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Introduction

The introduction of numerical weather prediction (NWP) models led tco a
demand for objective interpretation or translation of these synoptic scale
forecasts to local weather forecasts. In the U.S.A. the development of
such objective interpretation schemes started in the sixties and remark-
able results were obtained since then by Klein, Glahn and others using
statistical schemes. At KNMI the development of such schemes started in
the mid-seventies. Initially these interpretation schemes were applied to
the output of the National Meteorological Center (NMC-USA) model; later on
the output of the European Centre on Medium Range Weather Forecasts
(ECMWF) model was used. In general these schemes focused on local weather
forecasting for lead times ranging from 48 hours upwards.

In this report a general introduction to this interpretation work is
given. The evolution of these methods at KNMI since about 1970 is des—
cribed. Furthermore some data sets and commonly used predictors are des-
cribed. Results of research on specific weather elements will be published

separately.

Finally we will discuss some scoring rules which will be frequently used

in our studies.



3.

Objective weather forecasting and guidance forecasts

In the pre-computer age almost all weather forecasts were based on fore-
casters' experience and their subjective judgement. Objective methods
played a minor role in the forecasting procedure. By "objective methods"
we mean procedures as defined by Allen and Vernon (1951):

"An objective system is ome which can produce ome and only one forecast
from a specific set of data".

Glahn (1965) also used this definition but added:

".e. these restrictions are sometimes relaxed slightly or some subjectivi-
ty creeps into the definition of a specific set of data".

For instance when some input variables (predictors) to an objective scheme
are estimated by the forecaster the scheme will still be named objective,
even though the results will depend on the subjective input of the fore-
caster,

The foregoing definitions include numerical modelling as well as statisti-
cal methods. In this report we will limit ourselves to statistical methods
which are applied to the output of numerical models. We will indicate such
a method as an "Objective Interpretation Scheme" which is subsequently de-
fined as:

"A procedure which computes from the output of numerical weather model
(and recent observations) a numerical forecast value of a given weather
element at a given location or area. This forecast value can be either a

category or a point-value or even the probability that a given category or

weather event will occur".

From this definition we derive the definition of the guidance forecast
(Dutch: gidsverwachting):

"The presentation of the results of the various objective interpretation

schemes ordered according to the forecast time".

PP versus MOS

These two acronyms indicate the two most often used approaches to the
interpretation problem. Most interpretation schemes are based on statisti-—
cal models relating the predictors (produced by the numerical model) and
the predictands. Unlike physical models, which are strongly dependent on

the variables studied, statistical models are very general and almost



independent of the nature of thé variables. The adaptation to the specific
problem is performed by estimating the coefficients of the model. This
estimation is based on a rather large set of observations of the pre-
dictands and the concurrent predictors, the dependent data set. After the
estimation of the coefficients the model can be used for the translation
from predictors to predictands. There are, however, two possible ways of
assembling a dependent data set. The oldest method (Klein, 1959) is called
Perfect Prog (PP), the most recent method, developed by Glahn and Lowry
(1972), is called Model Output Statistics (MOS).

MOS: In this approach a series of model-forecast predictors with concur—
rent predictands is used as dependent data set. Generally also time-lagged
(local) observations are added to the predictors but even in that case the
method is still called MOS.

PP: Most of the model-forecast predictors are also (indirectly) observable
and in this approach the dependent data set consists of observed predic-
tors and concurrent predictands. Subsequently it is assumed that the nume-—
rical model forecasts the predictors perfectly, Adding time lagged obser-
vations is uncommon.

These different approaches are illustrated in Figure 1.
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The use of the MOS-approach seems more logical but the PP-approach has
some advantages which makes it a worthwhile alternative. An extensive com-
parison of both approaches lies outside the scope of this report. We will
only present some comparative characteristics of both methods:

Simplicity: PP-developed schemes can be applied to any numerical model and
any lead-time. MOS-schemes are specific for model (version) and lead time.

Availability of data: PP-schemes can be developed on large historical data

sets. For MOS large data sets are scarce and due to model changes satis-
factory data sets will probably never be available.

Availability of predictors: With MOS generally more and better predictors
are available than with PP,

Skill and reliability: MOS-forecasts are more skillful than PP-forecasts

except at very short ranges. Also the MOS approach generally warrants a

better reliability (Sanders, 1958; Murphy, 1973) of the forecasts.

History of objective methods at KNMI

Statistical interpretation of NWP-products started at KNMI in 1970, At
that time the forecasters in the Operational Division used a technique
based on manually selected historical 500 mb maps which looked more or
less similar to the current 72 hour forecast map of NMC (U.S.A.). These
historical maps were called "analogues". The observed weather of these
analogues served as a guidance. In 1975 De Jongh and Kruizinga (1975)
developed a numerical procedure for selecting the analogues and in the
subsequent years the whole procedure was transformed into a completely
objective scheme for the interpretation of 500 mbar prognoses. In 1980 the
dissemination of NWP-products from ECMWF to the Netherlands started and
the analogues scheme was rewritten. More details will be given in section
4,

Ingpired by the results obtained by Klein (1959) and Glahn (1972) in the
U.S5.A., research on the interpretation with regression techniques was
started at KNMI in 1978 by Kruizinga and Hofstee. This resulted in a gui-
dance forecast based on NMC (U.S.A.) products in 1979. With Perfect Prog
interpretation a forecast could be made for maximum and minimum tempera-
ture, probability of precipitation, and probability of thunderstorms. Al-
though only 500 mbar data were used as input the results were encouraging.

This resulted in the development of a Perfect Prog guidance by Kruizinga



and Lemcke (1981) with ECMWF 1000 and 500 mbar data as input in 1981,
The forecast period was extended up to +144 hours. The ECMWF products,
based on 12Z observations, are received during the night. Subsequently the

forecasts up to +144 hour inclusive are used to issue a five day forecast

next morning (see Fig. 2).

Start of computations
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guidance completed
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Figure 2 Time scheme ECMWF forecasts. The model run starts at plus minus
20.30 GMT, based on 1200 GMT observations. The +144 forecasts
are avallable at KNMI at about 0100 GMT. Shortly thereafter the

objective forecasts are available to the forecaster.

In 1982 two years of ECMWF forecasts had been archived and the first expe-
riments with Model Output Statistics started. This resulted in the intro-
duction of the third generation of the operational guidance forecast at
KNMI in November 1983 (Kruizinga and Lemcke). In this guidance forecast
also output from the analogues method served as input for the objective
interpretation scheme. The following elements are forecast: percentage of
sunshine, probability of sunshine for four classes, probability of preci-
pitation, minimum and maximum temperature, the daily extreme wind speed at
IJmuiden (coastal station) and the probability of three wind speed clas-
'ses. The conditional probability of frozen precipitation and the probabi-
lity of thunderstorms are planned to be included.

Also in 1983 Lemcke and Brouwer introduced a PP-guidance forecast of the

maximum temperature and the probability of precipitation during daytime



for about 100 locations in Europe. This guidance is used operationally for
the preparation of a forecast for Dutch holiday-makers in Europe. This
"European guidance" is an example of a guidance for special users. In the

future probably there will be an increasing interest for guidance fore-

casts for special users.

Statistical Models

As saild before the interpretation schemes are mostly based on statistical
models. Currently three statistical models or methods are in use at KNMI.
The linear multiple regression model for point forecasts, the logistic or
logit model for probability forecasts and the analogues method for either
point forecasts or probability forecasts. The first two methods can be
applied with PP as well as MOS-approach, The analogues are limited to the
PP-approach due to the large data-base that is required.

5.1 Analogues

The general idea behind the analogues method is very simple: pick up your
forecast map(s) and compare them with the map(s) in the historical data
base. The weather associated with the maps which are fairly similar to the
forecast map is used as a guidance to forecast the weather. In this sense
the analogues method was used, for instance, by Yacowar (1975), Balzer
(1976), Wilson and Yacowar (1980) and Woodcock (1980). However large dif-
ferences exist in the choice of maps to be compared with and the judgement
of the similarity of the maps. The analogue selection procedure used at
the KNMI (and described hereafter) was initially developed to imitate the
manual analogue selection procedure.

The analogue selection procedure is based on the 500 mb pattern. The fore-
cast maps are compared with the historical maps from the period 1-1-49 up
to 31-12-79 inclusive. For this comparison the 58 gridpoints depicted in
Figure 3 are used. Before any comparison is made however a preselection is
performed. Only maps from the same period of the year as the validation
date of the forecast map are allowed as potential analogues. Specifically
a difference of 20 days 1is allowed between the two dates. For the poten—
tial analogues the similarities S are computed. This similarity is defined
by
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§ = ngl “y ((Fn - FR - (An - An))

with F, and A, the gridpoint values of forecast and analogue respectively,
The spatial average ?; is defined by

8 8
Fo = 2 “n Fn/ (ngl wn)

n n=1

andlzg is defined in a similar way. The weights © used in both formulas
are indicated in Figure 3.

Figure 3 Grid on which the similarity is computed.
* GRID POINT WEIGHT = | # GRID POINT WEIGHT = 3

When scanning the historical data set the dates and similarities of the
best 30 analogues are retained. The weather observations corresponding to
the selected analogues are used to make up a forecast. In which way these

observations are used depends on the specific element studied.
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5.2 Multiple Linear Regression

With point forecasts it is often possible to use a simple linear equation

to compute a forecast value y from variable values x, extracted from the

numerical forecast. This linear equation reads

y = ao + a1 x1 + a2 x2 + oo

In this equation the coefficients a, are estimated with statistical
methods from a dependent data set. Often it is also unknown which predic-

tors x and how many predictors should be used. In that case the predictors
are selected by a stepwise regression technique which selects in any step
the best next predictor. Multiple linear regression and stepwise selection
are thoroughly dealt with in Dempster (1969).

5.3 Logistic Discrimination

For probabilistic forecasts mostly the logit-model (Brelsford and Jones,
1967) or logistic model is used. This model relates the probability of an
event with the predictors. Examples of such events are: the occurrence of
precipitation; observing a continuous predictand within a prescribed in-

terval and so on. When the problem is a yes/no problem e.g. rain/no rain

the model equation is fairly simple:
P (yes) = 100/(1 + exp(fx)) (%)

with fx = a5 + ayx) + asxg + .e.
and X;, X2 ... are the predictors and ay, a] ... are the coefficients. In
the case that the probabilities of more than two mutually exclusive events

have to be forecast the extended model (Anderson, 1972) can be used. In

the case of K classed the model reads:

P(k=1) = exp(fk) . P(k=K)
K=1
P(k=K) = 100/(1 + kgl exp(fk))
with fk = ag i + a) ke.x] + ap keX2 eee
(P(k=1) = the probability that class 1 will occur).
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The coefficients ap,k are estimated on the basis of the historical (depen-
dent) data set. However, the estimation of the coefficients is performed
with a numerical iterative procedure. This hampers the stepwise inclusion

of new predictors. Therefore we normally select the predictors beforehand

with stepwise multiple regression.

Data sets

As said before historical or dependent data sets are essential for the
estimation of the coefficients in a statistical model. Weather observa-
tions are available at KNMI over a long period. The data sets with
analyzed maps, needed for PP-equations, are mostly obtained from other
weather offices. The data set with forecast maps, needed for MOS-equations

is currently being assembled from ECMWF model output.

data set DWD

period ¢ January 1, 1949 - December 31, 1979
analyses : 00z

forecasts :t -

grid ¢ geographical, see Figure 3
parameters ¢ height 500 mbar

used for ¢ analogues method

first version guidance (PP)

obtained from : Deutsche Wetterdienst.

data set NCAR

period ¢ January 1, 1972 - December 31, 1979
analyses ¢ 002, 12z

forecasts IR

grid ¢ stereographic, see Figure 4

(interpolated from the original NMC grid)
parameters ¢ heights 1000, 850 and 500 mbar

temperature 850 and 500 mbar
used for

.o

second version guidance forecast (PP)

obtained from NCAR

data set ECMWF

period ¢ December 31, 1980 - present
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analyses : 00z, 122
forecasts : +12, 424, 436,.00.., +120, +132, +144
grid ¢ stereographic, see Figure 4

(interpolated from ECMWF gridsystems 14, 17, 86)
parameters ¢ heights 1000, 850 and 500 mbar

temperature 850 mbar

vertical velocity 500 mbar up to +144

wind at 10 m, wind 1000 mbar

heights 700, 250 mbar
temperature 700, 500 mbar
mixing ratio 850, 700 and 500 mbar

up to +72
relative humidity 850, 700 and S00 mbar

cloudiness
precipitation

This archive can easily be expanded with other parameters
and time steps, using the archives at ECMWF
used for ¢ third version guidance forecast (MOS)

The grid used for the NCAR and ECMWF data sets has been defined especially

for the development of the interpretation methods. It is a stereographic
grid of 7x7 gridpoints with De Bilt exactly in the centre and an orienta-
tion North-South at De Bilt.

— | 5
s Wl S
o (%A

/ .39 50
(J7 Figure 4
: }é% TSN :

" Stereographic grid,
grid spacing 400 km.

°
25 26 27
7 e
{ e 19 20
°
11 1 1
Vs —~




7.

7.1

13

Frequently used predictors

In this section we will pay some attention to the predictors used for the
development of the second and third version of the guidance forecast. For
a number of predictors the value at gridpoint De Bilt can be used, for in-
stance the temperature at 850 mbar, the thickness 1000/850 mbar etc. Some-
times not the value itself will be used, but the departure from climatolo-
gys In 7.2 more information about climatology will be presented.

Other predictors are computed from several grid points, such as the geo-
strophic wind components, the relative vorticity and the relative vortici-
ty advection. In 7.1 the formulae for these derived quantities can be
found. All these predictors represent rather small scales. It is well
known that the quality of the forecast of small scale phenomena will de-
crease with time even though there may still be valuable information in
the large scale. A method to extract this large scale information from the
fields is to expand the fields in their principle components (Glahn, 1982)
and to use the coefficients of only those components that represent the
large scales. In the second and third version of the guidance forecast
these coefficients are used. The idea of the principle components will be

illustrated with some examples in 7.1.

Formulae of used predictors

The indices used in the formulae refer to Figure 4.

The geostrophic wind components are:

u--£32 (1)
and v=%% (2)

For grid point De Bilt these equations can be expressed in finite differ-

ences as:
U - S -
Uy, 7E.ay (Z25 = Zp3) (3)
and = g

Voo = T 3F.ax (L3 < 2y ) (4)
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f = 2Q sing
¢ = 52.1°

-5 -1
Q= 7.292 10 ~ rad s
g=9.81m g2
X = Ay = 4 105 m

substitution of the values of g, f,Ax respectively Ay results in

u24 = 0,106 (Z25 - 223) (m/s) (5)
and Vo = 0.106 (Z17 - Z31) (m/s) (6)
The formula for the relative vorticity is:

L =3%x " a3y (n

In finite differences:

+ Z + Z

-7
524 = 5.3 10 (Z25 + 223 17

For the relative vorticity advection we have:

RVA = —V.7g = ~u <& 5 (9)

RVAgq = =1:23 10 7 ((ggy= €y 9 evpy + (5y57 y3) wy)) (s ) (10)

principal components

For the 1000, 850 and 500 mbar heights principal components are derived
based on the NCAR data set. The height of gridpoint De Bilt is subtracted
from each field, resulting in a difference pattern from the De Bilt value,
and then the mean value for each gridpoint is computed over the 8 years.
This mean is subtracted from each pattern. On these resulting patterns the
principal components analysis has been applied. We can now approximate
each field as the sum of the mean flow and a finite expansion of principal

components and the De Bilt value. The height Z at gridpoint i is now:

\
z, = <zp>+ 2, + ¥ oc B¥ (11)
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Fig. 5 The first 10 principal components of 1000 mbar height, and the height
with respect to height at gridpoint De Bilt, averaged over 1972-1979.
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Fig. 6 The same as Fig. 5, however for 850 mbar height
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17\

Fig. 7 The same as Fig. 5, however for 500 mbar height.
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Fig. 8 1In picture 11 the ECMWF 500 mbar analysis of April 29, 1984 is presented.
icture 1 represents the mean flow plus the first component, picture 2

the mean flow plus the first 2 components and so on. The coefficients
are: -0.01, 1.28, -1.01, 1.13, 0.28, -0.15, -1.01, -0.55, -0.03, 0.69.
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<Zi> =12 averaged over 8 years

. 1~ %24
Pi = value of n* principal component

Cn = coefficient of nth

principal component

N = number of gridpoints in the used grid

The values of Pg are computed from the NCAR-data set. Each field can be
expressed in these principal components and will have its own unique coef-
ficients C., It is these coefficients that are used as predictors.

Using only the first five components, describing the large scales, already
95% of the variance could be explained, so we use only these five as pre-
dictors.

In Figures 5, 6 and 7 the first 10 principal components of 1000, 850 and
500 mbar are presented. In Figure 8 an example of a 500 mbar field with

respectively 1, 2, 3, ..., 10 principal components is shown.

7.2 Climatology
For climatology of the predictands see the concerning reports. Many para-
meters have an annual variation which can be represented in terms of a

mean value plus a Fourier series of sinusoidal components:

= v 27 2%
Y(I) =Y + ngl (A sin(n.To2ly + B cos(n.T.zeD) )

I = day of the year, January 1 = 0, February 5 = 35 and so on.

Based on the NCAR data set the coefficients are established for the 850
and 500 mbar height and the 850 mbar temperature. In Table I the coeffi-
cients are presented. The number of components N is two, which gives a

good approximation as can be seen from Fig. 9.

Table I

Y Ay Ay B By
850 mbar temperature 2.7 | - 3.2+ 0.6 |- 4.6| + 0.6
850 mbar height 1459 | ~-23,7 |+ 2.2 |- 40.2]| + 3.6
500 mbar height 5568 | ~76.8 | +11.6 {-110.7| +14.3
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Verification of forecasts

There exists a wide range of scoring rules for all types of weather ele-
ments. In this Chapter we will give a short description of the scoring
rules in common use at the KNMI. We will distinguish between the score and
the skill of a time series of forecasts., With a score we will indicate a
numerical value giving the average "distance" between the series of fore-
casts and corresponding observations. This distance will be zero in the
case of a perfect forecast system. The skill is subsequently defined to be
the relative improvement obtained with a forecast technique relative to

some reference forecast system, usually climatology. The skill is computed

from the score by

SKILL = 100 # SCORE 1 vaTorLogy ~ SCOREgorEcAST

1)
SCORE -, IMATOLOGY

A perfect forecast system scores 100 percent whereas climatology or an
equivalent forecast system gets zero skill. Usually the reference
SCORECLIMATOLOGY Will be the score obtained by climatology applied to the
same period as the one for which the forecast score is computed. In theory
it is not allowed to average skills obtained in such a way. In practice,
however, the error will be small. The used climatology is at least a
monthly climatology unless specified otherwise.

First some scoring rules will be given related with the type of forecast,
probabilistic forecast versus point forecast. Thereafter a skill score
called "Performance Index" (PI) is described. This PI can be used in any
case after a minor transformation of the forecast.

Finally the reliability of probabilistic forecasts is discussed briefly.

Probabilistic forecasts

Giving the probability that a certain category will occur is a very useful
way of presenting forecasts. The categories used in such a case are usual-
ly mutually exclusive and cover the complete range of possible outcomes.
The categories used can be either natural e.g. rain, snow, hail or artifi-
cial e.g. below normal, normal or above normal with temperature forecas-
ting. However in all cases the determination of which category has occur-
red must be unambiguous. It is worthwhile to make a distinction between

the two-category case and the multi-category case.
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8.1.1 The two-category probability forecast

A simple example of such a forecast is the precipitation/no precipi-
tation forecast. The forecast only needs to specify the probability
of one category. In this case we use the adapted Brier-score (Brier,
1951). If we denote the forecast time series of one category as p,
(in Z) and the occurence of that category as o, (occurence denoted by

100, no occurence by 0) then the Brier-score BS of N forecasts is de-
fined:

BS ='% ngl (pn - on)2 ° (2)

8.1.2 The multi-category probability forecast

In the case that the categories have a natural ordering we use the
average Rank Probability Score (RPS) (Epstein, 1969; Daan and Murphy,
1982). Natural ordering mostly occurs when a continuous scale of a
weather variable has been subdivided into categories. For instance
with temperature the categories below normal and above have a natural
ordering. With no natural ordering e.g. rain, hail and snow we use
the original Brier Score. We denote the nth forecast of a K category

forecast as (Pl,n, esss PR,n) and the subsequent observation as

(01,ns eee, OK,n)> With one of the o,'s = 100 all the other 0. Now
the Brier Score of N forecasts follows from

1 2
BS = § nt1 (ki (B o™ 0, )°) 3

and the RPS of N forecasts

1 2
RPS = % ody (idy %0 ) ()

£

where Pk,n = ki) pk',n

and O ., = Wk o a

8.2 Point forecasts for continuous elements

For elements such as temperature and wind-velocity the forecast is fre-
quently expressed as a single value (point-forecast) in whose neighbour-

hood the observed value is expected. Given such a forecast we usually use
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the mean of the time series of absolute differences as a scoring rule. In-

cidentally the (root) mean square error will be used. The skills are com

puted according to eq. 1.

Performance Index (PI)

This scoring rule, introduced by Hanssen and Kuipefs (1965), leads
directly to a measure of skill, The PI is used at our Institute for all
relevant weather elements and records of monthly averages covering the
last 25 years are available. In order to use this score the forecast must

be transformed into one of two standard formats:

The forecast 1is expressed as one or more categories in which the obser-
vation is expected or
The forecast is expressed as one or more intervals on a continuous scale.

The observation is expected within one of the intervals.

After that the PI is obtained in the following way., First the climatologi-
cal probability, P., of a hit of each forecast is computed. Secondly the

relative frequency Py of hits is ascertained. (Both expressed in percent.)
The PI is defined to be

PI=PH-?C'
the overbar indicates averaging over the time series. The PI of a random
forecast from climatology scores zero. The maximum PI depends on the
nature of the forecast.

When the PI is used to verify forecasters results the forecaster is re-
quested to indicate on a form the categories or intervals (see Kuipers,
1980). When applied to forecasts resulting from an objective scheme it is
necessary to use a transformation rule which translates the objective
forecasts to the requested formats.

The transformation of the forecasts to the standard format is very simple
in the case of probabilistic forecasts: Naming all the categories with a
forecast probability higher than the climatological probability gives an
optimum PI when the probabilities are reliable. For categorial forecasts
there is no problem. However, for point-forecasts on a continuous scale an

optimum rule is not easily found. In the practical case this problem is
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solved by assigning an interval to each possible forecast value. The boun-
daries of this interval are based on experience obtained with similar
forecasts in the past. When used the chosen intervals are given. In this
case one must be careful when comparing two Performance Indices. Differen-

ces may be due to different transformation schemes instead of different
skills of the forecast systems.

Reliability of probabilities

Apart from having a good skill it is often required that forecast probabi-
lities are '"reliable" (Sanders, 1958; Murphy, 1973). This means that if we
select from a set of forecasts all forecasts of say 25% the event is ex—
pected to occur in 257 of all cases after those forecasts. Usually the
reliability is studied even in the multi-category case for each of the
categories independently. We will limit our discussion about reliability
to the one event case (two categories) and the forecast probability is the
probability that the event will occur. Reliability is mostly studied by
presenting a reliability diagram. Such a diagram is constructed in the
following way. First the forecasts are grouped in intervals of forecast
probability, for instance in ten groups covering the intervals 0-10%, 10-
20% and so on. The relative frequency of occurence of the event after a
forecast in a given group is plotted versus the midpoint of the intervals.
For reliable forecasts this relative frequency is expected near to this
midpoint. So the plotted points should cluster near to the diagonal
running from (0, 0) to (100, 100). In Figure 10 the reliability diagram of
the 48 hour forecast probability on precipitation at De Bilt in a 12 hour
period obtained with the analogue technique is given as an illustration.
However, reliability can also be interpreted as a part of the Brier Score
(Daan and Murphy, 1982). In terms of the diagram the reliability defined
by Murphy is the weighted average of the squared vertical distances
between the plotted points and the diagonal., The weights must be chosen
equal to the number of forecasts assiociated with the plotted point. If we
denoted the midpoint of the interval by Pg, the observed frequency by Og

and the number of forecasts in each interval by Ny, then the reliability
RLB can be found by

1 2
RLB = ﬁ.sgl Ng (Os - Ps)
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with N the total number of obsérvations and S the number of intervals. In
the ideal case RLB will be zero. However, the computed RLB is the result
of a random process and therefore almost never will be zero even when the
forecasts are strictly reliable. The expected value of RLB depends strong-
ly on the total number of forecasts. The expected value can be estimated
from the binomial frequency distribution in the following way:

assuming the forecasts probabilities to be reliable the observed frequency
Og will be the result of Ng trials in a binomial process with probability
Pg. Therefore the expected value of Og will be Pg and the variance of Og

will be Pg (100 - Pg)/Ng. Now the variance is equal to the expected value

of (0g - Ps)2 and the expected value of RLB is found by replacing this
term by its expected value

1 § PS(IOO - Ps)
E(RLB) N s=] Ns NS *

When the 10 interval grouping described before is chosen these equation
simplifies to

E(RLB) = 1—6-1%5—0 .

where P; and Og are expressed in percent. The reliability diagram in
Figure 10 results in an RLB of 37,3. The expected reliability is 16,0. The
diagram in Figure 10 clearly illustrates that the analogues overestimate
the probability of precipitation at all levels.
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10

The reliability diagram of the forecast probability of
precipitation in a twelve hour period at De Bilt.

Lead time 48 hours, verification period 1-12-1980 to
1-12-1983, 1048 forecasts. The dotted histogram gives

the relative frequency of forecasts in each group.
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