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Abstract

Simulated observations are assimilated into a simple wave model, in
which only propagation is considered. The approach used to assimilate
them is called "model fitting". It looks for the solution of the model
equations which fits best the observations to the space-time domain we
are considering. It is also required that the deviation from our "a
priori" knowledge (in our case the model initial state) remains as small
as possible, in some well specified sense.

The method is based on the minimisation of a so called "cost function",
which is a quadratic function of the differences between modelled data
and observations on the hand, and between modelled and "a priori" data
on the other hand. ,
The minimisation of the cost function is done by means of an iterative
gradient-based descent method.

After assimilation, new model results, which fit better to the
observations and prior knowledge considered, are produced. Therefore we
conclude that the data assimilation process improves the wave field, but
its effect is more clearly noticed around the observations than
elsewhere, and it does not remain long after stopping assimilating.



1. Introduction

In general, modelled data are not equal to the measured observations
available. Therefore the idea of introducing observed data into the
model1ing procedure is considered, in order to produce better analyses
and predictions. This process is called data assimilation.

In this sense, one can say that data assimilation is the "correction" of
a numerical simulation of a process, taking into account the
observations available at the moment.

Various methods exist (Ghil, 1989). The simplest one consists of
overwriting the modelled results with the measured data. Because this
produces discontinuities and noise in the data, it is generally not
preferred. .

The method of "successive corrections" tries to reduce the noise
introduced in overwriting by spreading out the observed information over
the grid, according to the distance to the observation point.

An alternative method, "optimal interpolation", adds a fraction of the
difference between modelled and observed values to the modelled ones.
This difference is weighted according to the error covariance of the
model. This method is the most advanced one which works operationally.
The "Kalman filter" is similar to optimal interpolation but the error
covariances are computed in the numerical model dynamics. Therefore it
is more accurate but it requires considerable computing power.

Finally, the procedure that we will consider here 1is called "model
fitting" (Thacker, 1988; Long, 1989). This method has been considered
for wave forecasting by (de Valk, 1989 and Schilperoort, 1989). It is an
alternative to Kalman filtering which does not need as much computing
effort.

It looks for a solution of the model equations, which is a compromise
between the observations and the "a priori" knowledge available. This "a
priori" knowledge could be, as in our case, the initial model state, but
also some smoothness in the data, climatology, etc.

To evaluate if one solution is better than another, a "cost" is assigned
to the differences between modelled and observed data, and between
modelied and "a priori" knowlegde, and a so called cost function is
calculated. This is a quadratic function of those differences. In this

way, the solution which has minimal cost is considered to be the optimal
one.




The process followed to find the minimum of the cost function is called
the "adjoint method". It will be explained in detail in section 3.

The purpose of the present study is to get a better understanding of
this data assimilation procedure in a relatively simple system:
monochromatic advection on a "torus", i.e. a two dimensional grid with
periodic boundary conditions.

On the one hand, this system is simple enough to analyse in full detail.
On the other hand, the number of degrees of freedom is similar to that
of meteorological models.

Interpreted in terms of wave physics, the advection equation gives the
evolution of swell without any source terms. It is given by:

F(x t;k) + ¢ (k) G F(X,t;8) = 0 (1)

ax
Since in this equation there are no derivatives with respect to the wave
vector k only one wave vector is considered (monochromatic). The grid

is chosen in such way that the stability condition is not violated (see
section 2.1.).

Our model will be the first order upwinding discretized approximation of
the continuous advection equation. Some observations will be simulated
via ray back-tracking of the exact solution and then they will be
compared with the "model counterparts", results of the interpolation of
the four closest modelled data at the place of the observation (see
section 2.4). After having compared them , it is noticed that a misfit
exists between both. Therefore we assimilate the observations in the
model, run the model again and compare the new modelled data after
assimilation with the observations. The resulting misfit is now smaller.

The scheme of the process we follow is shown in figure 1.
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2. Generation of modelled and observed data.

2.1 Model

The grid we consider is a 20 x 20 points rectangular one, with periodic
boundary conditions. Therefore the surface we are working with is a

torus (see Fig. 2).
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The discretisation scheme we use is a "first order upwinding" one:

F*1(4ax, Jay) = (1-a,-a,) FE(iax, 3at) + a FE((1-0,)ax, jay) +
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From now on, the following notation will be used:

t
Fij

= Ft (iax, jay)



The above equation has a stable solution provided that a, and ay satisfy
the following stability conditions:

ax >0
>
a, 0 (3)

1- dx - dy >0

These three conditions also guarantee that F remains positive if it was
already so at the former time stage.

The first two conditions a, > 0 and ay > 0 imply that

o, = cos¢/lcosd!l and oy = sing/lIsingl

This means that the sigmas must be chosen in such a way that the scheme
is "upwinding" i.e. that the waves at (x,y) are "coming from" (x-ox,y)
and (x,y—oy).

The last condition is equivalent to

icos¢l Isingl
cq At ( i * Iy ] <1

and gives, for fixed Ax,Ay and At, an upper limit for the group velocity

Cqg- Waves are not allowed to propagate more than a grid unit per time
step.

2.2 Simulation of observations

The exact solution of the advection equation has the following property:
F (X,t) = F (sZ-'c’gt,o) (4)
Therefore, given an initial configuration:



the exact solution at any point in space and time can be generated in
this way:

> > > > -
F (x,t) =F (x-cgt,o) = F1n1t (x-cgt)

the observations at point X and time t are taken to be the values of the
exact solution at that point and time.

That means we go back in the opposite direction of the wave from X to
X- cgt and then we take the initial value of the wave variance F at that
point X- cgt as the observation value at point X and time t. (ray back-
tracking).
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In this way, we generate 20 observations, at five arbitrary points and
four different times. This means that we obtain "bogus" data from the
exact solution at time t = 0.

Since our observation points are not necessarily grid points, later we
will need to interpolate the model results to the observation points.

On the other hand, the observation times will always be taken at an
integer number of model time steps and no interpolation in time will be
needed.

2.3 Data for verification

Twenty additional values at five different points and four times are
generated in the same way as the observations. But these data will not
be assimilated. Our aim is to compare the effect of the assimilation at



points which are not observation ones, to see if the impact of the
assimilation process is as important there as at the observation points.
Therefore these five new points are called "verification points".

2.4 Model counterparts

Since the observation and verification points are not necessarily
located at grid ones, an interpolation procedure is needed to compare
observed and modelled data at the same place. Through this procedure,
one obtains the "model counterparts" which can be considered as the
result of the model at the observation or verification point.

Here we take as model counterpart the result of the bilinear
interpolation of modelled data in the four closest grid points at the
place of an observation or verification point.

In this way, if the Kth observation at point (x »Yy ) is taken into
account, its model counterpart will be a weighted sum of the modelled
data in the four closest grid points to it,

(1K,JK), (1K+1,jK), (1K,JK+1) and (1K+1,jK+1), (see also Fig. 3), as
follows:

T T
me = Wy F1 J + w2 Ft K

Fl +w, F' (6)
i +1 J 1K jK+1 4K 1K+1 JK+1
where the weights have the following expressions:

(G+Dax-x, ) (5, 41)8y-y, ] -
AxAy

w1-

(x=1,8%) [(§ +1) dy-y, )

W
2K AxAy
[(14100xx, ) (y, -3 8y) (7)
W =
3K AxAy
.. (x=1,8x) (y,-j Ay)
4 AxAy
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3. Data assimilation

The objective of the data assimilation is to find a solution to the
model equations which is the best compromise between the data and the "a
priori" knowledge. At an intermediate stage, this implies: that the
misfit between model analyses and available observations should be as
small as possible. But the final objective for forecasters is to

minimize the difference between model predictions and future
observations.

This is accomplished by minimizing the so called "cost function" J. This
function has two parts:

J=J, + 0, (8)

The first one, Ji, 1is taken to be a quadratic function of the
differences between modelled and observed data, which means that it is

proportional to the sum of the squares of those differences, and it can
be written so:

3 - % (m-d)T AL (m-d) (9)
where:

d is the vector of the observations
m is the vector of the model counterparts
A is the matrix of the error covariance of the observations.
Ala@ ) (10)
HsV
where Eu v is the covalidity between the uth and the vth observations.
In our case, d and m have 20 components, and A is a 20 x 20 matrix.

Assuming that all the observations are uncorrelated and of equal
accuracy, we can write:

2
1/0 0
Al . [ 1/02 .

]
0 *.l/0 20x20
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where 0© is the variance of the measurement errors. Then the first

component of the cost function can be written in the following way:

1 g
J = —
17242 (&

” ) (me - d)? (12)
0 T

1 t=0,3,6,9

where k 1labels the position in space and t denotes the time of the
observations.

But noticing that we have:

- 5x4 = 20 "observed" data: d:,

- 20x20 = 400 independent variables: F?j (t=0),

- 20x20xN = 400 x N dependent variables: FEJ, t # 0, where N is the
number of model time steps in the assimilation cycle,

the following problem arises: we have less data than independent
variables.

In order to solve this, we take a guess for the independent variables:

G i=1,000,20, J=1,.0.,20, t=0 (13)

1]
which is the "best guess" before data assimilation, and we try to
minimize the difference between G° and F?J as well.

iJ

For that, the second part of J, Jp, fis considered in the same way as the
first one:

;20 20 )
25zl I (Fyy-6y) (14)
204" 4ay  gm1

where, in this case, of is related to the model error. So Jp is

proportional to the sum of the squares of the differences between
0 0
Fij and Gij'

Now, we are interested in looking for the minimum of
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1 = 1,..0, 20
3Ry Fig GFip) = 9+ 9, 3= 1heen, 20 (19)
t = 1,00., N

We differentiate with respect to the independent variables, F? . But
then, another complication has to be considered: the model counterparts

are explicit functions of the dependent variables, but implicit
functions of the independent ones.

t=20,3,6,9
1 1 t
m, = m (Fij) i=1,..., 20 (16)
J = 1,.00, 20

Therefore, we would get very complicated expressions if we would
differentiate J with respect to the independent variables, F?j, and for
more complicated models (e.g. the North Sea wave forecasting model
(Nedwam)), it is aimost impossible to find analytical expressions for
the model counterparts in terms of these initial variables. On the other
hand, for most models (1ike Nedwam), finding analytical expressions for

the model counterparts in terms of the dependent variables ng is not
very difficuit.

In order to solve this problem, the "Lagrange multipliers method" is
used. We construct the so called "Lagrange function" adding a term to
the cost function, as follows:

N 20 20
o .t .t t ot
L(FYys Figs Agy) = 9 + tgl 121 j§1 My Eij (17)

The term we append is a sum for every point in space and time, of the
product of an undetermined Lagrange multiplier, Agj, and the left hand
side of the model equations.

t t t-1 t-1 t-1
E1j = F1j - (1-ax-ay) F1J +a, Fi-ox jtray Fs j_oy (18)
t

E1j = 0 = model equations.
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In this way, the complete explicit expression of the Lagrange function
is the following:

Lo§ 5 il - i L5 (F, - 640
L - m +
202 Ke1 10,3,6,0 % 137 T % 5;? i=1 j=1 3 (19)
20 20
t t t-1 | . gt-l t-1
+ AS, [FE. - (1- -a,-a )F +aF +a F ]
tzl 121 ng 1371 X1-0, 3 " "y 1 Jo

Now, the minimum of J as a function of F?j can be found by looking for
the saddle point of L, as the projection of this saddle point on the
space of the independent variables (Fo ), is equal to the minimum of J
on the manifold where the model equations are satisfied (see Appendix).

This stationary point of L is found by differentiating L with respect to
al] the variables: A 1j’ (i=1,000,20, j=1,.0., 20, t = 1,..., N) and

(1 =1l,000, 20, j=1,...20, t =0,... N), all of them treated as
1ndependent and setting the derivatives equal to zero.

So, we get two sets of equations:

QLE' =0 = Efj model equations (20)
9y | i=1,...,20, j=1,...,20, t=1,...N
oL 0

5 - adjoint equations (21)
oF {5 i=1,...,20, j=1,...,20, t=0,...N

The first set of equations reproduces again the model ones and the
second constitutes the so called "adjoint equations". (Hence our method
is called "adjoint method").

Now, the procedure to find the minimum of J is as follows:

1. First of all, we consider a first guess for the initial values of
the wave variances:

ng - Hyy i=1,0.., 20
j = 1,-0., 20
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Usually, we take Hij equal to Gij’ the "best guess" before data
assimilation.

Solving (20) forwards in time, the value of FEJ for every other
t#£0,t=1,..., Ncan be calculated.

oL t t t- 1
ﬂ = E'IJ = () (== F1j = (l-dx"dy) Fij a F . y
i=1,0e0, 20

J=1,.0., 20

t=1,..., N

Next, the adjoint equations (21) are solved backwards in time, for

i = 1,..., 20, j = 1,..., 20 and t = N,..., 1, and so the values
of A (1 - 1,..., 20, j = 1,..., 20, t = N,..., 1) are calculated
(there are no Aij because E1J do not exist).

In order to do this, we need an explicit expression for aLt .
From the whole expression of L, (19), and of the model aF1J
counterparts, (6) and (7), the derivative can be written as follows:

5 am.
ek A AR B
Fij o k=1 1t=0,3,6,9 FiJ (22)
t t+1 t+1 t+l
A1j - (l-ax-ay) Aij +a Ai-ox j*ay, A J“°y
where:
am: :
— w, §..8 +w, § § +
t 1, 791,733 2, "1 i 41 "jj
8F1j k k “Jk k k k (23)
w, 8.. § +w, § 3 ] 8
3k 1ik J jk+1 4k i 1k+1 J jk+1 tt

To s1mp11fy we call b?J the whole first term of the expression of

aL/aF ij which is known. So we can write:
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oL t t _ t+1 t+l t+l -
py b1j + A - (1- -a,-a, ) My +a AT jtay A j-0 0

1 = 1,-.., 20

j = 1,.-., 20

t=Neueoy 1

As we know the values of ng i=1,.0.,20, j=1,..., 20,
t = 0,...,N from the solution of (20), we can calculate the values
of mk, K=1,..., 5, T =0,3,6,9, and so the values of bgj
T=1,000,20, j=1,000, 20, t = 1,00, N.

Noticing that AN+L 0 (it does not exist), we can solve the set of
equations (24) backwards in time:

N
b1j + Aij =0
N-1 N-1 N N
bij + A ij - (1- -a,-a, ) Aij +a, Ay -0, 3 +a, A j'oy =0
. (25)
1,1 2 2 2
bij + Aij - (l-ax—ay) Aij +a, Ay, jtay A J—o =0

X

in this way we get the values for AL,, 1= 1,..., 20, j = 1,.... 20,
1}
t = N,o-o, 1:

N _ N
A13 bij
t t+1 t+1 t+1 t
j (l-u a ) Ay - a, A1 -0, 3 - ay A1 j- o, b1J (26)

1 = 1,0..,20, j = 1,..0, 20, t = N_l,ocogl

Note that also in the general case of a non- linear model, L (19) is
linear in the A's, hence the adjoint equations (21) are always

linear in the A's as well, and it is never a problem to solve for
the A's, even for a non-linear model.
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Now, we have obtained values for all our variables:

AEJ (1 =1,000, 20, 3 =1,00., 20, t = 1,..., N) and Ffj
(i =1,000, 20, j=1,00., 20, t = O0yeeey N)

But we still have the subset of equations (21) concerning to t = 0,
which are most probably not satified because of our guessing of
the F?J (f = 1,..., 20, j = 1,..., 20). But we can calculate the
value of aL/aF?J (i =1,..., 20, j =1,..., 20) and it can be shown
that this value equals the gradient of J, since both the adjoint and
model equations are satisfied:

grad o 9 =2 . & i=1,..., 20
Fig B4y OFy J=1,0e., 20
t
Ef = 0
(27)
oF "
13 i=1,...,20
J=1,00.,20
t = 1,.0.,N

and from (24) it follows that these derivatives have the following
expression:

oL 0 1 1 1
gradFo - 5;3— = b1J - (l-qx-ay) Aij +a, Ai—ox jtay A jo
ij 1] y
mOderQ.o i = 1,0.., 20
adjoeqo-o j = 1,..., 20 (28)

Note that A?J does not exist (see (19)) and that one has to add

another term to b?J, which comes from J (14), and b?j has now the
following form:

0

5 om
0 1 0 (4] k 1 0 0
ij *

The next step is to evaluate if the gradient of J is small enough or
not.
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5.1 If it is, we consider our Fo (i =1,.0., 20, j=1,..., 20) as
the "best guess" possible for the independent variables, and
F’jj (1= 1,000, 20, § = 1,..., 20, t = 0,..., N) as the "best

fit" to the observations, for the model! values in the grid.

5.2 If it is not small enough, a "new guess" for F?j has to be
considered, which will make ng fit better to the observations.

To make this "new guess" we follow the "method of steepest descent",
which consists on adding a term to the "old guess", in the direction
opposite of the gradient of J, in the following way:

FO - F° - 2° oL

1jnew ijold - aF?J

where A?j is the increment we add in the opposite direction of the
gradient. That moves our guess down towards the minimum of J (see Figure
2).

But we are interested in the best choice for AiJ’ so let us look for it.
The cost function 1is a paraboloid, since it is quadratic in the
independent variables.

A section of this paraboloid with a plane of constant cost gives an
ellipse of constant cost, which can be projected to the space of the

(30)

independent variables. One point of this ellipse is our first guess

F?j and we know the gradient VFo J at that point as well, which is a
ij '
vector perpendicular to the ellipse at the point F?j.

The section of the cost function by the plane
FO, + x.V0 J (31)
ij ¢ Fij

is a parabola, as we can see in Figure 5.

In this way,

J ( i + X. V 0J) = ax2

+bXx+c=1J 1(x) (32)
iJ
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Moving in the opposite direction of the gradient (in the space of the
independent variables) implies going down in the parabola J s1 towards
its minimum. Therefore the best would be to choose A ] in a way that we
would reach the projection of the vertex of Jg1-

Jg1 has a minimum for x = -b/2a, therefore the best choice for A?j is:

1J = b/2a. (33)

To calculate this value %E’ we now proceed as follows:
as we know that

Jgp (0) =3 (F?J) =c

. (0) =V.0oJ =0
sl FiJ

only the value of a is stil1 unknown.

To calculate it, any other point X; can be used, and as we can always
calculate J (F1j + X;.V0 J) = Jsl(x ), the value of a is given by:
1J

J_.(x,) -bx, - ¢
4 = 5111 —1 (34)
X1

Now, that we are at the minimum of the parabola Jg1» We project it again
in the space of the independent variables and we have then another
ellipse of constant cost (of less cost than before) and so we can repeat
the same procedure until we reach the absolute minimum of J. We will
have another parabola Jg2, etc. (see Figure 6).
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Now, we go back again to step 2. and iterate the process in this way
until convergence in the absolute minimum of J (see Figure 7).

This method of steepest descent is not optimal. There exist variations,
which have a better convergence rate (de Valk, 1989). Note also that the
trick of calculating b/2a is only valid for linear models, while most
models are non-linear.

There can be more complications if the model is non-linear, due to the
multiple minima that the cost function may have. Then if we choose the
first guess too far away from the global minimum we are looking for, we
could converge to a local one, in which we are not interested.

Trying sereval first guesses, Hij’ the probability of failing to find
the absolute minimum is smaliler.

We can summarize the procedure to find the minimum of the cost function
J in the following scheme:

t solving t{0 .
1 guess ) Fy (21) ]
FF=HH t=1,.,N
(21)
t=0
F/=F?°-A° oL no rad J
now ol NI |[¢——  GradJ<TOL ™ e— | 9 -
next guess i

lyes

F, = best guess, and

Fy i=1,.20
1,..,20 best fit
0,..,N

sl Sme mwe
nn

fig.7
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4. Assimilation cycles

What has been explained until now constitutes only one cycle of
assimilation. But one can iterate the process so long as one likes. In
that way, one would deal with more cycles of assimilation (see Fig. 4).
If we choose a 9 hours assimilation window, in a model with a 9 hours
analysis and a 18 hours forecast period, and if we have observations
every 3 hours, we can assimilate the data available at Oh., 3h., 6h. and
9 h. With these data we can calculate a cost function, minimize it and
produce a "best"guess for the independent variabies which are the values
of the wave variances at time Oh. From the improved field at Oh.,
improved analysed fields for 3h., 6h. and 9h., and improved forecasted
fields for 12h., 15h. and 18h. are also obtained.

Next, as data for 12h. have arrived, we can assimilate the data at 3h.,
6h., 9h. and 12 hours, using the "old" analysis for 3 hours as the "new"
first guesses for 3h., and obtain a "best guess" for the wave variances
at 3h.

In this way, model fitting could be used operationally.
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TIME SCHEME
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5. Results and conclusions

5.1 Graphs
In the Figures 8, 9, 10 and 11 (graphs) we can see a comparison of
the results of the process before and after data assimilation.
The crosses are measured data, the squares are model results without
- data assimilation and the circles model result after assimilation.

This comparison 1is shown at some observation and verification
points.

5.2 Table

The table shows the root mean square error between the measurements
and the modelled data at the observation and verification points,
before and after data assimilation, at every three hours.

TABLE 1.
rms.error rms.error
before assimilation after assimilation
time obs.-mod. ver.-mod. obs.-mod. ver.-mod.
0 h. 0. 0. 0.023 0.101
3 h. 0.444 0.125 0.076 0.068
6 h. 0.333 0.413 0.050 0.499
9 h. 0.346 0.140 0.099 0.221
12 h, 0.266 0.200 0.264 0.232
15 h, 0.691 0.619 0.609 0.655
18 h, 0.397 0.800 0.396 0.816
before assimilation after assimilation

mean error 0.341 0.293
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5.3 Conclusions

The analysis of the results, graphs and tables, leads to the following
conclusions:

1.

2.

3.

The "correction" due to the assimilation at observation points is
larger than at verification ones.

The effect of the assimilation is noticed more clearly around the
observation points than elsewhere.

The average of the root mean squared errors between measurements and
modelled data after assimilation is smaller than before, which
implies that the data assimilation process improves the wave field,
producing a new one which fits better the observations and the "a
priori" knowledge we took into account.

The effect of the assimilation does not remain very 1long after
stopping assimilating. This suggestes that some improvements in the

system have to be made, if we want this effect to remain longer in
time.
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Appendix 1.

Relation between the extrema of the cost and Lagrange functions.

The cost function J is a function of the wave variances at every time:
0 t
J =1 (Fij, Fij) (35)
Since this cost function J is positive definite, it must have a minimum,

On the other hand, L is a function of the wave variances and the
Lagrange multipliers:

(] t
L =L (Fij’ Fige A) (36)
Both functions are related in the following way:
0 t 0 t 0 t
L (Fij’ Fij’ A) =J (Fij’ Fij) + AE (F1J, Fij) (37)
where E (F?j, ng) =0 are the model equations.

Since L is odd in A, if L has an extremum, it can not be a maximum or a
minimum, it must be a saddle point.

Part 1.1.

Let us assume that L has an extremum at (F?J, FEJ’ A).

In this case, all the derivatives of L must vanish at that point. Thus,

& (Fi Frum =0 (38)
and therefore

E (F3;, Fij) = 0 (39)
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which implies that every extremum of L must 1ie on the manifold where
the model equations are satisfied.

But for every point (F1J, ?j) on that manifold, (37) is reduced to:
0

This, if L has an extremum at (F1J, iy A), J, as a function of F?j and

t
Fij’ where (Fij’ Fij) must lie on the manifold E(F1j’ 1j) = 0, has

t
an extremum at (Fij’ 1J)'
This shows that if L has a saddle point at (??j, ?gj, A), then:

: =0 t
1.1.1 - E(Fij, Fij) = 0, and

1.1.2 - J (F?J, FEJ) is a minimum of J on the manifold
E (FQy0 Fiy) = 0

Part 1.2.

Let us now prove that if such an extremum of J exists, then L must have
a saddle point (whose projection is that extremum (minimum) of J).

The vector space of the gradient of L with respect to the ng in a point
on the manifold E (F?J, FEJ) = 0, can be split in two parts: one of them

parallel to that manifold, and another one normal to it, i.e.:

v b (v ar. * (v nor-. (41)
iJ 1J 1J
In this way, the gradient of L consists of three parts:
<v L)par. <v nor. and  (F,0). (42)
1J 1j

Assuming that in the space E (F?J, ng) = 0, J attains its minimum
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at (F9,, b ), which satifies (39), and since
ij i

VAL -E (Fij,Fij) | (43)
we have
L = 3. (44)

(37) also implies that:

Vo L), = ([T ) (45)
F1J par. Fij par.
because VE is normal to E. Therefore, since (V_t J)par vanish by
assumption, also Fij
(V L) ="0. (46)
1j '

In this way, from (44) and (46), one has:

=t
(¥ t L)par.(rti)\j’ Fij A) =0
Fij

(47)
=0 =t
VAL (Fiy» Figo A) = d.
for every A.
Hence, A can be adjusted in such a way that also
(v nor (Fij’ Jo A) - a' (48)
1J
since:
(V

dnor. Fip:Figd) = (V dnor. Fig:Fig) + 2 V (FipFip)  (9)
1J 1J 1J
and since both A and (¥ t Ypor, have the same dimension, and ¥ ct E span

F
the whole vector space o?jnormal gradients. Then, from (48) and 119),

one can find a A which satifies:
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=0 =t T I
(th Ynor. (Fip:Fig) + & th E (Fyy Fyy) = 0. (50)
ij 13
Thus we have proved that:

if there exist a (??J, ?23) with the following property:
3 (Fyy FE) =min [0(FO, fE) ] PO, FE) =0 ) (51)
LA 13 "1 LI B
then there is a X which satisfies:

dL (F?j, ?fj, A) = 0.
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Appendix 2.

The possibility of adding a third term to the cost function J, J3, was
also considered. The aim of this third part of J was to keep smoothness

in the field of the wave variances at initial time t = 0. The expression
for this J; is, then, as follows:

=3 L I [Fy jt Fi-1 j*+F 1t FY -1~ 4 F?jlz (52)

where a represents a measure for the smoothness of the initial field of
wave variances.

In this way, the term which has to be added to the expression of the
gradient of J is the following:

9J 9J 0 0 0 0
0. a0 POl gt Ry gt Flp g+ L, 5
1j new 1j old
(o] 0 0 0
*2 (Fypp 341 * Fiag g1 * Fig 1 Y Fyog 5 (83)

0 0 0 0 0
8 (F1 1t F 51 * Fiet gt Fi_g j) + 20 |=1J ]

The results with this new cost function

J=Jp +dy + 05 (54)

are similar to the ones we obtained with the former one (8) (see Table
2)-

Looking at the Table 2, we realize that the effect of the assimilation
is, in this case, more remarkable at later times than at the beginning,
for verification points.

This implies that the impact of the assimilation remains longer, when
this new cost function is considered.
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TABLE 2.
rms.error rms.error
before assimilation after assimilation
time obs.-mod. ver.-mod. obs.-mod. ver.-mod.
0 h. 0. 0. 0.048 0.662
3 h. 0.878 0.383 0.103 - 0.395
6 h. 1.260 1.563 0.236 1.392
9 h. 1.866 0.995 0.460 1.857
12 h. 0.734 2.393 0.782 2.251
15 h. 2.085 0.954 2.000 0.763

18 h. 1.543 2.638 1.117 2.386



