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ABSTRACT

Weather radars display the position of rain areas with respect to
the known topographic position of €.g. an observer. For most
practical applications the azimuth and distance of the radar target
have to be converted to generally accepted geographical
coordinates, or - alternatively - a topographical map has to be
converted to the polar radar coordinates.

Because the radar range is not small compared to the earth radius,
these conversions have to be carried out with the well-known great-
circle navigation formulae.

In many areas of the world the radar coverage is now sufficient to
combine many single radar images into composite radar pictures. aAn
example is the experimental COST-73 image that covers a part of
Western Europe. For such large-scale pictures the conversion
formulae have to account for the non-spherical shape of the earth.
It is advantageous to define a uniform grid for all radars in the
composite area, to perform the conversion at each individual radar
site, and to use look-up tables for that purpose.

This reports considers the formulae required to display single
radar data in polar stereographic projection of a spheroid. This
projection is used by the Netherlands weather radars since August
1989. A choice can be made between two sets of formulae, one with
very high and the other with acceptable accuracy.



Coordinate conversions for presentin

and compositing weather radar data.

1 INTRODUCTION

A weather radar measures the azimuth, distance and other
characteristics of a target. Plotting the position on a polar
diagram is aequivalent with applying the so-called Postel map
projection. If the radar data are used for warnings their position
with respect to certain user locations must be known. This can be
accomplished by providing a topographic overlay recomputed for the
specific radar projection.

This works well for a single radar, but if the data of two or more
radars are merged or if the radar data must be compared with mapped
meteorological information, the conversion to some common grid is
necessary. The monitor presentation of modern radars demands
already a local polar-rectangular conversion, so it is advantageous
to convert to a universal grid rather than to a local presentation.
The necessary accuracy is related with the radar beam width and
pulse length and will be of the order of 1 km. Such an accuracy is
easy to achieve over ranges of a few 100 km but may require an
ellipsoid approximation of the figure of the earth’s if the
combined radar picture stretches over more than 1000 km.

To avoid the loss of process time by repeating mathematical
function computations, it is good practice to perform the grid
conversion with a table, which is read in or computed during the
system initialisation. The benefits of very accurate conversion
formulae can therefore be obtained without extra cost.

In the following sections we will discuss the transformation of
radar data to a polar stereographic grid as it is carried out
operationally for the Netherlands weather radars. One of the
reasons to choose this projection was its acceptance as a standard
for the COST-73 composite radar products. The conversion to other
projections requires different formulae, but the general procedure
will be the same. Special attention will be given to the errors
involved in certain approximations. In the appendices accurate
computing schemes will be given for the two so-called principal
problems of geodesy: computing the coordinates of a target with
given range and azimuth, and the inverse problem: the computation
of azimuth and distance of a given target.

2 POLAR STEREOGRAPHIC PROJECTION

The simple case of polar stereographic projection on a plane

tangent at the north pole N of a spherical earth can be illustrated
with a geometrical construction (Fig.1): the projection A’ of point
A is found by extending S-A. The plotting distance NA’ follows from
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r(e) = l+sinyp

R cosp = 2R tan(45 -9/2) (1)

If dm is a small distance on the sphere, we have as scale factor

z(e) = dm de dm cos<4(45- ¢/2) R secs(45- ¢/2) . (2)
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The projection is ’‘orthomorphic’, which means that the scale is the
same in all directions (but not necessarily at all locations), so
the values of angles are conserved. Also, circles are projected as
circles, because SA’ cuts the sphere and the projection plane at
equal angles: 90 -p/2. The scales along both meridians and
latitude circles are equal, but of course vary with latitude ¢.
With Equation (1) the plotting position of A’ is known, because the
angular position of A’ follows directly from the geographical
longitude of A.

If a higher precision is required the deviation of the earth’s
figure from a sphere must be accounted for. For a so-called
spheroid the polar and equatorial radius are no longer equal. The
shape of such an ellipsoid is usually expressed by its eccentricity

e2 =1 - (Rp/Re)? . (3)

The geocentric latitude ¢’ and the geographic latitude ¢ of a point
are related by

tanp’= (1-e2) tangp. (4)

We also have the reduced latitude " (Fig.2) with

tanp" = /(1-e2) tanyp. (5)
Orthomorphic projection is obtained with
2 . e/2
R l-e 1l+e sin
= 2 el -

and the scale (except for ¢=90) from

r(g)(1-e?)  (1-e2sin2¢)3/2

(1-e’sin“p)cosp Rg(1-e?) -
r(e)/(1-e2sin¥) (7
Re cosyp )

_ dr _ dr de
z(e)= dm = de¢ dm

z(yp)=



The term dm/d¢ is the local meridional radius of curvature. Again
the scale is independent of the direction on the spheroid.

If, however, the geometric construction from the S pole were
applied for an ellipsoid, the plotting distance and the scale along
latitude circles would be found by using Re and the reduced
latitude " in the equations (1) and (2). The meridional scale,
however, is then larger by a factor /(1—ezsin2w)//(1-e2). This
construction method would therefore not result in an orthomorphic
projection as do the Equations (6) and (7).

GEOGRAPHICAL COORDINATES AND THE FIGURE OF THE EARTH

Because the actual form of the earth cannot be described by a
simple ellipsoid, most countries have selected a certain ellipsoid
that offers the best fit over their territory.

The following table compares well-known models of the earth. The
rightmost columns illustrate the differences in scale factor for
orthomorphic stereographic projection and a typical example of the
differences in plotting distance for a 30 deg latitude difference.

This demonstrates that the approximation with a sphere leads to an
error of about 4 km.

reference Rg (m) Rp (m) e z(60) r(30)-r(60)
sphere, same vol.| 6371221 6371221 0 1.07179677 3942525
Bessel 1841 6377397 6356079 0.0816965| 1.07173221 3937953
Airy 6377563 6356256 0.0816744| 1.07173225 3938061
Clarke 1866 6378206.4 6356583.8 0.0822719| 1.07173130 3938334
Hayford 1910 6378388 6356912 0.0819918| 1.07173174 3938504
TUGG 1967 6378160 6356775 0.0818196| 1.07173202 3938399

(IAU 1968)

For meteorologists it is of interest to note that Meteosat software
is based on Clarke’s ellipsoid with R changed to 6378169 m.
Considering that the geographical latitude of a point on the earth
is the angle between the ellipsoid axis and the plane tangent to
the ellipsoid at the chosen point, it is evident that the values of
the geographical coordinates depend on the ellipsoid choice. As an
example we may mention the position of KNMI'’s measuring tower at
Cabauw, which is 4.927481 / 51.971255 in the Bessel system of the
Netherlands Ordnance Survey maps. However, the IAU-coordinates are

4.926570 / 51.971056. Confusing these reference systems would lead
to a position error of 66 m.

4 APPLICATION TO THE REDUCTION OF SINGLE RADAR DATA

A polar stereographic grid is defined by

- the sheroid parameters, e.g. R, and e,

- the grid orientation, which is parallel to a certain meridian MO
with eastward longitude assumed positive, and

- the grid scale, usually valid at latitude 60 N.

In the projection plane a grid with square pixels of size p (m) can

be defined (Fig. 3) and pixel coordinates (i,)) can be used with

the origin at the upper left corner of the grid.

The value of j is increasing southward to conform with computer
transmission and presentation practice.



For true scale at the earth surface for latitude 60 N, the distance
increments in the projection plane become p*z(60). The geographical

coordinates (),p) of the upper left corner of an arbitrary pixel
(i,j) follow from two equations

J-Jo = (r(®)*cos(A\-\p) -r(60)) / (p*z(60)) (8a)
i-ig = [(J-Jg) + r(60)/(p*z(60))] *tan()\-)\g) (8b)
N
Fig.3.
Polar stereographig grid A-2,

aligned at latitude )\q.

r(60)

(0,0 —>i

(i)

Here the pixel coordinates (ig, Jg) of the point (Ao E, 60 N) are
used as a reference to allow an offset of the grid with respect to
this point. If necessary, (ig,Jp) can be found by substituting
(i=0,3j=0) and applying the Equations (8) for the longitude and
latitude of the true origin of the grid. These coordinates igp and
Jo are not necessarily integer values.

Solving Equation (8a) for ¢ requires iteration, because of the
complex form of r in Equation (6). These Equations are hardly
suitable for on-line data processing, although they might be
speeded up by tabulating the eccentricity -dependent term in
Equation (6) as a function of ¢. A better procedure is to use the
Equations (8) to generate a look-up table for e.g. the polar-
rectangular conversion of single radar data. Such a table contains
an azimuth and distance (with respect to the radar) for each pixel

(i,3), so that the grid can be filled with the appropriate polar
radar data.
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The coordinate transformation table may be produced in three steps:

The grid coordinates (ip,Jjy) of the radar have to be computed from
the geographical coordinates (Am/®m) with the help of Equations
(8). Of course the projection of the radar is generally not at a
pixel corner, but at non-integer coordinates (ig,Jp) . It would be
optimal to use coordinates valid for the same spheroid as chosen
for the projection. It was noted in Section 3 that differences
between spheroids could lead to position errors of the order of 100
meters, which seems acceptable. Using a sphere, however, could
cause errors up to 4 km.
Then establish the range of integer values (11,31),(i3,35) of the
rectangular pixel frame that has to be filled with data from the
radar concerned It may be considered to off-centre the radar in
the picture frame because of radar coverage characteristics or
forecasting demands.
For all pixels in the frame chosen at step b the azimuth A
(measured clockwise from North) and the distance D with respect to
the radar position have to be found. As the radar data have to be
allocated to the pixel centers, the grid data (i,j) used in the
following are (i;+0.5, j;+0.5), (i,+1.5, j1+40.5), .... etc. For
this stage two methods are available:
First all pixel centres (i,j) have to be converted to
geographical coordinates ()\,9). The next step is the problem of
determining the bearing and distance from point (\p,¢p) to each
pixel ()\,p) on a spheroid, which is the ’inverse principal
problem’ of geodesy. A solution is given in the Appendix.
It should be noted that the use of 'great circle formulae’ for a
sphere would cause errors up to 2 km at a radar range of 250 km.
This error is comparable with the pixel size and also large
compared to other uncertainties like the variation of the radio
refractive index.
An alternative to the accurate, but complicated solution c1l is
to profit from the orthomorphic properties of the projection. The
azimuth and distance between the points (i,j) and (ip,J3n) in the
projection plane can be computed with plane trigonometry. The
projection of a radar ray (up to 250 km range) is then
approximated by a straight line. The azimuth so found, has to be
rotated over an angle )\p-M\g. As a first approximation

J((i=ig)2 +(3-3p)2) *p*z(60)/z(vy) (9a)
arctan(-(i-ip)/(3-3p)) +Op=No) p (9b)

where 180 deg. has to be added to A for pixels with >3- At far
radar ranges (250 km) these approximations lead to errors up to
3 km, respectively 0.5 deg. From comparisons (at latitudes
between 30 and 70 deg) with the exact solutions obtained above
under cl the following corrections were obtained

» o
i

D=D / (1 +0.040*tan(45-p,/2)*cosA) ’ (10a)
A= A + 4.49*1076#D*tan(45-¢,/2)*sinA . (10b)

The errors that remain after these corrections are restricted to
100 m and 0.01 deg at the 250 km range, which is sufficiently
smaller than other radar location errors.



5 APPLICATION TO THE COMPOSITING OF RADAR DATA

If the same grid is used for different radars the combination of
the pictures is relatively easy. If the grids use a different pixel
size, the merging algorithms become slightly more complicated. of
course the most optimal situation is, were the composite pixel size
is a multiple of the contributing pixel sizes.

The advantages of using a uniform grid can hardly be overestimated.
Most evident is the saving of computing time during the merging
process. The resulting composite will become more valuable for the
contributing service, because it arrives more timely and also
because it may more easily be compared (or actually be merged at
the far ranges) with the more detailed local picture. Another
advantage is the possibility to exchange topographical overlays
based on the common grid.

The choice of a reference ellipsoid for the projection is not
critical, considering the other uncertainties of radar location.
However, the use of a spherical approximation for an area as large
as Europe, would cause errors of about 4 km, which is comparable to
the pixel size. Also, the radar positions (Mm/®Pm) are usually known
with reference to an ellipsoid and would then have to be converted
to positions on a spherical earth. These problems are easily
avoided by choosing an ellipsoid and applying the formulae (6)-
(10).

REFERENCES

H.Bodemiiller, 1955 Formeln und Tafeln zur Berechnung der beiden
geoddtischen Hauptaufgaben fiir das Internationale
Ellipsoid bei grossen Entfernungen.
Bayerischen Akad. Wiss. B18, Miinchen.
J.Collins, 1980 Formulas for positioning at sea by circular,
hyperbolic and astronomic methods.
NOAA Tech. Rep. NOS 81, Rockville, Md.
J.E.Jackson, 1987 Sphere, spheroid and projections for surveyors.
2nd.edition, Oxford.



APPENDIX
RELATIONS BETWEEN AZIMUTH AND RANGE AND POSITIONS ON A SPHEROID

The solutions of the principal problems of geodesy in this appendix
are based on work by Helmert dating from 1880 (Bodemiiller, 1955).
Auxiliary quantities are the reduced lengths l,, 1 and the reduced
arc lengths sy, s with respect to the most northern point (latitude
p*) of the ellips that forms the intersection between the spheroid
and the plane through the points (An/®Pm): (A\,¢) and the spheroid
centre.

Bodemiller presents an example that can be used for checking a
computer program based on the following formulae. For Hayford’s
ellipsoid and starting point 10 E, 50 N he reaches for azimuth 140
deg and distance 15000 km the point 105.093973 E, 62.950890 S.

The formulae and examples of Collins (1980) were also used for
checking. It proved, however, that Collins is not using the actual

azimuth but its projection from the earth’s center on a concentric
sphere with radius Rp.

a.Azimuth and range from target coordinates (\,9).

For the solution of the inverse principal problem the values 1, and
1l are iteratively found from the

Equations (Al)-(A5):

L1 Sin(e"-gy")
—m = - =
5 arctal’l( Sin((p"""wm") tan(l/z—lm/z) )

’ (A1)

where the first estimate of 1-1, is A~Am- Of course 1 and 1, are

1l +1 1 -1 1 +1 1 -1
= £ *ip = lm o im
1 > + > and 1m > > .

The position of the intersecting plane is found from
tan ¢* = tan ¢p" / cos 1, , ( o*= 90 deg if 1= 1) . (A2)
We have another auxiliary quantity
e .
k = tanz([arctan(yTI:Ez)51n v*)1/2) . (A3)

The reduced arc lengths are determined from

Cos sp = sin " / sin ¢*, with Sy <0 for 1, >0 , and (Ada)
cos s = sin " / sin ¢*, with s <0 for 1 >0 . (A4Db)
Finaly we use the rather accurate approximation
R Kk k2
1 -1p = A -An t e2cos e* [(RSRg = 72~ g )(s=sm) +
- —%—cos(s+sm)sin(s—sm) + —%gcos(Z(s+sm))sin(2(s-sm)) ] . (A5)

The - sign for the + term is used if s >SS, or 1 >1., but not if

both conditions apply. The iteration (a1)-(A5) proceeds until e*
remains constant.



Then the azimuth A is determined from

tan A = 1/(tan ¢* sin Sm) , but 0 or 180 deg for 1 =lpn. (A6)

Here 180 deg. has to be subtracted from or added to A, if )\- Am
and dp have the same sign (or in the rare case that Y >-pn). Add
360 deg if A is negative. The distance D follows with a very high
precision ( about 1 m over the entire globe) from

2
Dz ) R?lfi;k £ 1 fs-syl +r(1-

3
—%—cos(2(s+sm))sin(2(|s—sm|)) + —%Zcos(3(s+sm))sin(3(|s—sm|))]. (A7)

3k 2 N .
g~) cos(s Sp)sin(|s-sp|) +

b.Target coordinates from azimuth and range.

The computation of the principal problem proceeds without
iteration. The position of the intersecting ellipse follows from

cos p* = sin A cos on" (A8)
and the auxilliary coordinate of the starting point from
tan s, = -cos A / tan On" . (A9)

By means of the constant k (Equation A3) we know the angular
distance d of the target

d = D/R, (1-k)/(1+k2/4) . (A10)

Twice the auxiliary angular distance of a reference point midway
between starting point and target is approximated by

S’ =2 sp +d+ k*sin(2 sp) - (k2/8)*sin(4 s) . (Al11)
The auxiliary angular distance of the target point follows from
S = sy + d -k(1- 9k2/16)cos(s’)sin(d) +
+5k2/8 cos(2s’)sin(2d) —29k3/48 cos(3s’)sin(3d), (A12)

neglecting higher order terms. The latitude p" follows with
Equation (A4b) and the geographical latitude from (5).

Apart from the trivial cases A= 0 or A=180 the auxiliary longitude
of the starting point is found from

tan 1y = tan sp / cos ¢* (A13)

and the longitude difference A~Am can be solved from (A5). The
result is added to ), to obtain Ao

For a spherical approximation of the earth the above formulae are
greatly simplified, mainly because P=p", k=0 and e=0. Of course
the resulting equations will be aequivalent to the well-known
explicit formulae for great-circle navigation.



