date of analysis
$3 is the forecast period
So the inputfilename is $1$2$3

description: In this script hextobin is called with the
correct input- and outputfile.

input/outputfiles: input: $ECFILES/lamg_ecmwfoutput_*#*
output: see afpat.sc

22

1.2.2.2 hextobin

description: This program converts the hexadecimal ecmwfoutput
surface-file into a binair gribcode file
containing the surface parameters. This
PQS(surf) file will be merged with the already
existing PST-file in 1.2.3 testmakepst.sc.

outputfile: $INSURF/*PQS*GB (surf)

-1.2.3 testmakepst.sc $1 [$2]

argument: $1 is the name (inclusive dtg) of the ECMO PQs-
(surf) file which will be converted in this
script.

Here the actual given second argument is ’‘mars’ so

the 1.2.3 (marsupdate-) version of testmakepst.sc
is described.

description: In this script PST_HW files (with updated surface
climatology) in LAMgrid are Created from PQS_GB
(surf), KSD_MW and already existing PST-files. The
standard output of horint.exe and prebdy is
redirected by testmakepst.sc to respectively
makepst$$ and prebd.log.

input/outputfiles: input: SINSURF/*PQS*_GB (surf)
output: $INSURF/*PST*ac
$WRKDAT/*PST*HW

logfiles: SLAMLOG/makepstss
$LAMLOG/prebd. log
$LAMLOG/prebd$$ (only if $status
<> 0 after running testprebd.exe)

-1.2.3.1 horint.exe (external)

directory: $DHORI/horint.exe

description: When this program is executed in this place ,it
interpolates the PQS_GB (surf) file bilinear to
the LAM grid. The outputfile is in MBW gridcode.
The u and v windcomponents are staggered.

23

input/outputfiles:

input: *PQS*GB (surf)

output: $INBDRS/*PPS*_MW

logfiles: $LAMLOG/makepst$$ (This log-file is
removed if $status = 0 after running
horint.exe)

-1.2.3.2 testprebd.exe

description:

In 1.2.3.2 testprebd.exe the PPS*(surf) file
which contains climatological ecmwf surface data
is merged with the already existing
SWRKDAT/*PST*HW file.
The standard output of testprebd.exe is redirected
to prebd.log. If $status <> 0 after running
testprebd.exe then the last 64 lines of prebd.log
are written in prebds.

input/outputfiles: input: $INBDRS/*PPS*_MW(surf)

SRMCLM/SAREA/*KSD*_MW
SWRKDAT /*PST*HW
output: see 1.2.3 testmakepst.sc

logfiles: $LAMLOG/prebd.log

SLAMLOG/prebd$$ (only if $status <>
0 after running testprebd.exe)

1.3 getOC.sc $1

arguments: $1 is the dtg of the cycle

description:

This script is called only during an operational

run (SEXP =0PXXX) or a real time test
(SEXP=rtXXX). It is run after 1.1 getPQS.sc and
1.2 catchPQS.sc if more then 2 hours are elapsed
since $dtgcycle (verification time) and the
S$INOBS/*OCB* file isn’t available.
First the environmental variables are set. The
script looks at the A6 Production for the oc-file.
If the file is found it is copied to the convex
(dir = $INOC) using $SLOCBIN/getf.

{apl)oc$(dtg} on oper—

get0C.sc ——3$INOC/apl_oc$ (dtg)—mv—-SINOBS/LAMF#OCB#

24

-1.4 catchPQS.sc
(+ all his child processes = 1.4.%)

description: see 1.2 catchPQS.sc

All child processes called from 1.4 catchPQS.sc

are exactly the same as those called from 1.2
catchPQS.sc.

-1.5 remove.sc $1 [$2]

arguments: The first argument defines which files (namely
STEMP/*$1%) will be removed.

The second argument defines how many of those
files are kept at least for each verification-time
(default is 1 file).

When the script is called (twice) from this place
in control.sc the following arguments are given:

- $1=PST and $2=1

- $1=PQS and $2=1

description: see arguments

inputfiles: $TEMP/*PST*HW
STEMP/*PQS*GB

*DST*HW—>|$1 remove.sc

*POS*GB—>|$1 remove.sc

25

1.6 lam.sc $1 [$2]

arguments: $1 is the dtg of the cycle.
If $2 1is present and equals ‘update’ then an
‘update only’ cycle is submitted ,i.e. only a 3
hours forecast will be made for producing a first
guess for the next analysis (currently extracted
to 6 hours for ’quickupdate’)
If no $2 is present then a 30 hours forecast is
made if the dtg of the cycle is divisble by $FRFC
(forecast frequency, e.g. 6h) ,which is set in
setenvlamrun (appendix A).
The second argument ‘update’ is actually given to
lam.sc if $dtgcycle (=first argument control.sc) <
S$dtgupdate (last argument control.sc). Else only
$1 ($dtgcycle) is given as argument.

description: This script submits one LAM-cycle if the

observation file is found. The environmental
variables are set. If SQUEUE is set (in
setenvlamrun) then the script cycle.sc is
submitted in queue $QUEUE.

The standard output of lam.sc is redirected (by
control.sc) to lam.log. This log-file reports the
wall clock time and the dtg of the cycle. It also
reports the first PST file (if available) in a
list of PST files and an error-message if the
cycle is stopped.

output -logfile: $LAMLOG/lam.log

-1.6.1 cycle.sc $1 $2 [$3]

arguments: $1 is the dtg for the following cycle. The
updatemode is set if the second or third argument
is Update. If there are three arguments , then the
second one is the name of the experiment (S$EXP).

If the wupdatemode 1in 1lam.sc 1is set (second

argument of lam.sc = update) ,then the arguments
of cycle.sc are:

$1=dtgcycle

$2=$EXP

$3=Update
else:

$1=dtgcycle

$2=$EXP

26

description: this script runs one complete LAM-cycle including

logfiles:

analysis, initialisation, modelrun and post-
processing. At the end of cycle.sc the temporary
($$) directories and files are removed.
The standard output of cycle.sc is redirected (by
lam.sc) to cycle.log. In this log-file it is
possible to see where the cycle-run went wrong.
The file contains the starting- and finishing
times of the fortran programs called in cycle.sc.
It also reports: -the links made by getpsts.sc
-which FST and FMT files are produced
by lambd9.exe
-the name (=dtg) of the outputfile
which contains physical information of
the run
-possible errors
-some other information

Beside cycle.log, which is filled with the
standard output of cycle.sc some other logfiles
are used in cycle.sc. A selection of the physical
input (namelists) and output of the prograns
called in «cycle.sc ,is stored in the file
$LAMLOG/$dtg (abbreviated as $outp in cycle.sc).
The file $cwd/$$/bdrun (abbreviated as $outx 1in
cycle.sc) contains the same information as $outp
plus the names of some datafiles used in the run.
$outx however is removed at the end of cycle.sc.

$SLAMLOG/cycle.log
$LAMLOG/$dtg
$cwd/$$/bdrun

1.6.1.1 sig2grib.sc $1 $2 [$3]

arguments:

$1 is the (standard) o-file to be packed or
unpacked. The outputfile is also $1 but with
trailing _HW replaced by GB or vice versa. In case
of packing, a descriptor-recordfile is given with
filename $1 and trailing _HW replaced by H1.
$2 is the areacode
$3 is either P (pack (default)) or U (unpack).
When this script is called from this place in
cycle.sc the arguments are:

$l=$WRKDAT/*FST*HW

$2=$AREA

$3=U

27

description:

This script packs or unpacks a o-file (see
arguments) with the use of sigrib.exe. When a o-
file has to be wunpacked, a skeleton-file is
necessary. This skeleton is found in
SRMCLM/SAREA /skeletons/*HW. When sig2grib.sc
cannot find one or more of the inputfiles it is
reported in the logfile sigrib$$. Sig2grib.sc also
redirects the standard output of horint.exe to the
file sigrib$s. If Sstatus=0 after running
horint.exe then sigrib$$ is removed.

input/outputfiles: output: $WRKDAT/*FST*HW

logfile: $RMLOG/SEXP/sigrib$$

sig2grib.sc

*FST*_GB—>——1 sigrib.exe LSL*FSTH_Hi—>
SRMCLM/SAREA /skeletons /4 HiH—>—
F5T+_Hl—>— 11 if $status <> 0

[9%)

then stdout}—->sigrib$$——>
(also appended to DAYF)

1.6.1.1.1 sigrib.exe

description:

see 1.6.1.1 sig2grib.sc

input/outputfiles: input: $WRKDAT/*FST*GB

SRMCLM/$AREA /skeletons/*HW
SWRKDAT/*FST*H1
output: see 1.6.1.1 sig2grib.sc

1.6.1.2 pplin.exe

description:

this program interpolates the guessfield on o-
levels in history-format to a guessfield on p-
levels in lineformat (using subroutine SITOLP).

input/output:

$WRKDAT/*FST*HW
$cwd/$S/*GQS*LW

—FST_HW——>|20 pplin.exe 60—>GQS_L#—>-

28

1.6.1.3 ligrib.sc $1 $2 [$3]

arguments: $1 is the title of the gribcode file to be produced

description:

(or to be used as input when unpacking). The title
of the lineformat file is also $1 but with
trailing GB replaced by LW, that of the descriptor
recordfile is obtained by replacing GB by L1.
During unpacking the script will look for a KQsS_1Lw
file as skeleton file in all subdirectories of $3
(default ~ S$SWRKDAT).
$2 is U for unpacking or P for packing (default).
If $2 is neither U or P then $2 1is used as
lookdirectory for skeletonfiles.
ligrib.sc is called from cycle.sc with the
following arguments:

$ 1=$WRKDAT/*BQS *_GB

$2=U

$3=$RMCLM/$AREA

This script packs or unpacks a lineformat-file
(using ligrib.exe). The standard output of
ligrib.exe is redirected to ligribss.

input/outputfiles: output: SWRKDAT/*BQS*_LW

logfile: $RMLOG/SEXP/ligrib$s

J

—*BQS* L1

141—+4B0S*_CB——>
—*EQS* [#——>—1{3 if Sstatus < 0
>—11 then stdout > liqribss

ligrib.sc

ligrib.exe

—

2 *B0S*_LN——o

1.6.1.3.1 ligrib.exe

description:

see 1.6.1.3 ligrib.sc

input/outputfiles: input: SWRKDAT/*BQS*_GB

SWRKDAT/*BQS*_I.1
SRMCLM/$AREA/*KQS* LW
output: see 1.6.1.3 ligrib.sc

29

1.6.1.4 initan.exe

description: This program prepares the analysis control file
(ct).

input/outputfiles: input: $cwd/$$/*GQS*_ LW
output: $TEMP/S$S/ct

initan.exe
—*G0S* LH—>11 17 »-—-—STEMP/$$/ct-———>

1.6.1.5 gettovs.sc $1 $2 (not yet implemented)

arguments: This script generates a list of $INOBS/TOVA_MAP_
(satellite-) files with a start time between $1
and $2+30 minutes and establishes symbolic 1links
of those files with fort.71 ,72 ,73
When this script is called from cycle.sc the
arguments are:
$1 = $dtg-2hours ($dtg is first argument of
cycle.sc).
$2 = $dtg + 1lhour

inputfiles: $INOBS/TOVA_MAP_

——$INOBS/TOVA_MAP-->| gettovs.sc

1.6.1.6 expand.exe

description: This program puts the observationfile (in
characters) and TOVS into the right form ,i.e. in
Convex words ,for further analysis.

input/outputfiles: input: $INOBS/*OCB*0OC
output: $TEMP/$S/ob
STEMP/$$/iv (inventory)
STEMP/S /ev

30

Ip—h—
———4((B*0C >11 expand.exe 4pPp——oiy—-o>
Hp———ty——

1.6.1.7 preana.exe

description: Preana (preanalysis) creates observation
increments normalised by first-guess errors and
checks against first-guess.

input/outputfiles: input: $TEMP/$S$/ob
$TEMP/$S/ct
STEMP/$S/iv
Scwd/S/*GQS*LW
SWRKDAT /*BQS*LW
SRMCLM/*KVS*OW
output: $TEMP/$$/ou
$TEMP/$$/0s
SRMSCR/ev$$ (contents will be
appended to $TEMP/$S$/ev)
STEMP/$$/baddrs
STEMP/$$/beddrs

—0b—>{1 preana.exe 2——0b——>
——t—>{17 4 —0S >
1¥—>13 10 ——ev§f—
——4GOSELN—>121 50 baddrs—>
——*BOSLH—>{23 52 ——beddrs—>
——RVS*0H—>131

1.6.1.8 adanal.exe

description: This program performs the 3-dimensional

multivariate optimum interpolation of mass and
wind.

input/outputfiles: input: S$TEMP/$S$ /ou
$STEMP/$Sct
STEMP/$$ /baddrs
$TEMP/$$/beddrs
SRMCLM/$AREA /*KVS*OW
output: S$RMSCR/ev$$ (contents will be
appended to $TEMP/$S$/ev)
$TEMP/$$ /ba
$TEMP/$$ /be

31

v

——0U 11 adanal.exe 10———ev§é——>
———Dbaddrs——>{51 50 —ba >

bedrrs——>153 52—be >
—t: 5417
FRVSHOH—>13

1.6.1.9 postan.exe

description: When this program is called from cycle.sc for the
first time it reorders and denormalises the
analysis output of adanal (ba) to obtain the
analysed fields (AQS) and increments (in).

input/outputfiles: input: $TEMP/$$/ba

$cwd/$S$/*GQS*LW
SWRKDAT /*BQS*LW
output: $TEMP/$$/in
Scwd/$S/*AQS*LW
—-ba—————>{51 postan.exe 20} in >
—HGOSAL—>31 22 Pp———— S H—>
—*BOSAL#———>133

1.6.1.10 postan.exe

description: This time the program reorders the analysis error
output of adanal (be) to obtain analysiserrors.

input/outputfiles: input: $WRKDAT/*BQS*LW (is linked by 2
unitnumbers to
postan)

$TEMP/$$ /be
output: $TEMP/$$/ae

—be— >{51 postan.exe 20f ae—>
——+BOSHLF-—>133,31

32

1.6.1.11 petosi.exe

description: This program performs the vertical
interpolation to o (model-) levels of the analysis
increments on p-levels (in), and adds them to the
guessfield. A PST file (dtg = latest valid ECMWF
time) is added for the surface climatology. The

complete analysis output on o -levels in history
format is written in GST_HW.

input/outputfiles: input: STEMP/S/in
SWRKDAT/*FST*HW

$WRKDAT/*PST*HW
output: $WRKDAT/*GST*HW

in———>{1 petosi.exe 7H—HGSTHHN——>
APSTHIN—>1{2
*PSTHHH—>13

1.6.1.12 bounder.exe
description:Initialisation of analysis with the bounded
derivative-method.

input/outputfiles: input: SWRKDAT/*GST*HW
output: $WRKDAT/*GSG*HW

*GSTHHW

'

121 bonder 22p>

+GSGH——>

1.6.1.13 sig2grib.sc $1 $2 [$3]

arguments: general description arguments see 1.6.1.1.

Now the arguments are: $1 = SWRKDAT/LAMF*GST*HW
$2 = SAREA
$3 =P

description: see 1.6.1.1
input/outputfiles: input: SWRKDAT /*GST*HW

output: $SWRKDAT/*GST*GB
SWRKDAT /*GST*H1

33

sigagrib.sc

$STHH—I1->11 sigrib.exe 2H->*6STHGB
1246341

1

1.6.1.13.1 sigrib.exe

see 1.6.1.1.1 and 1.6.1.13

1.6.1.14 getpsts.sc $1 $2 $3 [$4]

arguments: This script generates a list of $4/LAMF_PST*HW

files ($4 is default $WRKDAT) with a verification
time starting at $1+6 (if $1 is even) ,$1+3 (if $1
is odd) ,increasing by 6. It establishes links of
those files with fort. ($2+1), fort. ($2+2) ,etc..
The maximum number of timesteps to be examined is
given in $3.

The actual given arguments are:

$1 = $dtg

$2 = 90

$3 =6

$4 = SWRKDAT

input/outputfiles: input: $WRKDAT/*PST*HW
output: $WRKDAT/*PST*HW (now linked to
unit numbers 91 ,92 , etc.

1.6.1.15 mxtims.exe

description: This program calculates the maximum absolute
windcomponents in a number of historyfiles (in
this case the PST historyfiles from getpsts.sc and
the GSG_*${dtg)*HW file). From this maximum value
the maximum time step for the fmlam-model is
calculated for which the stability criterion is
fulfilled.

34

The output of this program is put in an array
named mxtout.

mxtims.exe cycle.sc

ioutm --> mxtout[1l] = max. time step (default
=450s)
iousph --> mxtout{2] = max. number of time steps
per hour (default=8)

ioumxv --> mxtout[3] = max. absolute u and v
windcomponents (default=0m/s)

input/outputfiles: input: SWRKDAT /*PST*HW
SWRKDAT /*GSG*HW
output: $cwd/$$/$mxtout

—PSTHH—>{91 mxtims.exe 6+—Smytout-——
: 92,93,...

—HGSGH—> |90

35

1.6.1.16 lambd9.exe

description: This program is the forecast model. It performs

the following steps: a) create a file of initial
and lateral boundary
conditions (subroutine MBDF).
b) forecast (controlled by
namelist NEWRUN).
c) in-model postprocessing
(controlled by namelist
POSTIN)

Possible outputfiles from lambd9.exe:

TAA timeserie-files
TBA

*FMT*GB (internally packed to GB-format)
*FST*HW (o ’'history’ file)

You can change the kind of variables and the area
that are written in the TAA and TBA files by
changing the variables ending in respectively A or
B in the namelist NEWRUN. You can also change the
contents of the FMT files by changing the
variables in the namelist POSTIN. The namelists
are created in cycle.sc. First the namelists
POSTIN (A, B, C, D) are set for each forecast
period seperately. So it is possible to specify
the output (in FMT-files) for each forecast
period. After this the general (for every forecast
period) settings for POSTIN and the namelist
NEWRUN are created. All the namelists are appended
to the file lambd9.in.

—*GSGHHI—>190

—HPSTHH—>{91
: 92

lanbd9.exe

33—*FST*00300_HW#—
19—*FMT*00000_GB—
—2PNT*00300_GB——
+ (if in "forecast mode" then PMT files till +30h)

——RTAARTH

—lambd9.in->{ (redirected) +——*TBA*TN—o

36

input/outputfiles: see also the description.
input: $WRKDAT/*CSG»HW
SWRKDAT /*PST*HW
output: $WRKDAT/*FST* HW
$WRKDAT/* FMT*GB
SWRKDAT /*TAA*TW
SWRKDAT /*TBA*TW
standard printer output

37

1.6.1.17 send2dbas.sc $1

argument: $1 is an array ($fmtl) which contains the FMT*GB
files of the last forecast or updatecycle.

description: This script inserts the contents of the files
from the list $1 into an asimof-file.

The standard output of destag.sc and DGB2AB.exe is
redirected to send2dbas.log by send2dbas.sc. The
analysedtg, the number of processed files and the
date is written to the file lastSEND2DBASrun. The
files not found by send2dbas.sc are written in
send2dbas.

input/outputfiles: input: $WRKDAT/LAMF_FMT*GB
output: $GVDB/LAMF_FMT*AB
logfiles: S$LAMLOG/send2dbas.log.
$APLSMS/lastSEND2DBASrun
SLAMLOG/error/send2dbas

send2dbas. sc stdout | send2dbas >

>>r—sendadbas. log—>
destag.sc s‘cdout-:»—|

DGB2AB. exe
——>{1 horint.exe 2P>+-LAMGHPMT#GB—>{21 stdout >
skeletons/*GB-—>{3 if $status © 0 :

then stdout {>1-destag§§—> LANF_FMT AB—>
(also appended
to cycle.log) —>>-1astSEND2DBASrun—>

Y

LAMPAFMTACB-—-$11:

1.6.1.17.1 destag.sc $1 $2

arguments: $1 is the title of the gribcode inputfile. The
title of the outputfile is also $1 but with LAMF
replaced by LAMG.
$2 1is the areacode which defines the directory of
the skeletonfiles.

description: This script extracts and destaggers (using
horint.exe) gribcode fields and changes filetitle
LAMF into *LAMG*.

38

input/outputfiles: input: see 1.6.1.17 send2dbas.sc
output: S$SWRKDAT/*LAMG*FHMT*GB
logfile: $RMLOG/SEXP/destags$s

1.6.1.17.1.1 horint.exe (external)
directory: see 1.2.1.1 horint.exe

description: For the internal modelrun the u and v components

are located exactly between the gridpoints. This
is not wuseful for most users and that’s why
horint.exe is used to destagger a file ,i.e. to
interpolate the u and v components to the
gridpoints by horizontal interpolation. A
skeletonfile is used to define the grid. The
standard output of horint.exe is redirected to
destag$$ by destag.sc. If the $status = 0 after
running horint.exe destag$$ is removed. If $status
<> 0 destag$$ is kept and appended to cycle.log.

input/outputfiles: input: $WRKDAT/LAMF_*FMT*GB
SRMCLM/$AREA /skeletons/*GB

output: $WRKDAT/LAMG_*FMT*GB

logfile: $RMLOG/$EXP/destagss

1.6.1.17.2 DGB2AB.exe $1 (external)

directory: $DGBAB/DGB2AB.exe

description: This program puts the LAMG_GB files into the
LAMF_AB asimof file. The gribcodefields are read
one by one. The product Definition Block (PDB) of
each field is decoded. Then the field is written
to the asimof file with that PDB as key.

Administration is written in the send2dbas. log
file.

input/outputfiles: input: $WRKDAT/LAMG_FMT GB

output: $GVDB/LAMF_FMT AB
logfile: SLAMLOG/send2dbas.log

39

1.6.1.18 sig2grib.sc $1 $2 [$3]

arguments: see 1.6.1.1 sig2grib.sc for general description
arguments. This time the given arguments are:

$1 = $fstl (filelist of *FST*HW files)
$2 = SAREA
$3 =P

siq2grib.sc

ATSTHH—$1>1 sigrib.exe 21+—>#FST4GB

12{->#RSTHHL

description: see 1.6.1.1 sig2grib.sc

input/outputfiles: input: $WRKDAT/*FST*HW
output: $WRKDAT/*FST#*GB
SWRKDAT/*FST*H1

1.6.1.18.1 sigrib.exe

see 1.6.1.1.1

1.6.1.19 errgro.exe

description: This is a simple "forecast" model for the first
guess error of the next cycle.

input/outputfiles: input: $cwd/$$/*GQS*LW
STEMP/$$/ae
SWRKDAT /*BQS*dtg*LW
SRMCLM/$AREA /*KQS*LW
output: S$SWRKDAT/*BQS*dtg+3*LW

*BQS*atgrLN— 13 errgro.exe 2p——4BQStdtg+ItIF-——
ae > 11
1GOSHLF >1
*RQSH*LI- >15

40

1.6.1.20 ligrib.sc $1 $2 [$3]

arguments: General description arguments see 1.6.1.3
ligrib.sc. This time the arguments are:

$1 = $nb (BQS_GB file with dtg+3)
$2 = P
$3 = $RMCLM/S$AREA

description: This time the script packs the first
errorfile (BQS) for the next cycle (dtg+3).

input/outputfiles: output: $SWRKDAT/*BQS*dtg+3*LW
SWRKDAT/*BQS*dtg+3*L1

ligrib.sc

ligrib.exe
*BQS*dtqtI*LH—>—

—

2P $L——*BOSHtgtI4GB—>
12 ——*B(S¥dtgtIHL1—>

1.6.1.20.1 ligrib.exe
description: see 1.6.1.20 ligrib.sc

input/outputfiles: input: SWRKDAT/*BQS*dtg*LW
output: see 1.6.1.20 ligrib.sc

1.6.1.21 events.exe

guess-

description: This program generates a list of observation
events ,discarded observations and rejected data.

This 1list (=stdout) is inserted in the
$LAMLOG/$dtgcycle by cycle.sc (see also

cycle.sc logfiles).

input/outputfiles: input: STEMP/S/ev
SRADAT/eventslist.ch

—eV—>{1 events.exe
—eventslist,ch—>{3

41

file
1.6.1

1.6.1.22 obsfit.exe

description: When this program is called for the first time in
cycle.sc it produces a printoutput which shows the
fit between firstguess and observations.

input/outputfiles: input: S$TEMP/$S/0s
Scwd/$S/*GQS*LW
output: $TEMP/$S$/ofout

———05 >1 obsfit.exe 8p—ofout
*GOSLE—> 21

>

1.6.1.23 obsfit.exe

description: When this program is called for the second time

in cycle.sc it produces a printoutput which shows
the fit between analysis and observations.

input/outputfiles: input: S$TEMP/$S$/0s
$cwd/$$/*AQS*LW
output: $TEMP/$$/ofout

———ps——>{1 obsfit.exe 8p—ofout
*AQSELH—>121

>

(]

1.6.1.24 maxmin.exe

description: This program determines from a lineformat-file
the maximum and minimum value ,the position of
these values ,the mean and standard deviation ,and
sends them to the $LAMLOG/$dtg file and the
standard printeroutput. The program is called 5

times from cycle.sc ,every time with a different
inputfile.

42

input/outputfiles: input: $WRKDAT/*BQS*LW
Scwd/S$S/*AQS* LW
$cwd/$S/*GQS*LW
$TEMP/$S$/in
$TEMP/$S$ /ae
output: $LAMLOG/$EXP/${(dtg})

—*BOSHLH—S$1-> maxmin.exe —>>SLAMLOG/SEXP/$(dtg)

—HAQS*IH—$1->1 maxmin.exe ——>>$LAMLOG/SEXP/$(dtg)

160SL—$1->) maxmin.exe [—>>$LANLOG/SEXP/$(dtq)

——in-——381->{ naxmin,exe ——>>$LAMLOG/SEX/$ (dtg)

—ae——{1-> naxmin.exe ——>>$LAMLOG/SEXP/$(dtg)

1.6.2 tailor.sc

arguments: description see 0.2 tailor.sc
$LAMLOG/autobdries 256

description: see 0.2. This script is invoked if S$hour is
divisible by 6.

1.7 remove.sc

arguments: see 1.5
When this script is called from this place in

control.sc the following arguments are given:
$1=FST $2=2
description: see 1.5

inputfiles: $WRKDAT/*FST*HW

—*FST*H————>|%1 remove.sc

43

1.8 sweep.sc $1 $2 $3

arguments: This script removes all files $WRKDAT/*$1* with a
dtg more than $3 hours older than $2. Example:
SRMSCR/sweep.sc PST 90041212 24

removes all files $WRKDAT/LAMF_PST_dtg000_2??2?00_HW

for which dtg is less than 90041112.

The actual given arguments are (sweep.sc is called

9 times): $1 = PQS $2 = $dtgcycle $3 = 24
$1 PST $2 $dtgcycle $3 6

$1 = FMT $2 = $dtgcycle $3 = 24
$1 = FST $2 = $dtgcycle $3 = 12
$1 = GST $2 = $dtgcycle $3 = 12
$1 = OCB $2 = $dtgcycle $3 = 24
$1 = TAA $2 = $dtgcycle $3 = 72
$1 = TBA $2 = $dtgcycle $3 = 72
$1 = BQS $2 = $dtgcycle $3 = 24

description: At the beginning of this script the environmental
variables are set. Rest see arguments.

1.9 tailor.sc $1 $2

arguments: general description see 0.2

The actual given arguments when tailor.sc is
called (10 times) from control.sc are:

$1 = SLAMLOG/cycle.log $2 = 2000
$1 = S$APLSMS/lastLAMrun $2 = 10
$1 = $APLSMS/lastSEND2DBASrun $2 = 10
$1 = $LAMLOG/send2dbas.log $2 = 1500
$1 = $LAMLOG/prebd.log $2 = 1000
$1 = $LAMLOG/catchPQS.log $2 = 200
$1 = $LAMLOG/getOC.1log $2 = 500
$1 = $LAMLOG/lam.log $2 = 200
$1 = $SLAMLOG/getPQS.log $2 = 600
$1 = $LAMLOG/monitPQS.1log $2 = 100
$1 = $APLSMS/status $2 = 10

description: see 0.2 tailor.sc

44

4 Use of surface climatology

In addition to the observation file (*OCB*) or ECMWF file
(*PQS*) LAM needs the following parameters:

surface soil wetness

deep soil temperature :I—— (for layer between surface-

deep soil wetness and climatological deep
layer)

surface radiation

albedo

climatological deep soil temperature

climatological deep soil wetness

These climatological parameters are given in
$RMCLM/$AREA/LAMF*KSD*{month}*MW

For every month there’s one KSD file (see appendix C). The KSD
files have been made by running a mars update cycle for every
15 th of every month in 1990 (except Jan. Feb. and March which
are from 1991). During a LAM run the information in a KSD file
can be overwritten by new ECMWF climatological data if an mars
update cycle is invoked (see par.3.3 1.2 catchPQS.sc and 1.2.2
till 1.2.3.2).

Note: at the present these ’mars update files’ are not
available.

The climatological data in a KSD file is merged (1.2.1.2
testprebd.exe) together with the boundary conditions from the
ECMWF (*PQS* file) into a $INBDRS/*PST*HW file which is used
as ultimate input file for the forecast model.

45

5 Retrieval of ECMWF boundary files

The LAM is a limited area model so some variables at the
boundaries of this area have to be prescribed during a
forecast. These variables are extracted from an ECMWF asimof
file ($SGVDB/ECMO*PQS*AB) and copied to a gr1bf11e named
$INBDRS/ECMO*PQS*GB. The ECMWF variables are only given every
six hours. During the forecast (lambd9.exe) these values are
interpolated to LAM timesteps.

The variables to be extracted from the asimof file are:

gribcode description

104 geopotential height [10m]
112 specific humidity [0.1 g/kg]
123 wind component [m/s]
124 wind component [m/s]

for the levels: 10, 30, 50, 70, 100, 150, 200, 250, 300,
400, 500, 700, 850 and 1000 hPa

and gribcode description
104 temperature [°C]
151 snow depth [cm]

at ground level [Om]

The script $GETBDRS/makeECMOLAMdesc.sc has been wused to
produce $GETBDRS/ECMOLAM{ forecastperiod) .desc files (see
appendix C). These files describe all the variables mentioned
above. In 1.1 getPQS.sc subroutine $LOCBIN/CHECKFLD uses these
*.desc files to check if the wanted variables are available in
SGVDB/*PQS*AB (see also 1.1 getPQS.sc). If they are not then
1.1.1 MAKE_ECMO_PQS_GB isn’t called and the LAM will use older
PQS values or waits (if there are no older PQS values
available for that perticular verification time).

Actually the *.desc files are the same for all ECMWF forecast
periods (from +00 till +72 hours).

makeECMOLAMdesc.sc is not called in a LAM run because normally

" the variables to be extracted from the $GVDB/*PQS*AB file
doesn’t change.

The $INBDRS/*PQS*GB files still have to be interpolated to LAM
(LM800) grid and merged with climatological information (see
paragraph 3.3 1.2 or 1.4 catchPQS.sc and chapter 4 use of
surface climatology). This ultimate boundary file is called
SWRKDAT/*PST*HW which is used as input for the forecastmodel
1.6.1.16 lambd9.exe.

46

6 Postprocessing

Normal meteorological output of LAM is in two forms:
1- GRIB formatted fields

2- Time Series Files in TSF format (BUFR compatible)

The contents of these output files are controlled by the
settings in $RMSCR/cycle.sc (See Appendix A for meaning of
shell variables).

6.1 Fields

Output fields are written to the GRIB data base ’‘GVDB’ for
operational runs, or to the local data base ’$LAMDAT/dbas’ for
experimental runs. Fields for all required forecast periods
are written in the same file, which is labeled by the analysis
time (APL file type ‘FMT*AB’).

Contents: (see $RMSCR/cycle.sc section 6.6)

The array variable ‘pphour’ contains a 1list of forecast
periods expressed in hours, for which output fields are
required.

Array ‘ppcont’ contains a list of file names specifying the
required contents for the corresponding forecast period in
‘pphour’. (section 6.62 in cycle.sc). In cycle.sc section 6.61
these contents are defined by namelist /POSTIN’.

The meaning of the relevant variables in &postin is:

NMFD NO. FIELDS AT MULTIPLE LEVELS
NFDML(10) FIELD CODES (MULTIPLE LEVEL FIELDS)
NMLV NO. OF LEVELS FOR MULT. LVL. FIELDS
NLVML(30) LEVELS (MULTIPLE LEVEL FIELDS)

NSFD NO. FIELDS AT SINGLE LEVEL
NFDSL(30) FIELD CODES (SINGLE LEVEL FIELDS)
NLVSL(30) LEVELS (SINGLE LEVEL FIELDS)

N2D NO. 2-D FIELDS ON MODEL GRID
NGPCL(2,20) FIELD CODE/LEVEL PAIRS (2-D FIELDS)

Appendix F gives a summary of the field and level codes that
can be used.

47

6.2 Time Series Files

LAM has two kinds of time series files:

type A for surface and upper air data (APL file type *TAA*TW
see appendix D).

type B for surface data only (APL file type *TBA*TW).

Both file kinds use a fixed 1list of variables. These
variables, together with their BUFR element descriptors is
given in Appendix G.

The time resolution and the grid points for which TSF’s are

required are controled in cycle.sc by the following variables
of namelist &NEWRUN :

s

NFRTA : FREQUENCY OF TSF WRITE UPS IN TIME STEPS
" (use shell variable $hr[] for frequency
expressed in hours)
NITTA : INPUT TYPE FOR COORDINATES:
O0: NORMAL LAT LON
ELSE: GRIDPOINTS (relative to
north-west corner)

NIUTA : TSF FILE UNIT NUMBER
NLATGA : ROW NUMBER OF GRID POINT
(for NITTA .NE. 0)
NLONGA : POSITION OF GRID POINT IN ROW
(for NITTA .NE. 0)
NRGPA : NUMBER OF GRID POINTS IN TSF (max 32)
TLATNA : NORMAL GRID LATITUDE OF GRID POINT

(for NITTA .EQ. 0)
TLONNA : NORMAL GRID LONGITUDE OF GRID POINT
(for NITTA .EQ. 0)

The number of co-ordinates given must correspond to NRGPA

The same holds for the variables NFRTB

... TLONNB for the TSF
file ’TBA’.

Note: a reasonable frequency is 1 hour for type ‘TAA’ and 1
time step for ’‘TBA’.

48

Appendix A Environmental variables

In this appendix you can read the listing of setenvlamrun
which is self-explaining.

setenvlamrun

Fh THe T e e S T e e e T SR e S e T e T e T The T T 3 hh e T S 3 e S T e SHe T THe e S T SHe e e Tk The 3k

‘setenvliamrun

set environmental variables for running LAM and analysis
cycles

interface: source $RMSCR/setenvlamrun

setenvlamrun contains a number of commands that is used for
creating an environment for running the lam system.

The directories used for the lam are all given by
environmental variabeles.

Setenvlamrun must be present with the proper contents in the
directory where the script is present with which the lam is
started.

Setenvlamrun is executed by a number of scripts that can run
’stand alone’.

When running the lam in a new environment a number of
settings must be adapted at installation. These settings are
concentrated in chapter 1 (of this script).

The experiment code can be chosen: ,

€.g. setenv EXP op002 for operational runs.

SEXP indicates a.o. where the loggings can be found.

If $EXP has a value of the form "opxxx", where "xxx" is
free, then the run is a operational run, otherwise not.

On the base there is RUNMDL :e.g.

/prod0/prodapl/prodhirl/lam
and RUNANA :e.qg.

/prod0/prodapl/prodhirl /oi
RUNMDL and RUNANA must be adapted so that the scripts
etc. can be found in the proper directories
subdirectories of RUNMDL are: exe, scripts, clim and
getbdrs.
subdirectories of RUNANA are: exe, data

Directories for data (input, output, scratch) are in
general subdirectories of $LAMDAT
SLAMDAT must be set.

WARNING: full path name of $LAMDAT should not have more
than 26 chars!

49

WARN
32 ¢C

S SHe R () S e T THe e T T T e 3 T T T S 3 e W He

)
)
(.1-
0]
3
<

setenv

#

1.3 directories for input data, work data

and 1lo
#
setenv
setenv
#
1.4
#
#
setenv
setenv
setenv
#
1.5
#

setenv

Directories for data bases nave 2 27] wve for
operational runs.

The settings here are valid for experinment runs.

In general it is not necessary to change the settings
for area code, level code etc.

The frequency of forecasts is set by FRFC;

FRFC = 12 means e.g. that a 30 hours forecast is made
for analysis time 00 and 12 UTC.

ING: full path name of S$WRKDAT should not have more than
hars including final slash !!

set variable full path names

set experiment code

EXP op002

set stem of ‘lamtree’ and ‘analysis tree’ (oi)

RUNMDL /prodO/prodapl/prodhirl/lam
RUNANA /prodO/prodapl/prodhirl/oi

, output data
ggings

LAMDAT /prodl/prodapl/prodhirl
FRSTFG $LAMDAT/work

data bases (operational, for experiments in chapter

3.))

ECFILES /prodO/prodapl/prodhirl/ecmwffiles
GVDB /prodl/prodgvzg/GVDB

TRDB /prodl/prodgvzg/TRDB

queues

QUEUE pghirlam

#

#

£ 2.
printe
#

setenv
setenv
setenv
setenv

set area code, level code, frequency of forecast runs,
r

AREA LM80O
LEVS L11
FRFC 6
PRINTER wolp

50

#

3.
#
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
#

3.1
#
setenv
setenv
#

t 4.

running the model and the anal

#
£ 4.1
#
setenv
setenv
setenv
setenv
#
4.2
#
setenv
setenv
#
4.3
#
#
setenv
setenv
setenv

e T e e

directories for input data, work data

INBDRS $LAMDAT/bdrs
INSURF $LAMDAT/mars
INOC $LAMDAT/oc

INOBS $LAMDAT /work
WRKDAT $LAMDAT/work
WRKDAT2 S$SLAMDAT/work
TEMP $LAMDAT/temp
PUTDBAS $LAMDAT/dbas/
GETDBAS $LAMDAT/dbas /

loggings

LAMLOG $LAMDAT/log
APLSMS $LAMLOG

directories where scripts,

for running the model

RMSCR $RUNMDL/scripts
RMCLM $RUNMDL/clim
RMEXE $RUNMDL/exe

GETBDRS S$RUNMDL/getbdrs

for running the analysis

RAEXE $RUNANA /exe
RADAT $RUNANA/data

, output data

objects etc necessary for
ysis can be found

additional objects/libraries (temporarily)

$DHORI for horint.exe
LOCBIN /usr/local/bin

DHORI S$LOCBIN
DGBAB $LOCBIN

other settings

51

Appendix B Documentation files

This paper is intended for use by programmers and scientists.
The documentation files in directory $RUNMDL/doc are primarily
intended for operators (production) and systemmanagers. These

files (all written in Dutch), summarised in the file
"read_me", are:

1.1 diagnose This file contains a decision tree
with complete explanation how to check
the progress of the LAM or how to
handle if something went wrong.

1.1.1 diatree stripped version of 1.1 diagnose (this
time tree with minimum of explanation)

1.1.2 summary This descision tree is specially
intended for the operators . It is a

short summarised version of the 1.1
diagnose tree but with complete
explanation and referring to interface
options. The LAMinterface is a menu

driven program for operators to stop,
start and check the LAM.

1.2 beschrijving Some general information about the LAM
and the relations to other processes.
Also information about who to call in
case of problems.

1.2.2 standaard General information about the LAM and
relations to other processes in
standard layout.

2.1 identifikatie Very compact global information about

the LAM (also a short description of
disk space usage).

2.2 resources Description of disk space, memory, CPU
time and software usage at the Convex.

2.3 installatie Here the procedure to install the LAM
is described. In this paper a
description (in English) of the install
procedure can be found in chapter 2 and
appendix E (summary).

2.4 scratch files wuse of scratch files during a LAM run
relnotes Release notes. Description of the

differences between LAM release 111 and
preceding releases.

52

Appendix C Contents of $RUNMDL and $RUNANA and their

subdirectories.

As mentioned in chapter 2 the basic software to generate the
LAM can be found in $SYSLAM and $SYSOI (optimum interpolation
part of the LAM also used by ‘quickupdate’).

During the install procedure (chapter 2 and appendix E) two
directories are created which contain all the static software
and static data. E.g. output data or boundary fields from the
ECMWF are not static data, this data will change in time.

Climatological data on the other hand is static data. The two
(’static’) directories are:

SRUNMDL

SRUNANA

containing files specifically meant for the
LAM.
containing files concerning the LAM but

these files can also be used by other
products.

The subdirectories and contents of SRUNMDL are:

$RUNMDL/clim This directory is used for

climatological data (see chapter 4).
For the present LAM this data is put in
subdirectory LM800 which is the area
code. Contents of S$RUNMDL/clim/LMS0O:

$RUNMDL/clim/LM800

Appendix D

LAMF_KQS_0001000000_00000_LW

see for description LAMF_KQS_0002000000_00000_LW
files in accordance : :

with the APL file : for every
name conventions

: month :

orography)

LAMF_KQS_0001200000_00000_LW
LAMF_KSD_0001000000_00000_MW
LAMF_KSD_0002000000_00000_MW

: for every :
: month

LAMF_KSD_OOOlZOOOOO_OOOOO_MW
LAMF_KVS_OOOOOOOOOO_OOOOO_OW

lcsmask (land coast sea mask)
1soro (land sea

statzo (surface roughnesses
of synopstations,
will be used if getobs
is implemented in the
LAM)

53

SRUNMDL/clim/LM800/skeletons

files in this directory aren’t
used as normal datafiles. This
files are used whenever the grid
has to be defined. E.q.:
unpacking gribfiles (see
3.3 1.6.1.1 sigrib.sc using
*PST*HW)
destaggering a file (see
3.3 1.6.1.17.1.1 horint.exe
using *KSD*GB)

Contents of directory clim/skeletons:

ECMO_PST_8904250000_01200_HW
LAMF_KSD_0000000000_00000_GB

SRUNMDL/doc the documentation files (see appendix
B)
beschrijving read_me
diagnose resources
diatree standaard
identifikatie summary
installatie

SRUNMDL /exe all (LAM) executables namely:
bounder.exe mxtims.exe
daytsf.exe petosi.exe
hextobin.exe pplin.exe
lambd9.exe prhist.exe
ligrib.exe rwexa.exe
listf.exe sigrib.exe
mxhist.exe testprebd. exe

SRUNMDL /getbdrs files concerning the production of
boundary files (PQS_GB) (see chapter 5)

ECMOLAMOO0O.desc
ECMOLAMOO6 .desc

next forecastperiod (+6 hours)

ECMOLAMO66 .desc
ECMOLAMO72.desc
MAKE_ECMO_PQS_GB
makeECMOLAMdesc.sc
makePQSGB.sc
make_ecmo_pgs_gb. £
make_ecmo_pgs_gb.mk
make_ecmo_pgs_gb.o

54

SRUNMDL/scripts

S$RUNMDL /source

all (LAM) unix scripts

afpat.sc marstoPQS.sc
catchPQS.sc mkrdirs.sc
control.sc mxhist.sc
cycle.sc prhist.sc
daytsf.sc remold.sc
destag.sc remove.sc
elt.sc resumelam.sc
getOC.sc rwexa.sc
getPQS.sc send2dbas.sc
getpsts.sc setenvlamrun
gettovs.sc sig2grib.sc
lam.sc sweep.sc
ligrib.sc SWOOp.sc
listf.sc tailor.sc
listgb.sc test.sc

testmakepst.sc

all (LAM) fortran sources

Some of these sources have the
extension p, p4 or p8. This means that
they have to be preprocessed (using
ax_a9.f) before they can be compiled.
*.p8 files have to be compiled with
double precision. Extension p is equal
to extension p4.

addlo.p mxhist.p
ax_ag.f mxtims.p
bounder.p petosi.p
chtogf.p phys.p8
daytsf.f prebd.p
dyns.p8 prhist.p
ecpp.p8 rwexa.f
hextobin.p sigrib.p
knpp.p4 spec.p4
lamcom.p testprebd.p
ligrib.p tsf.p
listf.p tsfs.p8
main.p4 utils.p
mast.p8 various.p
mlsurf.p

The subdirectories and contents of SRUNANA are:

$RUNANA /data

containing eventslist.ch (input file
for 1.6.1.21 events.exe)

55

SRUNANA /exe

$RUNANA /source

OI executables

adanal .exe maxmin.exe
errgro.exe obsfit.exe
events.exe postan.exe
expand.exe preana.exe

initan.exe

OI sources

The file comdeck.p has the extension p.
This means that it has to be pre-
processed (using ax_a9.f) before it can
be compiled.

Most other files have the extension .cC.
This means that they are compressed

using the, standard Unix, command
compact. They can be decompressed using
uncompact <filename>. This 1is done

automatically by the installation
scripts.

adanal.C maxmin.C
ax_a9.f obsfit.C
comdeck.p olympus.C
errgro.C postan.C
events.C preana.C
expand.C sendgrib.C
initan.cC tovs.C
lennrc.f various.C

56

Appendix D Datafilenames

Datafilenames used inside the APL (automatic production 1line)
are restricted to some conventions.

Format of a filename for the LAM:

LAMF_TTT_YYMMDDHHmm_HHHmm_FR

TTT = file type (see below)
YYMMDDHHmm = verification date/time
HHHmm = forecastperiod (hours/minutes)
if FR = AB then HHHmm = 00000
FR = file format (first character) and

representation type (second character)

Files from the ECMWF for the LAM (PQS or PST) start with ECMO
(instead of LAMF).

-The filetypes are represented by three capital characters.
The filenames used in this paper are:

O Observations:
OCB = Observation file (produced by getobs).

A or G Analysis:

AQS = Analysis (full fields) on 10 pressure levels.
GST = Uninitialised analysis on 11 model (o) levels.
GSG = Initialised analysis on 11 model levels.

GQS = First guess on pressure levels.

B First guess errors:
BQS = first guess errors on 10 pressure levels.

F Forecasts:

FST = First guess (three hours forecast) on 11 model
levels.
FMT = Forecast on mixed levels (model, pressure, mean

Sea level etc.), interpolated from 11 model
levels.

K Climatology:

KLC = Climatology (analysis) on 10 pressure levels.

KQS = Climatology standard deviations on 10 pressure
levels.

KVS = Vertical correlation matrix (10 pressure levels).

KSD = Temperature and moisture of soil, albedo, landsea

mask and orography.

P Preprocessing:

PQS = ECMWF field on pressure levels.
PPS As PQS, but on LAM grid.

PST As PPS, but on 11 model levels.

57

T Time serie files:

TAA = Standard surface data and upper air data.
TBA = Standard surface data only.
MAP = satellite files

-The file format and form of representation are represented by
two capital characters:

Indicator of fileformat (first character):
BUFR

GRIB

history-file

lineformat

MBW grid

observations

Time Serie File

HORPT QW
[[| T I 1

Indicator form of representation (second character):

B = bits

C = characters

W = words

1 = descriptor file

58

Appendix E | Installation procedure

Brief summary of the installation procedure for LAM and OI.

Suppose LAM and OI basis software are in the directories
$SYSLAM and $SYSOI and suppose the directories for the
’‘static’ software and data are:

$RUNMDL and S$RUNOI (see chapter 2).

Installation is then done by the following commands:

% mkdir S$RUNMDL

% mkdir instlam (working dir for the installation)

% cd instlam

% cp $SYSLAM/iscripts/* .

% setenv EXPCODE oplll (for operational runs)

% setenv STATDAT /prod0/prodapl/prodhirl (for operat. runs)

setenv DYNDAT /prodl/prodapl/prodhirl (for operational runs)
installLAM.sc $RUNMDL

compile (on request if compilations are required)
For OI:
% mkdir SRUNANA

mkdir instoi (working dir for the installation)

cd instoi
Cp $SYSOI/iscripts/*
installOI.sc $RUNANA

o0 o\ o\ o\ o\

For more information see: Chapter 2 Organisation and
installation of the LAM and OI systems.

59

Appendix F Fields and level codes for postprocessing

Fields and level codes for postprocesing:
NOTE: in namelist &postin the ec-codes should be used.

THE FOLLOWING FIELD CODES ARE USED:-

ec-code variabele units pres? surf? MSL? sigm? grib
code
1 = GEOPOTENTIAL m*x*2 /s%%2 X X 102
2 = TEMPERATURE K X X 104
3 = U-VELOCITY m/s X X 123
4 = V-VELOCITY n/s X X 124
5 = HUMIDITY MIX. RATIO kg/kg X X 114
6 = PRESSURE mbar X X 101
7 = VERTICAL VELOCITY Pa/s X 140
9 = PRECIP. WATER CONTENT m 147
10 = VORTICITY 1/s X 130
11 = SURFACE TEMPERATURE K X 104
12 = SOIL WETNESS m X 147
13 = SNOW DEPTH m X 151
14 = LARGE SCALE RAIN m X 150
15 = CONVECTIVE RAIN m X 150
16 = SNOW FALL m X 150
29 = RELATIVE HUMIDITY fract X X 113
30 = D(PS)/DT Pa/s pY 141
36 = CLOUD COVER fract X X 179
37 = U AT 10 METRES n/s X 123
38 = V AT 10 METRES m/s X 124
39 = T AT 2 METRES K X 104
40 = TD AT 2 METRES K X 110
level codes: pres? : pressure(mbar)*10

surf?: -100

MSL?: =200

sigm?: highest model level = -NLEV (now:-11)

lowest model level = -1

60

Appendix G Variables in IAM Time Series Files

Type TAA: single level elements and multi level elements
Type TBA: single level elements only

BUFR element descriptors used in FMLAM: 890322

1 :LAND/SEA; LAND=0, SEA=1
ISLE(1)=008012

2 :SURFACE (GEOPOTENTIAL) HEIGHT (M)
ISLE(2)=010001

3 :MEAN SEA LEVEL PRESSURE (PA)
ISLE(3)=010051

4 :PRECIPITATION (M)
ISLE(4)=013011

5 :CONVECTIVE PRECIPITATION (M)
ISLE(5)=055132

6 :SNOW FALL (M)
ISLE(6)=013012

7 :SNOW HEIGHT (M)
ISLE(7)=013013

8 :ROUGHNESS LENGTH (M)
ISLE(8)=055110

9 :TOTAL CLOUD COVER (FRACTION)
ISLE(9)=055039

10 :HIGH CLOUD COVER (FRACTION)
ISLE(10)=055031

11 :MEDIUM CLOUD COVER (FRACTION)
ISLE(11)=055032

12 :LOW CLOUD COVER (FRACTION)
ISLE(12)=055033

13 :2M TEMPERATURE (K)
ISLE(13)=012004

14 :2M DEW POINT (K)
ISLE(14)=012006

15 :10M WIND DIRECTION (DEG)
ISLE(15)=011011

61

16 :10M WIND SPEED (M/S)
ISLE(16)=011012

17 :SOLAR ANGLE (DEG)
ISLE(17)=055240

18 :NET SURFACE RADIATION (W/M**2) UPW. POS.
ISLE(18)=055141

19 :SURFACE PRESSURE (PA)
ISLE(19)=055100

20 :SURFACE TEMPERATURE (K)
ISLE(20)=055120

21 :SURFACE RELATIVE HUMIDITY (%)
ISLE(21)=055130

1 :PRESSURE (PA)
IMLE(1)=007004

2 :TEMPERATURE (K)
IMLE(2)=012001

3 :POTENTIAL TEMPERATURE (K)
IMLE(3)=055020

4 tRELATIVE HUMIDITY (%)
IMLE(4)=013003

5 :WIND DIRECTION (DEGREES TRUE)
IMLE(5)=011001

6 :WIND SPEED (M/S)
IMLE(6)=011002

7 :CLOUDS (FRACTION)
IMLE(7)=055030

8 :EQUIVALENT POTENTIAL TEMPERATURE (THETA E)
IMLE(8)=055022

62

Appendix H Gridpoints for which Time Series Files are made

LAM has two kinds of time series files:
type A for surface and upper air data (APL file type *TAA*TW) .
type B for surface data only (APL file type *TBA*TW).

Gridpoint positions *TAA*TW file:

Nearby Station Latitude| Longitude
North Cormorant/Brent 61,08 2.27
Utsira - 59,38 4,32
Brae , 58,33 2,09
Turbot bank 57,25 0
Jutland 57,04 7,08
Auk alpha 56,13 1,97
F3/Gorm 54,95 4,77
German Bight 54,25 7,51
L15/Ameland 53,81 5,56
K13 alpha 53,37 2,75
L7 53,30 4,57
53,26 5,49
53,16 7,30
Leman Area/Hewett 52,83 1,81
IJmuiden buiten 52,79 3,61
52,27 2,67
Euro-Platform 52,24 3,56
de Bilt 52,17 5,34
52,06 7,10
Twin area 51,72 2,64
Varne 51,19 1,73
50,62 2,57
50,52 5,13
50,42 6,82

Gridpoint positions *TBA*TW file:

Nearby Station Latitude| Longitude
Wick 58,31 =-3,14
Aberdeen 56,68 -2,00
Scarborough 54,50 0
Lowestoft 52,29 1,78
Dover 51,19 1,73
Esbjerg 55,34 7,73
Helgoland 54,18 8,44
Delfzijl 53,76 6,49
Harlingen 53,26 5,49
Idmuiden 52,76 4,51
Hoek van Holland 52,24 3,56
Vlissingen 51,69 3,51
Cherbourg 49,54 -1,67
De Bilt 52,17 5,34
‘ 51,07 5,19
50,97 6,91

63

GRIDPOINT POSITIONS *TAA*TW FILES AND

SOME NEARBY STATIONS

QNS

4Turbot bank

4Brae

+Auk olpha

)

+K13 oipha 7]

4Howett

+

+Varne

+Nmuide

+Euro—Plotfo

10°€

64

S'E

GRIDPOINT POSITIONS *TBA*TW FILES AND SOME NEARBY STATIONS

2

OF
‘\
. A (5 \
¥ 6O'N "/‘
,2 ‘ Wick
" +Absrdesn
7

Lowestof!

—— 50'N
' 10t
ngm
o
.) o SE

65

Appendix I List of postprocessed fields

Fields for all required forecast periods are written in the
same file, which is labeled by the analysis time (APL file
type 'FMT*AB').

In cycle.sc the array variable ‘pphour’ contains a 1list of
forecast periods expressed in hours, for which output fields
are required.

Array ‘ppcont’ contains a 1list of names referring to the
required contents for the corresponding forecast period in

’pphour’. The required contents are defined by namelist ‘POS-
TIN’.

pphour={00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
ppcont=(AA AE AD AB AD AD AA AE AE AB AE AE AA AE AE AB AE AE AA AE AE AB AE AE AA AE AE AB AE AE AA)

The meaning of the relevant variables in &POSTIN is:

NMFD NO. FIELDS AT MULTIPLE LEVELS
NFDML(10) FIELD CODES (MULTIPLE LEVEL FIELDS)
NMLV NO. OF LEVELS FOR MULT. LVL. FIELDS
NLVML(30) LEVELS (MULTIPLE LEVEL FIELDS)

NSFD NO. FIELDS AT SINGLE LEVEL
NFDSL(30) FIELD CODES (SINGLE LEVEL FIELDS)
NLVSL(30) LEVELS (SINGLE LEVEL FIELDS)

N2D NO. 2-D FIELDS ON MODEL GRID
NGPCL(2,20) FIELD CODE/LEVEL PAIRS (2-D FIELDS)

Appendix F gives a summary of the ec-field and level codes
that can be used.

cat << end > AA

&POSTIN

NMFD=5,NFDML=1, 2, 3, 4, 29,

NMLV=4 ,NLVML=5000, 7000, 8500, 10000,

NSFD=4,

NFDSL=6, 7, 3, 4,

NLVSL=-200, 5000, 2500, 2500,

N2D=25,NGPCL= 6,-100, 11,-100, 14,-100, 15,-100, 29,-100,

37,-100, 38,-100, 39,-100, 40,-100,

2,-1, 2,-2, 2,-3, 2,-4, 2,-5,
5,-1, 5,-2, 5,- 3, 5,-4, 5,-5,
3,-1, 3,-2, 3,-3,
4,-1, 4,-2, 4,-3,
&END
end

66

cat << end > AB

&POSTIN

NMFD=0,

NMLV=0,

NSFD=2,

NFDSL=6, 2,

NLVSL=-200, 8500,

N2D=10,

NGPCL= 14,-100, 15,-100, 37,-100, 38,
3,-1, 3,-2, 3,-3,
‘ 4,-1, 4,-2, 4,-3,

&END
end

cat << end > AE
&POSTIN
NMFD=0,
NMLV=0,
NSF¥D=1,
NFDSL=6,
NLVSL=-200,
N2D=2,
NGPCL= 37,-100, 38,-100,
&END
end

cat << end > AD
&POSTIN

NMFD=0,

NMLV=0,

NSFD=1,

NFDSL=6,

NLVSL=-200,

N2D=4,

NGPCL= 37,-100, 38,-100,

3, -1, 4, -1,

&END

end

67

=100,

References

(1]

(2]

[3]

Louis, J.F. et al, 1982: ECMWF Forecast Model
Documentation Manual, Volumes 1 & 2.

Ccats, G.J., 1984: A scheme for mass and wind analysis on
a limited area using multivariate threedimensional

optimum interpolation: scientific documentation and
first evaluation.
KNMI, T.R. 46

Bijlsma, S.J., Hafkenscheid, L.M., 1986: Initialisation
of a 1limited area model: a comparison between the
nonlinear normal mode and bounded derivative methods.
Monthly weather review, Vol. 114, no. 8 (1986);

p. 1445-1455

