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The statistical mechanics of 
turbulent flows

Wim Verkley

Introduction

In	a	paper	that	appeared	70	years	ago	in	the	Journal	of	
the	Dutch	Physical	Society,	Burgers1)	addressed	the	ques-
tion	whether	the	statistics	of	turbulent	flows	can	be	
investigated	by	the	methods	of	statistical	mechanics.	

In	the	past	these	methods	had	been	very	successfully	
applied	to	the	microscopic	motion	of	molecules.	In	
extending	their	application	to	the	realm	of	turbulent	
motion,	one	encounters	the	difficulty	that	the	fluid	
dynamical	equations	are	continuous.	By	using	a	
representation	of	the	flow	fields	in	terms	of	Fourier	
components	this	problem	can	be	solved	to	the	extent	
that	a	phase	space	can	still	be	defined	although	it	is	
infinite	dimensional.		Another	difficulty	is	that,	in	
turbulent	motion,	energy	is	not	conserved	but	flows	
through	the	system.	Burgers	therefore	proposed	that	the	
statistics	of	a	turbulent	system	is	controlled	by	an	average	
balance	between	input	and	output	of	energy	and	not,	
as	is	appropriate	to	assume	in	the	realm	of	
molecular	motion,	by	the	conservation	of	energy.	Taking	
the	dissipation	to	be	quadratic,	when	expressed	in	
terms	of	the	Fourier	coefficients,	and	constraining	the	
statistics	to	respect	an	average	balance	between	forcing	
and	dissipation,	he	applied	the	techniques	of	statistical	
mechanics	and	concluded	that	the	dissipation	is	equally	
partitioned	among	the	Fourier	components.		

This	conclusion	was	both	interesting	and	problematic.	
Equipartition	of	dissipation	leads	to	an	unphysical	
infinite	total	dissipation	if	the	phase	space	of	the	system	
is	infinite	dimensional.	Quantum	mechanics	does	not	
come	to	the	rescue	here	as	it	had	done	earlier	when	an	
analogous	problem	arose	in	the	statistical	mechanics	
of	electromagnetic	radiation.	Despite	a	series	of	
publications,	many	of	which	are	reprinted	in	the	
memorial	volume	by	Nieuwstadt	and	Steketee2),	a	
completely	satisfying	solution	did	not	emerge	and	
Burgers	finally	abandoned	the	subject.	Several	years	
later	Onsager3)	took	it	up	again	but	decided	to	pursue	a	
course	that	is	more	in	line	with	equilibrium	statistical	
mechanics,	as	detailed	in	the	review	article	by	Eyink	and	
Sreenivasan4).		

The	work	described	below5)	can	be	considered	as	an	
attempt	to	revisit	Burgers’	approach.	It	will	thus	be	
investigated	whether	statistical	mechanics	can	be	used	to	
deal	with	forced-dissipative	turbulent	systems,	using	as	
a	basic	assumption	that	the	statistics	is	controlled	by	an	
average	balance	between	forcing	and	dissipation.		
The	problem	of	the	infinite	dissipation	is	not	resolved	
but	moderated	by	limiting	ourselves	to	finitely	
truncated	spectral	representations	of	fluid	flows.	We	will	
phrase	the	theory	in	the	language	of	probability	theory	
and	the	principle	of	maximum	entropy,	as	advocated	by	
Jaynes6).

The	method	will	be	applied	to	a	simple	one-layer	model	
of	the	large-scale	atmospheric	circulation.	In	this	context	
the	model’s	statistics	can	be	identified	with	the	model’s	
climate.	From	the	perspective	of	this	model	our	aim	is	
to	deduce	the	model’s	climate	from	its	basic	equations,	
as	an	alternative	to	averaging		over	long	numerical	time-
integrati0ns.

Our aim is to deduce the model’s climate from its 
basic equations, as an alternative to averaging  over 
long numerical time-integrati0ns
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A model of the large-scale atmospheric 
circulation 
The	model	to	be	considered	describes	the	motion	of	a	
single	layer	of	incompressible	fluid	on	the	surface	of	a	
rotating	sphere.	Orography	is	taken	into	account	and	the	
flow	is	assumed	to	be	geostrophically	balanced	and	thus	
approximately	governed	by	the	horizontal	advection	of	
quasigeostrophic	potential	vorticity.	The	equation	that	
is	used	is	a	somewhat	simplified	version	of	an	equation	
discussed	recently	by	the	author7).	The	system	is	forced	
by	relaxation	towards	a	zonally	symmetric	circulation	
that	consists	of	jet-streams	in	both	hemispheres,	and	
is	damped	by	a	term	that	has	the	same	structure	as	the	
viscosity	term	in	fluid	dynamics.	The	two-dimensional	
streamfunction,	in	terms	of	which	the	horizontal	velocity	
is	expressed,	is	the	basic	field	of	the	model	and	is	repre-
sented	by	a	finite	set	of	spherical	harmonics,	indexed	by	
the	integers	m	and	n,	where	n	runs	from	1	to	N	=	42	and	m	
runs	from	–n	to	+n.	The	variables	of	the	model	
are	expressed	in	units	formed	by	appropriate	
combinations	of	the	earth’s	radius	and	angular	velocity	
of	rotation.

The	phase	space	of	the	model	consists	of	the	Fourier	
coefficients	ymn	of	the	streamfunction.		By	projecting	the	
advection	equation	of	potential	vorticity		onto	the	finite	

set	of		spherical	harmonics,	one	obtains	a	dynamical	
system	of	quadratically	non-linear	equations	in	the	Fou-
rier	coefficients.	When	integrated	numerically,	
this	finite-dimensional	dynamical	system	displays	
chaotic	turbulent	motion,	not	unlike	what	is	seen	
in	large-scale	atmospheric	flow.	To	demonstrate	
this,	we	show	in	Figure	1	two	snapshots	of	the	
vorticity	and	the	zonally	averaged	zonal	velocity,		
separated	by	10	days	in	time,	at	the	end	of	an	
integration	of	2000	days.

Energy and enstrophy
The	global	state	of	the	system	can	be	characterized	by	the	
energy		E	and	the	enstrophy	Z,	given	by

E	=	Smn	(1/2)	en		y 2mn	,
Z	=	Smn	(1/2)	(en		y mn	-	fmn	)

2.

Here	is	en		a	system	parameter	and	fmn		is	related	to	the	
Coriolis	parameter	and	the	orography.	In	the	presence	of	
forcing	and	dissipation,	we	have

dE	/	dt	=	F	-	D,
dZ	/	dt	=	G-	H,

in	which	the	energy	forcing	F,	energy	dissipation	D,	
enstrophy	forcing	G	and	enstrophy	dissipation	H	are	
given	by

F	=	Smn	(-	Fmn	y mn),
D	=	Smn	(dn	y 2mn),
G	=	Smn	(-en	Fmn	ymn+	fmn	Fmn	),
H	=	Smn	(dn	en	y 2mn		-	dn	fmn	ymn).

In	these	expressions	Fmn	is	the	Fourier	coefficient	of	the	
forcing	and	dn	is	related	to	the	form	and	the	strength	of	
the	dissipation.	It	can	be	seen	that,	if	the	forcing	coef-
ficients		Fmn		and	dissipation	parameters	dn	are	zero,	the	
energy		E	and	the	enstrophy	Z	are	conserved.	If	these	
coefficients	and	parameters	are	not	zero,	this	is	no	
longer	the	case.		However,	for	a	statistically	stationary	
state	we	have	instead	that		dE	/	dt	and	dZ	/	dt	,	or	F	-	D		and		
G-	H,	are	zero	on	average.

Statistical mechanics and maximum entropy
The	central	concept	in	a	statistical	mechanical	theory	is	
the	probability	density	function,	denoted	by	P,	which	
in	our	case	gives	the	probability	to	find	the	system	in	a	
state	with	Fourier	coefficients	ymn.	According	to	Jaynes’	
principle	of	maximum	entropy,	the	probability	
density	function	should	have	a	maximum	value	of	its	
information	entropy	S1	,	defined	by	

Figure 1. The vorticity field at day 1990 and day 2000 (a and b, res-

pectively) in a numerical integration of the spectral model of large-scale 

atmospheric flow. The values of the vorticity are expressed in units of the 

earth’s angular velocity  and are in the range (-0.50, 0.55) and (-0.57, 

0.61), respectively, and are displayed with a contour interval of 0.04. The 

colour scale is from blue (low values) to red (high values). The profiles to 

the right of the vorticity fields are the zonally averaged zonal velocity in 

meters per second.
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The	measure		M,	for	which	a	product	of	constants	is	
taken,	incorporates	any	a-priori	knowledge	of	the	system	
such	as	its	basic	symmetries.		All	additional	information	
on	the	system	is	used	to	constrain	the	maximization	of			
S1,	like	the	normalization	condition	on		P.		The	additional	
information	consists	of	fixed	averages	of	certain	
functions	Q	,	with	the	average		〈Q〉	defined	by

	
Without	these	averages	as	constraints,	the	maximization	
of	the	information	entropy		S1	would	result	in	P	=	M.	
Although	the	constant	values	that	we	take	to	define	M	
turn	out	to	influence	the	maximum	value	of	the	
information	entropy	S1,	these	values	do	not	influence	the	
probability	density	function		P	and	thus	do	not	influence	
the	resulting	statistics.	

In	the	equilibrium	statistical	mechanical	theory	that	
emerged	from	Onsager’s	approach,	the	information	
entropy	is	maximized		with	fixed	values	of	the	average	
energy	〈E〉		and	the	average	enstrophy	〈Z〉.	This	has	
been	shown5)	to	work	rather	well	if	the	statistics	is	
controlled	by	conservation	of	energy	and	enstrophy,	i.e.,	
in	the	unforced-undamped	case	-	which	is	not	very	
realistic.	If	forcing	and	dissipation	are	present	then,	
in	line	with	Burgers’	approach,	it	is	more	appropriate	
to	maximize	the	information	entropy	with	fixed	(zero)	
values	of		〈F	-	D〉		and	〈G	-	H〉.	Fortunately,	the	
mathematics	is	similar	in	both	cases	because	all	
constraints	are	quadratic	and	lead	to	a	probability	
density	function	that	is	a	product	of	normal	
distributions.	Once	the	probability	density	function	is	
known,	all	relevant	statistics	can	be	calculated,	such	as	
spectra	of	energy	and	enstrophy	and	average	vorticity	
fields.

Results 
We	will	focus	on	the	numerical	integration	of	2000	days	
of	which	two	snapshots	of	vorticity	have	been	shown	in	
Figure	1.	We	use	the	last	500	days	of	the	integration	to	
calculate	average	spectra,	vorticity	and	velocity	fields	in	
order	to	compare	these	with	the	theoretical	results.	To	
define	the	spectra	of	energy	and	enstrophy,	we	write	the	
energy	E	and	the	entrophy	Z	as	a	sum	over	N	functions		En	
and		Zn,	the	latter	containing	the	sums	over	m.		The	
spectra	of	energy	and	enstrophy	are	thus	En	and	Zn	as	
functions	of	n,	where	n	runs	from	1	to	42.	

The	solid	dots	and	open	circles	in	the	three	panels	
of	Figure	2	are	the	numerically	obtained	values	of	
log	En	and	log	Zn,	respectively,	as	a	function	of		log	n,	

Figure 2. The values of log En (energy) and log Zn (enstrophy) as a function 

of  log n, averaged over the last 500 days of the numerical integration. 

The solid dots represent the spectra of energy, the open circles represent 

the spectra of enstrophy and the solid curves are the theoretical spectra, 

based on maximum entropy. In the upper panel (a) the constraints in the 

maximization of entropy are energy and enstrophy, in the middle panel (b) 

the constraints are the decay rates of energy and enstrophy (taken to be 

zero),  and in the lower panel (c) both energy and enstrophy as well as their 

decay rates are used as constraints.

S1 = - ∫ . . . ∫ dψ -N-N . . . dψ NN x

P(ψ -N-N ,...,ψ NN )log .P(ψ -N-N ,...,ψ NN )
M(ψ -N-N ,...,ψ NN )

 〈Q〉 = ∫ . . . ∫ dψ -N-N . . . dψ NN x

P(ψ -N-N ,...,ψ NN )Q(ψ -N-N ,...,ψ NN ). 
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for	n	=	1,	…,	42.	The	solid	curves	in	panel	a	are	the	spectra	
based	on	maximum	entropy	if	the	numerically	obtained	
values	of		〈E〉	and	〈Z〉	are	used	as	constraints.	
Whereas	this	has	been	shown	to	work	quite	well	in	the	
unforced-undamped	case,	in	the	forced-damped	case	
that	we	consider	here	it	does	not	work	at	all.	The	
numerically	obtained	spectra	are	very	different	from	the	
spectra	that	characterize	the	unforced-undamped	case.	

The	solid	lines	in	panel	b	of	Figure	2	show	the	theoretical	
spectra	if	the	entropy	is	maximized	using	as	constraints	
that	〈F	-	D〉		and	〈G	-	H〉	are	zero.	This	is	the	case	that	
corresponds	to	Burgers’	basic	idea.	In	contrast	to	the	
case	displayed	in	panel	a	of	Figure	2,	we	do	not	need	any	
information	from	the	numerical	run	except	for	the	fact	
that	it	has	reached	a	state	of	statistical	equilibrium.	The	
resemblance	between	the	theoretical	and	numerical	
spectra	is	nevertheless	substantially	better	that	in	the	
case	of	panel	a	of	Figure	2,	in	particular	for	the	lower	
values	of	the	wavenumber	n.

In	panel	c	of	Figure	2	we	show	the	theoretical	spectra	if	
the	numerically	obtained	values	of	〈E〉	and	〈Z〉	are	used	
as	constraints	in	addition	to	the	constraints	that	〈F	-	D〉		
and	〈G	-	H〉	are	zero.	Whereas	on	their	own	the	former	
constraints	do	not	lead	to	proper	spectra	(as	we	have	just	
seen),	when	combined	with	the	constraints	that	〈F	-	D〉		
and	〈G	-	H〉	are	zero,	they	lead	to	an	improvement	that	is	
quite	substantial.	It	shows	that	the	values	of	〈E〉	and	〈Z〉		
contain	useful	extra	information	and	that	the	theory	is	
able	to	incorporate	that	extra	information	in	a	consistent	
way.
In	panel	a	of	Figure	3	we	show	the	vorticity	and	zonally	
averaged	zonal	velocity	obtained	numerically,	averaged	
over	the	last	500	days	of	the	integration.	In	panel	b	the	
theoretical	average	is	given,	calculated	on	the	basis	of	
maximum	entropy	using	the	numerically	obtained	values	
of	〈E〉	and	〈Z〉	as	constraints.	In	panel	c	the	theoretical	
average	is	shown	that	results	if		zero	values	of	〈F	-	D〉		and	
〈G	-	H〉	are		used	as	constraints	in	the	maximization	of	
entropy.	In	panel	d,	finally,		the	result	is	shown	if	the	
numerically	obtained	values	of	〈E〉		and	〈Z〉	are	used	as	
extra	constraints	in	the	maximization	of	entropy.	The	
most	striking	difference	is	between	panels	b	and	c,	the	
former	showing	no	trace	of	the	two	jet-streams,	the	latter	
showing	these	jet-streams	quite	clearly.	Panel	d	confirms	
that	additional	information	in	the	form	of	given	values	
of	〈E〉	and	〈Z〉	leads	to	theoretical	results	that	are	more	in	
accord	with	the	numerical	simulations.

Conclusion
We	have	shown	that	the	formalism	of	statistical	
mechanics,	expressed	in	the	language	of	probability	

theory	and	the	principle	of	maximum	entropy,	is	able	
to	produce	statistics	of	forced-dissipative	turbulent	
flows.	The	basic	idea	is	that	the	statistics	of	a	stationary	

Figure 3. Vorticity fields, expressed in units of the earth’s angular velocity,  

displayed with a contour interval of 0.04, using the same colour scale as 

in Figure 1. Zonally averaged zonal velocity profiles in meters per second 

are displayed to the right of the vorticity fields. Panel a shows the results 

averaged over the last 500 days of the  numerical integration. Panels b, c 

and d show the theoretical averages, based on maximization of entropy. 

The constraints in b are energy and enstrophy, in c the (zero) decay rates of 

energy and enstrophy and in d both energy and enstrophy and their zero 

decay rates. The vorticity fields in the consecutive panels vary 

between (-0.41, 0.46), (-0.21, 0.15), (-0.13, 0.09) and (-0.21, 0.17), 

respectively.
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turbulent	system	is	controlled	by	the	average	balance	
between	forcing	and	dissipation,	an	idea	pursued	earlier	
by	Burgers.	The	theory	was	applied	to	a	finitely	truncated	
spectral	model	of	large-scale	atmospheric	flow	with	the	
aim	of	deducing	the	climate	of	the	model	from	its	
equations	as	an	alternative	to	averaging	over	long	
numerical	time-integrations.	

The	theory	has	shown		its	most	predictive	side	if,	in	line	
with	Burgers’	idea,	the	average	time	derivative	of	energy	
and	enstrophy	are	constrained	to	be	zero	in	the	maximi-
zation	of	entropy.	In	this	case	no	information	from	the	
numerical	run	is	needed	except	the	fact	that	the	system	
is	in	a	statistically	stationary	state.	The	results	compare	
favourably	with	the	results	obtained	in	the	case	that	the	
energy	and	enstrophy,	obtained	from	the	numerical	run,	
are	used	as	constraints	in	the	maximization	of	entropy.	
When	all	constraints	are	combined,	the	theoretical	
results	compare	best	with	their	numerical	counterparts.	
From	the	latter	it	may	be	concluded	that,	if	the	values	of	
energy	and	enstrophy	are	available,	the	additional	infor-
mation	that	these	values	contain	can	be	incorporated	
consistently	by	the	principle	of	the	maximum	entropy.

A	procedure	that	would	avoid	the	use	of	average	values	of	
the	energy	and	enstrophy,	to	be	taken	from	the	nume-
rical	run	and	therefore	at	the	expense	of	the	theory’s	
predictive	power,	is	to	use	as	additional	constraints	the	
condition	that	the	second-	and	higher-order	time	deriva-
tives	of	energy	and	enstrophy	are	zero.	This	is	justified	in	
case	the	system	is	statistically	stationary	and,	in	view	of	
the	form	of	these	constraints,	is	expected	to	lead	to	more	
structure	in	the	resulting	statistics	such	as	correlations	
between	the	spectral	coefficients.	The	price	to	be	paid	is	
a	mathematically	more	complex	analysis	but,	in	view	of	
the	possibilities	that	it	promises,	would	be	worthwhile	
to	pursue	as	a	topic	of	further	research.
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