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ABSTRACT

This is a technical report about a baroclinic two~layer ocean model.
The basic idea has been taken from Anderson and McCreary (1985)., It is an
extension of the usual reduced-gravity model in that active thermodynamics
is. included and will be used in experiments with coupled equatorial ocean-
atmosphere models.

We also present some examples of its first-stage performance, Results

of these experiments show satisfactory agreement with theory.



1. THE MODEL

1.1 Introduction

The vertical density structure of the equatorial ocean consists general-
ly of a well-mixed surface layer of constant density above a sharp pycno-
cline. A typical value of the mixed layer thickness is 100-200 m.

A prominent feature of the pycnccline is that it can move vertically a
considerable distance in relatively short periods of time. The simplest
models capable of simulating this behaviour are reduced-gravity models.
They assume the ocean to consist of a thin surface layer of density p
overlying an infinitely deen lower layer of density p + Ap and they
describe variations of the mixed layer thickness.

Another feature of the ejuatorial ocean is the occurrence of large and
persistent sea surface temperature (SST) anomalies (e.g. as during an ENSO-
event). Since ordinary reduced-gravity models do not treat the temperature
of the upper layer as a variable, a thermodynamic equation is required to
include the evolution of SST-anomalies.

In this extended reduced-gravity model we also allow for mass and energy
exchange between the layers by various processes. The exchange processes
are added in parameterized form to the thermodynamic and continuity
equation.

In the first few experiments described in this report the effects of
thermodynamics and the parzmeterized exchange processes between the two

layers have been neglected.

1.2 Model assumptions and equations

The model equations are derived from the shallow-water equations on an

equatorial p-plane, including torizontal stress and eddy viscosity:

> >

_Q% + u.Va + Byg X u = -‘% ‘I +‘%-%§ + w2u (1.1)
oh >

3t + V.(hu) =0 (1.2)
% _ _

3z = pg (1.3)



in which ; is the horizontal stress vector and v the eddy coefficient of
viscosity. All other symbols have their usual meaning.

Figure 1 shows a vertical cross-section of a two-layer ocean. Layer 1 (the
mixed layer) has variable density and temperature Py and T) respectively.
The underlying, much deeper, layer 2 mas a slightly greater density p2 and
temperature Ty, which are both constant. Neglecting effects of salinity
and compressibility, the density ratio of the two layers is a function of

T = T, - Ty only. We use:

p1 = pp(l=aT) (1.4)

with o the thermal expansion coefficient.

It can be seen from the Figure:

hy =H; +n) -, (1.5)
hy = Hy + n, (1.6)
H =H, + H, (1.7)

With the appropriate indices eqs. (1.1)-(1.3) can be applied to both layer
1 and 2.

Expressions for p; and Py follow from the application of the hydrostatic

equation:
P1 =p; 8 (n; - 2) (1.8)
P2 =p38h; +p38 (-H; + n, - z) (1.9)

Having two degrees of freedom, the two-layer system allows two normal
modes of motion: the barotropic and the baroclinic mode. Since we will be
concerned with the latter (slow) mode only, the barotropic mode will be

eliminated. For the baroclinic mode it can be shown that (see Gill (1982,
PP. 119-128)):

>
||u2 ] Hl
R —

a2 (1.10)

Taking the limit Hy + = it 1s seen that 32 > 6. Consequently no pressure
gradient exists in the lower layer, i.e.
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lim = vpy = 0 (1.11)
Hop+e P2

Substituting (1.9) for p, and using (l.4) and (l.5) it follows that
an =qaqV (th) (1-12)

This equation shows how the effect of a sloping free surface can be
compensated for, in order that the pressure gradient in the lower layer
vanish. Two special cases are depicted in Figure 2.

An expression for the upper layer pressure gradient is found using (1.8).

Substituting (1.12) for Vn; and using the Boussinesq approximation (here
P2
5T 1) it follows that

- %T Vp; = - ag V(WT) + a g (ny - 2z) VT (1.13)

n; is eliminated from this equarion by vertical integration over the upper
layer:
n

-l v az=-tagvm?m (1.14)
-Hy+ny °

-)
Horizontal stress x is assumed to be non-zero in the upper layer only and

to satisfy the following boundary conditions:

> >

x = T at the free surface (1.15)
in which ; = (Tx, Ty) represents the surface wind stress vector and

> > p

x = 0 at the interface (1.16)

EY
Assuming x to be a linear function of z in the upper layer, ;1 can

consistently be considered independent of z. Integration of the momentum
equation (l.1) over layer 1 (index 1) then yields, using (l.14)-(1.16):
>
3\11 >

hy —5p + hyuy. Vo) + ghyyked) = -bag¥(him) +—g—+ vh V20, (1.17)
1

This equation can also be written in the flux form. The scalar components

of this form read:



dhu + dhuu + shuv

T
9 X
- = - Lgo & (2 -= 2
3¢ o 5y Byhv tog "~ (h4T) + oy + vhV4u (1.18)
T
dhv | 3hvu , Bhvv - 32 4 2
5t tTax t oyt BYhu = - hag sy (B2 + 5 + hv2y (1.19)

in which the index 1 is ignored for notational simplicity
and Py = Py = pj.

As T) is allowed to be a function of position and time a thermodynamic
equation is needed to close the system of equations. The exchange
processes referred to in section 1.1 enter this equation and the equation

of continuity (1.2) for layer 1 in parameterized form. In formula:

F.'- o + 3y = RI (hl’ Tl’ T2) (1-20)
T, aT, aT *
3t ul 3=t vl's;— = RII (h1, Ty, To) + « V2T, (1.21)

*
The terms RI and RII describe the effects of entrainment by turbulent

mixing and an external heat source. An example can be found in Anderson
and McCreary (1985). The last term at the RHS of (1.21) represents the
diffusive effects of eddies.

Replacing T; by T in (1.21) in the terns involving derivatives
of T, (T, is constant) and again ignoring the layer index 1 elsewhere,
equations (1.20) and (1.21) become:

oh dhu ohv
ot + P + —ay = RI (1.22)

ohT dhuT  3hvT _ a2
ot + e + 3y —RII+»<h7T (1.23)

the latter written in the flux form.

1.3 Energetics and integral constraints

Using the rigid 1id approximation (n;= 0) for the baroclinic mode, (1.5)
becomes, ignoring the layer index 1 at the LHS:

(1.24)
h=1H) -n



The kinetic energy per horizontal unit area for the upper layer is given
by:

0
> <

K; = S 3+ pu?dz=14p, Ulz (H} = ny)

—Hi+ny
Similarly for the lower layer:

-H1+n2 i

K?_:f fpazdz=%pzuzz(H—Hl+n2)
-H

With (1.10) it follows that for H, > H;, K, < K;j.
The total kinetic energy is then approximately given by, using (1.24),

K =14 pgh u? (1.25)
> >
in which u = u; and pg = py = py»

For the potential energy per ho-rizontal unit area we find:

0
P, = [ pgzdz=-1%p; gh?
-H 1+n2
-H 1+n2
Py, = J ogz dz = % pp g [h2 - H?]

-H

in which (1.24) has been used.

The total potential energy, aftar use of (1.4) is:

P=-4%p,gH2+ 4% p, aT gh?
or, ignoring the first, corstant, term and p; = pj:

P=14pyaTgh? (1.26)
Finally, the enthalpy per torizontal unit area of layer 1 is given by:

E = pg cp h T, (1.27)
Integral constraints for a closed basin are derived from the inviscid, un-

forced and non-diffusive forms of equations (1.18), (1.19), (1.22) and
(1.23).



Multyplying (1.18) by u, (1.19) by v, (1.22) by u2 + v2 ang adding the
results yields the kinetic energy equation:

%(}h;2)+v.(\:%h;2)+}agi:.v(hZT)=O (1.28)

An equation for the potential energy, defined by (1.26), 1is found by
suitable manipulation of (1.22) and (1.23):

g—t(%aghzT)+2V.(J%ag‘n:!’l‘)—%ag;.V(hzT)=O (1.29)

The Coriolis force makes no contribution to the rate of change of kinetic
energy. The sum of the lasgt terms at the LHS of (1.28) and (1.29) is
identically zero, indicating that these are both conversion terms.

Now consider any closed region S with J . ; = 0 everywhere at the
boundaries (; outward unit normal vector), implying rigid, impermeable
boundaries.

If the sum of (1.28) and (1.29) is integrazed over the interior of S, it
is found that the mechanical energy within S is a conserved quantity.
Integration of (1.22) yields the statenent of mass conservation, With
little more effort, recalling T = T, - Ty and definition (1.27) for the
enthalpy E, the area-integrated form o° (1.23) can be recognized as the

statement of conservation of enthalpy.



2, THE NUMERICAL MODEL

2.1 Introduction

The numerical model is a finite difference model with the equations dis-

cretized on an Arakawa-C grid.

Space differencing will be such that the integral constraints of section
1.3, derived for a continuous medium, are satisfied in their discrete
form. This is of particular importance because of the long-term in-
tegrations to be performed with the model. The basis for the present
finite difference scheme has been taken from Haltiner and Williams (1979)
which itself is a simplified form of a more general scheme proposed by
Arakawa and Lamb (1977). The latter scheme is designed to conserve both

energy and enstrophy for non-divergent flow.

2.2 Space differencing: fluxes, pressure gradient and Coriolis terms

The Arakawa-C grid is shown in Figure 3, with T defined at h-points. The
grid size is denoted by d.

For notational simplicity we deXine:

x
(A5 = ¥y 57 49 2-D
R R S T (2.2)

in which 1 and j are grid point indices in the x and y directions,

respectively. The symbols (Ky)i j and (6yA)i j are defined in a similar
’ ’
manner but with respect to the y direction, and

—y

_ X
)i,j = (A )i,j (2.3)

(a7

At h-points the continuity ecuation (1.22), retaining only the divergence

terms, is represented as:

) 1 .
K ; = A
Y. hi’j+——2-d [ F + 5y(,|]. . =0 (2.4)

i B

with the mass fluxes

10



R
Fivg,y =d [h 4,y
(2.5)

|
[« 9
=

S, 304 ©

defined at u and v points respectively (see Figure 4),

The discrete forms of the momentum equations (1.18) and (1.19) without

forcing and viscosity terms are chosen as:

’
(2.6)
—y 1 —X
-B(yhv )i,j +-§E og [h Gx(hT) +h T §. h]i j 0
, (2.7)
o= 1 W -
+ B(yhu )i,j + 57 o8 [hY s (hT) + h Syh]i’J 0
For simplicity the convention of using the index pair (i,j) for the
variable the equation of which is being corsidered is adopted here.
In (2.6) and (2.7) y is carried at h-points and
~(u) - TXYY
h = h
1, ] O, 5
KO s @ (2.8)
i+, ] i+}, 3
~(u) XYy
. = G .
61, +4 (€70, 144
~(v) _ TXXY
h; = h
1, ] 4, 5
"(V) _ XXy
. = F . 2.9
i+%,J ¢ )i+%,J (2.9)
~(v) - XXy
L T Ty 4y

i(u)’ E(u), ﬁ(V) and E(V)

are new mass flux symbols, defined at the points

shown in Figure 5 and 6.
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Finally, the thermodynamic equation (1.23), retaining only the divergence

terms, is at h-points represented as:

P S Bl - F ™
ot Ti,3 0 d? Uit i, i-4,3 "i-%,3
+ G ™ o -q¢, ., T ,,1=0 2.10
i9j+% j-,JH iaJ'% 133"%] ( )

with F and G as in (2.5).

With equations (2.4), (2.6). (2.7) and (2.10), all integral constraints

are satisfied. For a full derivetion the reader is referred to the Annex.

2.3 Space differencing: the Laplace operator

For the discrete Laplace operator a five—-point operator is used:

Ai+1 .+ A 1.3 + Ai 1 + Ai 1 - 4Ai .
v2A = » 3 i-1,j -,g s J » 3 (2.11)
i3 d

in which A represents any of the variables u, v and T.

2.4 The basin; boundary conditions

The basin is shown in Figure 7.
The eastern and western boundaries contain u—-points while the northern and
southern boundaries contain v-posints only. At all boundaries no-slip and

T
no-normal velocity conditicns are applied as well as %; = 0 (n defines
outward normal direction).

2.5 Space differencingrnear the boundaries

The finite difference form of the momentum equations turns out to be too
complicated for grid points at a distance less than d from the basin
boundaries (the unshaded area in Figure 7) and has to be reconsidered.
Summarizing the results, in the boundary area the relevant parts of (2.8)

and (2.9) are to be simplified and replaced by:

~(u) - (X
My T M
(2.12)
~(u) = S
Fiets RRETS

12



ﬁ(v) - (gy)

1,3 1,3
(2.13)

~(v) _ =y

S5 = Dy 1

Furthermore the finite difference scheme for the Laplace-operator at u-,
v- and T-points in this region now makes explicit use of the boundary
conditions of section 2.4. How this is done, is shown here for a T-point

near the southern boundary (see Figure 8):

21, T T Ty
Iy’d, i+ T d
aT
(3; 1,4~} =0 (boundary condit:.on)
aT aT
= - D, . 1 - T
o @ S0 " G0 Tt Ty
ay2’1, i d aZ
(SZT) R Ti+1,j + Ti—l,j B ZTilj (if not near eastern
ax2’1, d% or western boundary)
T + T + T - 3T
i+1, 5 i-1,j i, j+1 i,]
=> VZTi’j = s J ,sz » ] 2] (2.14)

Compare this result with (2.11).

2.6 Damping at northern and southern boundaries

In the presence of boundaries the model equations allow the occurrence of
coastally trapped waves. Arriving at th2 eastern boundary, an eastward
travelling disiurbance will transfer part o its energy to a northward and
a southward travelling coastal wave, se2 Filgure 9,

These waves will travel along the basin boundaries in the direction in-
dicated in the Figure and arrive back a: the equator at the western
boundary. If both northern and southern boundary are purely artificial it
is desirable to damp these disturbances. This is accomplished by adding a
damping term of the form -r(h-h°) to the equation of continuity at the h-
points in the shaded area in Figure 9:

3h _ shu  shv
—+ =4+ (hn®) + R

b 2.15
at  9Ix 9y ( )

I

13



in which r is a damping parameter and h°® the undisturbed mixed layer

thickness. r satifies (see Figure 9):

Iyl -y
D
= —_—_ < llyd <€ 3L
TR -y jp < Wi <ALy
y (2.16)
r=20 Iyl < Yp

In the shaded area mechanical enargy is added or removed by the damping

term such that disturbances are 2ffectively damped.

For consistency a similar term is added to the thermodynamic equation:

5hT  3huT  3hvT
st T oax | oy

= —rT (h-h°) + R+ kh V2T (2.17)

The discretization of the new terms and Ry ;y at the RHS of (2.15) and
b}
(2.17) is straightforward.

2.7 Time differencing

The model equations can be written symbolically in the form:

oh
3 - f (h,A)

(2.18)
LU S

The first of these represents tte equation of continuity while the other
one represents the flux form of the equation for each of the other

variables.

For time differencing the leap-frog scheme is used:

n+l n~1
h - h n I
2At =f (A0
(2.19)
hn—l—l Kn+1 _ hn—l Kn—l s 0 »n
2AL =g (h yA )

the superscripts denoting time levels.
The first step in a numerical integration is a forward one of time

step At. In general form:

14



(2.20)

For reasons of convergence viscous terms aad damping terms require forward
time stepping. For these terms a forward time step of 2At is used.

Periodically a time filter is applied to remove the computational mode.

15



3. SOME PRELIMINARY RESULTS

3.1 1Introduction

In this final chapter results of some model experiments are presented. The

first experiment has been designed to test mass and energy conservation

properties of the finite difference scheme. In a second experiment the

phase speed of reduced-gravity waves in the absence of planetary rotation(g=0)
has been tested. Finally, as an example of its present performance,

the model response to a prescribed wind stress is shown.

In these experiments the effects of thermodynamics and of the parameter-

ized exchange processes have all been neglected, i.e. RI = RII =0 and
T = constant.

3.2 Mass and energy conservation test

In order to test the mass and energy conservation properties of the finite
difference scheme, an unforced, inviscid non-diffusive long-term in-
tegration has been performed. This was done for an initial mixed layer
thickness perturbation h' satisfying ffh'dxdy = 0. The undisturbed mixed
layer thicknesss h°® is 200 m and initially u,v = O.

Parameter settings were as follcws:

L, = 15,000 km basin length

Ly = 9,000 km basin width
= 150 km grid size

At = ,125 day time step

v = 0 eddy viscosity

K = 0 eddy diffusivity

Ty = 0 damping parameter

zD = not specified damping parameter

T = 6 wind stress

T = 10 K temperature difference

o = 3% 1074 K} thermal expansion coefficient

g = 9.8 m sec 2 acceleration of gravity
= 2.29 * 1071 gl gec! B parameter

16



With initial conditions as described above, equatorial waves are
generated, carrying away the energy assoclated with the initial
perturbation h',

In Figure 10 it is shown how area-averaged potential and kinetic energy
evolve with time. Total mechanical energy, i.e. the sum of potential and

kinetic energy, is seen to be constant to 1 very good approximation.

The computations also showed that the relazive mass increase of the model

is less than 10714 a¢ day 100 (1),

3.3 Reduced gravity waves in the abseace of planetary rotation

In the absence of planetary rotation rhe reduced-gravity wave speed is

given by:

¢ = (g'h)} (3.1)

in which g' = qoTg (reduced-gravity) and h° is again the undisturbed mixed
layer thickness.

With the parameter settings as in section 2.2, except for h°® and d which
here are 100 m and 375 km respectively, ¢ is approximately 1.7 m sec—l.
With an initial perturbation h' according to Figure lla (and initially
u,v = 0), gravity waves are expected to move radially out from the
perturbation area. Mixed layer thickness perturbation contours at day 15
are shown in Figure l1b. The corresponcing phase speed is found to be 150

km day~! which is approximately its theoretical value.

3.4 Response to a patch of westerly wind stress

In this section the model response to a patch of westerly wind stress isg
presented. The response is compared with tha corresponding linear analyt-
ical solution obtained by Tang and Weisberg (1984). Two different wind
stress forcings are considered. The first 15 a stationary patch of wester-—
ly wind stress near the western boundary. The second is differeat from the
first in that it translates eastward along the equator with constant
speed, starting near the western boundary.

In formula the wind stress is represented by:

17



- 2
(y/Lr)

T, (x,y) = T, © Le(x-cwt) - 6(x—cwt—x0)] (3.2)
with

Ty - amplitude

Lr - equatorial Rossbhby radius

L, = (agTo)t / gt

cy, - eastward translatilon speed

Xq - fetch parameter

8(x) - step function: 8=0 for x<0

=1 for x>0

Initial conditions are: h = h® = 213 m, u,v = 0 in both experiments.

Parameter settings:

L, = 16,650 km (~ 150 degrees of longitude)
Ly = 6,600 kn
= 150 km
At = 125 day
v = 0
k = 0
rg = 2.5 * 1076 gec!
y, = 2,850 kn
T = 10K
a = 3% 10% K}
g = 9.8 m sec ?
= 2,29 * 1071 ol sec!
19 = 1076 N o2
Xo = 4,500 km (~ 40 degrees of longitude)
c, = 0 msec 1/.5 msec”!

With the above choice of parametars the Kelvin wave speed is 2.5
m sec ! and the equatorial Rossby radius Lr is about 330 km.

Choosing 13 as small as 107® N w™2, the response can be considered linear

to a very good approximation.

18



Experiment 1: Response to a stationary patch of westerly wind stress

(c, =0 msec—l)

In Figure 12 mixed layer thickness perturbation contours for a 400 days'
integration are shown at intervals of 25 days. The forced region at the
west side is easily recognized throughout the integration period and so is
the phenomenon of equatorial trapping. An eastward travelling Kelvin wave
1s excited which impinges on the eastern boundary after about 60 days, its
energy being carried away by a number of Rossby waves with westward group
velocity and a pair of poleward travelling coastally trapped waves which
upon arrival in the region at the northern and southern boundary are
damped.

Figure 13 shows mixed layer thickness perturbation and zonal velocity on
the equator as a function of longitude and -ime. The forcing region,
Kelvin and Rossby waves are all easily discernable in the contours. From
the slope of the Kelvin wave contours (lower right of either (a) or (b))
the Kelvin wave speed is found to be approximately 2.5 msec—l, which
equals its theoretical value. The reflected Rossby waves are particularly
clear in Figure 13b. At day 325 a reflected Kelvin wave is seen to emerge
from the forcing region in Figure 13a.

In Figure 14 finally mixed layer thickness derturbation and zonal velocity
are shown as a function of time at an ejuatorial point 30 degrees of long-
itude to the west of the eastern boundary. In the same Figure the ap~
proximate linear analytical solution ar thig point (from Tang and Weisberg
(1984)) 1is shown. In finding an analytizal solution Tang and Weisberg used
the long-wave approximation. This approximarion eliminates coastally
trapped waves and the waves that are retained are non-dispersive (e.g.
Knox and Anderson (1985)). Bearing this in mind we now compare the
solutions shown in Figure l4a, in which arrows mark changes in slope of
the analytical solution (dashed 1line).

The first arrow marks the day of arrival of the leading edge of a Kelvin
wave response. Downwelling thereafter is exactly reproduced by the model.
At day 62 (an arrow) the trailing edge of this Kelvin wave arrives, to-
gether with the leading edge of an upwe Llling Kelvin wave originating at
the western boundary as a reflection of the Rossby wave response. From
this point the model upwelling speed is slightly smaller than its analyt-
ical value. After day 100 changes in slope of the analytical solution are
attributed to the arrival and passage o’ reflected Rossby waves generated
at the eastern boundary, the third and 7ifth arrow marking the day of

arrival of the n = 1 and 3 Rossby mode respectively.

19



Differences between model and analytical response after day 100 are in
qualitative agreement with the fact that the Rossby waves generated in the
model are dispersive. The effects of coastally trapped waves, absent when

the long wave approximatior. is employed, are less clear.

Experiment 2: Response to an eastward translating patch of westerly wind

stress (c, = .5 msec_l)

In Figure 15 mixed layer thickness perturbation and zonal velocity on the
equator are shown.as a function of longitude and time. Figure 16 shows the
corresponding analytical solutions from Tang and Weisberg (1984). The
forced region, translating eastward here, Kelvin and Rossby waves are
again easily recognized. Apart from some minor differences, close
agreement between model and analytical response is observed.

Figure 17 finally corresponds to Figure 13, but now for the eastward

translating wind stress. For a discussion the reader is referred to

experiment 1, Figure 13.

20



4, CONCLUSIONS

A baroclinic two-layer ocean model on an equatorial B-plane has been

described. It is an extension of the usual reduced-gravity model in that

it includes active thermodynamics.
The model equations are discretized on an Arakawa-C grid. Special

attention has been paid to mass and énergy conservation requirements on
the finite difference scheme.

Preliminary experiments have shown catisfactory results., The model will

be used in experiments with coupled equatorial ocean—atmosphere models,
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ANNEX: SPACE DIFFERENCING AND INTEGRAL CONSTRAINTS

In this Annex the details of the finite difference scheme are discussed.
A space difference scheme is se: up that has mass and energy conservation
properties outlined in section 1.3. The basis for the present scheme has
been taken from Haltiner et al. (1979). Notes on this scheme by Arakawa et
al. (1977) are partly reproducel. All equations are discretized in their

unforced, inviscid, non-diffusive form:

22u . agiu + 82;V - Byhv = - }ag %;—(hzT) (A.1)
gtv N ag:u N ag;v + Byhu = - bog §§.(h2T) (A.2)
% +%“—1 +%;l =0 (A.3)
gl:r + a:zT + ag;T -0 (A.4)

The equation of continuity in finite difference form is chosen on the

basis of simplicity. At h-roints (A.3) is represented as

2 1 L
3t hi,j +‘E§ [GXF + syc]i,j =0 (A.5)

with the mass fluxes

- T X
Firg,y” 4 el g
(A.6)
_ -y
TR TR R L P

defined at u- and v-points respectively (see Figure 4).
Averaging and difference operators are defined at the beginning of section
2.2.
With (A.5) mass conservation is guaranteed in a relatively simple way.
Another requirement on the finite difference scheme is that it conserve
total kinetic energy during inertial processes.
Now first consider the first ttree terms at the LHS of (A.l). These can be
represented by the following form which automatically ensures that
integrated zonal momentum 7in the absence of boundaries) is conserved.

3 ~

3 ,~(w)
Wyt

1 ~(u) = ~(u) —y
rrll CRL G IR GO ) (A.7)
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in which ﬁ(u), f(u) and E(“) are as yet undefined. The latter two are new
mass flux symbols defined at the points shown in Figure 5.

Again the convention of using the index pair (i, j) for the variable the

equation of which is being considered is adopted. Choosing h(u) (u) and

~(u) in such a way that they satisfy

3 p(w) ~(u)
i 3j +157 [Gx F

~(u) _
+ dy G ]i,j =0 (A.8)

it can be shown that (A.7), by subtracting (A.8) multiplied by u is

1,]
equivalent to:

3 u . v
plw 1.3, [F(“) 6 u + g(w) 5, w1y J (A.9)

2
Multiplying (A.9) by uy ; and combining with (A.8), multiplied by fui .y
’ 3
ylelds a discrete analogon to the first two terms of the total kinetic

energy equation (1.28):

3 ~(u) ~(u) ~(u)
L T = RL TR
~(u) “(u)
Ci, 3+ U,5 1,5+ T C1, 9 9, gl Ve, g) (A.10)

Summing (A.10) over i, flux terms at one grid point turn out to be

cancelled by contributions from neighbouring grid points. Thus, regardless

~(u)
(W F(u‘ and G( ), the choice of form (A.7)

and the constraint (A.8) together ensure that total kinetic energy does

of the precise definition of h

not spuriously increase of decrease.

~(u)  ~(uw) ~(u)

Next we define h , F and G as follows:
F(w) _ XYY
= h
R,3 SRR
~(u) - —Xyy
= F . A.l1
i+%,J ( )i+%,3 ( )
5(w =XYyy
= G .
’J+7 ( )iﬂJ""%

definitions satisfying (A.8), using (A.5).

Similar arguments apply to the first three terms of (A.2).

Their finite difference form is simply found by replacing u by v in (A.7):
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] ~(v)

1
Fry

v, 4z s, FV) 3%y 4 s, @& ?’)]i’, (A.12)

in which (cf. (A.11) and see Figure 6 for points of definition):

~(v) - TXXY
h; = h .
1,] (5
~(v) - —XXy
Fi+%,j = (F )i+%wj (A.13)
~(v) _ —xXXy
Gi: j+% - (G )19 j"'%

The Coriolis term -Byhv in (A.1) is at the u point (i,j) represented by:

—X

_ =y
B(yhv )i,j (A.14)

and the term Byhu in (A.2) at the v-point (i+},j+}) by

—X
B (yh“ )i+%,j+%‘ (A.15)

Here y is carried at h-points.

The rate of change of zonal kinetic energy at the u-point (i, j) by the

Coriolis force is found by multiplying (A.14) by u, .. The contribution to

i,]
this from the v-point (i+},j+}) is found to be:

- $By. h .V . u, A.16
B3 Piy, s Viek, 54 Y (A-16)

Analogously the change of meridional kinetic energy at the v-point

(i+},j+}) is found by multiplying (A.15) by v

.,1» The fraction due to
i+
the u-point (i,j) equals:

i+,

By, h . u, .V . (A.17
t Vi i, 3 Y,5 Vied, i )
(A.16) and (A.17) exactly cancel so that total kinetic energy is not
influenced by the Coriolis terms.

Before examining the pressure gradient terms, we discretize the thermo-

dynamic equation (A.4) as follows

3(hT) ., . 1 .o
ot 23T qZ Foy 5 T 57 Fimy, g Ticg, 5

(A.18)
G ™ -C T =0
iaj""k i’jH 1:j'% i’j"%]
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with F and G defined by (A.6). This form can be shown to guarantee the

conservation of enthalpy in a closed region as follows.

Summing (A.18) over all grid points, cancelling of flux terms at every
grid point by neighbouring grid point cont:ributions occurs, showing
z(hT)i,j is a conserved quan;ity. Recalling T = Ty - T, and T, is
constant, mass conservation, T Zhi,j = 0, can be used to show that
Z(hTI)i,j’ i.e. the total enthalpy of the upper layer (see (1.27) for

definition), too is a conserved quantity, as required.

The finite difference form of the pressure gradient must satisfy the
requirement that no spurious energy production takes place or,
equivalently, that the conversion of potential to kinetic energy and vice

versa will be such that no energy constraint is violated.

At h-points (T-points) we define the potential energy as %hi joi 3
’ b
(cf. (1.26)). An equation for the rate of change with time of this

quantity is easily found by combining (A.%) and (A.18). Ignoring for the

moment the meridional terms:

IUh2my. . 1
e It g Lty 3T Gy +h 1+1,3) Vivt, 3
- 1
a5 Ty My p Ty P vy )
1 1
talehy,; (y 4+ a1,y Ty ¥ T1+1,3) P15

- h . (h .+ h . T .+ T . . =
Bhy, s ( 1-1,3) T3 ¥ T30 vy 5 )

In this equation contributions from tte u-points (i+},3j) and (i-%,3j) can
be recognized. Now we restrict our attention to the contribution from

u .+ It can be shown that further contributions of u, . to potential
i+,] i+, j
energy changes are confined to the h point (i+1,3):

3(4h2T) .
i+1,§ . 1 ,
3t Ta Uty T (hivr,5 * Pipg, ) 145, 4
- +
g Tty Mg R Yy ]
X (A.20)
1
L 3
Pa Ry P, R ) Ty 5+ Ty ) U145, 3

1

By, (hi+1,j *hy ) (T

1,3 j1=0

41,3 " Ta, 90 Ui g
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The total contribution of u to the potential energy changes

i+,]

at h . and h, . is given by the sum of the underlined terms in (A.19)
i+1,3j i,j

and (A.20).

T (h +h, .)

L 1
g Ldhy T 41,5 7 My T,y Mg, 70

. (h + h
1,5 M1,3

1
#gh, . (h _+h ) (T )

. . .+ T .
»J 1,7 i+1,3 i,] i+1,3

1
+ h ) (

*
B0, (Mg, TR + T )]

T . . u .
i+1,j i,j i+}, j

or:

i+4,j —x —x —x

GX (hT)l"’%)J i hi"'%aJ Ti"'%,j dx (h)

1+§,j] (A.21)

In the absence of external sources the production of zonal kinetic energy
at ui+% j equals the rate of doing work by the zonal component of the
’

pressure gradient at ui+% .. Apart from a constant factor:
]

3 1n2
Yi+d, 5 [5x th T]1+5,j (A.22)

We now require the sum of (4.21) and (A.22) to be identically zero,

providing the finite difference form of the pressure gradient (its zonal

component) :
3 X —x X
h2T) » [h § (rT + %h T § (h d A.23
a2 s S P T %,V (2

Its differential analogon is equivalent to the statement that %;-(%hzT)

can be written as:

3_ 1h2 = 1 th. lpm ﬂﬂ
X ($h7T) = $h ax T zh” ox

Similar arguments yield the finite difference form of %; (3h2T) at

vi +4 (the meridional component of the pressure gradient):
’

C 2 > [0 Y =
ay D > i 4 T e T &y g1/ (A20

. § (uT)
i,i+ y( ’
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FIGURE CAPTIONS

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:

28

Two-layer ocean model, vertical cross section.

Compensation of the effects of a sloping fs%e surface
1

for the baroclinic mode. (a) h, constant; e < 0, %% <0
anl ahl

(b) T constant; o < O,-5;~ < 0.

The Arakawa-C grid. T is defined at h-points and the grid

size 1s d.

Grid showing points of definition of mass fluxes in the

equation of continuity.

Grid showing points of definition of mass fluxes in the zonal

momentum equation.

Grid showing points of definition of mass fluxes in the

meridional momentum equation.

The basin. The outer boundary is the basin boundary.
Modification of the space difference scheme is necessary for

grid points betweca basin boundary and shaded interior.

Grid points ianvolved in the discretization of the Laplace-

operator at a T-point in the southern boundary area.

Coastally trapped waves. Damping takes place in the shaded
areas (yD < Nyl < %Ly).

Evolution of potential (middle solid line), zonal kinetic
(dashed line), me-cidional (lower solid line) and total

mechanical (upper solid line) energy for the mass—and-energy

conservation test,



Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15

Figure 16

Figure 17
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Reduced-gravity waves for a non-rotating earth. The initial
mixed layer thickness pecturbation is shown in (a) (units

are m). In (b) contours of thickness perturbation are shown

after 15 days (units are m).

Evolution of mixed layer thickness perturbation for a
stationary westerly wind stress of amplitude 1076 N 2
defined by equation (3.2} anc a 400 days' integration period
shown at intervals of 25 days (units are 107> m).

(a) Equatorial mixed layver thickness perturbation as a
function of time for a staticnary westerly wind stress of
amplitude 107 N m2 defined by equation (3.2) (units

are 107° m).

(b) Equatorial zonal velocity component perturbation as a

function of time for the same wind stress as in (a) (units

are 107> cnm sec 1),

(a) Equatorial mixed layer thickness perturbation at 110 W
as a function of time for a westerly wind stress of amplitude
1076 N m2 defined by equation (3.2).

Dashed line represents approximate linear analytical solution
(from Tang and Weisberg (1984)), solid line represents model

response.

(b) Same as (a) but for zonal velocity component.

(a) As Figure 13a, but for a wind stress that translates

eastward at a rate c, = o5 msec—l.

(b) As Figure 13b, but for a wind stress as in (a).

(a) As Figure 15a, but from Tang and Weisberg (1984)
(analytical solution).

(b) As Figure 15b, but from Tang and Weisberg (1984)
(analytical solution).

(a) As Figure l4a but for a wind stress that translates

eastward at a rate Cy = o5 msec—l.

(b) As Figure l4b, but for a wind stress as in (a).
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